Activity Report 2013

Section Scientific Foundations
1. ACES Project-Team ... 4
2. ALF Project-Team ... 8
3. ASAP Project-Team ... 16
4. ASCOLA Project-Team ... 18
5. ASPI Project-Team ... 22
6. ATLANMOD Project-Team ... 28
7. CAIRN Project-Team .. 34
8. CELTIQUE Project-Team ... 38
9. CIDRE Project-Team .. 43
10. DIONYSOS Project-Team ... 47
11. DREAM Project-Team .. 49
12. DYLISS Project-Team ... 52
13. ESPRESSO Project-Team ... 58
14. FLUMINANCE Project-Team ... 67
15. GENSCALE Project-Team ... 72
16. HYBRID Project-Team ... 73
17. Hycomes Team ... 76
18. I4S Project-Team ... 83
19. IPSO Project-Team .. 90
20. KERDATA Project-Team .. 96
21. LAGADIC Project-Team .. 98
22. MIMETIC Project-Team ... 101
23. MYRIADS Project-Team ... 104
24. PANAMA Project-Team .. 107
25. S4 Project-Team ... 110
26. SAGE Project-Team .. 113
27. SERPICO Project-Team ... 114
28. SIROCCO Project-Team ... 116
29. SUMO Team ... 119
30. TASC Project-Team .. 121
31. TEXMEX Project-Team .. 124
32. TRISKELL Project-Team ... 127
33. VISAGES Project-Team ... 131
ACES Project-Team

3. Research Program

3.1. Programming Context

The goal of ambient computing is to seamlessly merge virtual and real environments. A real environment is composed of objects from the physical world, e.g., people, places, machines. A virtual environment is any information system, e.g., the Web. The integration of these environments must permit people and their information systems to implicitly interact with their surrounding environment.

Ambient computing applications are able to evaluate the state of the real world through sensing technologies. This information can include the position of a person (caught with a localization system like GPS), the weather (captured using specialized sensors), etc. Sensing technologies enable applications to automatically update digital information about events or entities in the physical world. Further, interfaces can be used to act on the physical world based on information processed in the digital environment. For example, the windows of a car can be automatically closed when it is raining.

This real-world and virtual-world integration must permit people to implicitly interact with their surrounding environment. This means that manual device manipulation must be minimal since this constrains person mobility. In any case, the relative small size of personal devices can make them awkward to manipulate. In the near future, interaction must be possible without people being aware of the presence of neighbouring processors.

Information systems require tools to capture data in its physical environment, and then to interpret, or process, this data. A context denotes all information that is pertinent to a person-centric application. There are three classes of context information:

- The digital context defines all parameters related to the hardware and software configuration of the device. Examples include the presence (or absence) of a network, the available bandwidth, the connected peripherals (printer, screen), storage capacity, CPU power, available executables, etc.
- The personal context defines all parameters related to the identity, preferences and location of the person who owns the device. This context is important for deciding the type of information that a personal device needs to acquire at any given moment.
- The physical context relates to the person’s environment; this includes climatic condition, noise level, luminosity, as well as date and time.

All three forms of context are fundamental to person-centric computing. Consider for instance a virtual museum guide service that is offered via a PDA. Each visitor has his own PDA that permits him to receive and visualise information about surrounding artworks. In this application, the pertinent context of the person is made up of the artworks situated near the person, the artworks that interest him as well as the degree of specialisation of the information, i.e., if the person is an art expert, he will desire more detail than the occasional museum visitor.

There are two approaches to organising data in a real to virtual world mapping: a so-called logical approach and a physical approach. The logical approach is the traditional way, and involves storing all data relevant to the physical world on a service platform such as a centralised database. Context information is sent to a person in response to a request containing the person’s location co-ordinates and preferences. In the example of the virtual museum guide, a person’s device transmits its location to the server, which replies with descriptions of neighbouring artworks.
The main drawbacks of this approach are scalability and complexity. Scalability is a problem since we are evolving towards a world with billions of embedded devices; complexity is a problem since the majority of physical objects are unrelated, and no management body can cater for the integration of their data into a service platform. Further, the model of the physical world must be up to date, so the more dynamic a system, the more updates are needed. The services platform quickly becomes a potential bottleneck if it must deliver services to all people.

The physical approach does not rely on a digital model of the physical world. The service is computed wherever the person is located. This is done by spreading data onto the devices in the physical environment; there are a sufficient number of embedded systems with wireless transceivers around to support this approach. Each device manages and stores the data of its associated object. In this way, data are physically linked to objects, and there is no need to update a positional database when physical objects move since the data physically moves with them.

With the physical approach, computations are done on the personal and available embedded devices. Devices interact when they are within communication range. The interactions constitute delivery of service to the person. Returning to the museum example, data is directly embedded in a painting’s frame. When the visitor’s guide meets (connects) to a painting’s devices, it receives the information about the painting and displays it.

3.2. Spatial Information Systems

One of the major research efforts in ACES over the last few years has been the definition of the Spread programming model to cater for spacial context. The model is derived from the Linda [10] tuple-space model. Each information item is a *tuple*, which is a sequence of typed data items. For example, `<10, 'Peter', -3.14>` is a tuple where the first element is the integer 10, the second is the string "Peter" and the third is the real value -3.14. Information is addressed using patterns that match one or a set of tuples present in the tuple-space. An example pattern that matches the previous tuple is `<int, 'Peter', float>`. The tuple-space model has the advantage of allowing devices that meet for the first time to exchange data since there is no notion of names or addresses.

Data items are not only addressed by their type, but also by the physical space in which they reside. The size of the space is determined by the strength of the radio signal of the device. The important difference between Spread and other tuple-space systems (e.g., Sun’s JavaSpaces [9], IBM’s T-Space [13]) is that when a program issues a matching request, only the tuples filling the physical space of the requesting program are tested for matching. Thus, though SIS (Spatial Information Systems) applications are highly distributed by nature, they only rely on localised communications; they do not require access to a global communication infrastructure. Figure 1 shows an example of a physical tuple space, made of tuples arranged in the space and occupying different spaces.

As an example of the power of this model, consider two of the applications that we have developed using it.

- **Ubi-bus** is a spatial information application whose role is to help blind and partially blind people use public transport. When taking a bus, a blind person uses his PDA to signal his intention to a device embedded in the bus stop; this device then contacts the bus on the person’s behalf. This application illustrates how data is distributed over the objects of the physical world, and generally, how devices complement human means of communication.

- **Ubi-board** is a spatial information application designed for public electronic billboards. Travel hotspots like airports and major train stations have an international customer base, so bill-board announcements need to be made in several languages. In Ubi-bus, a billboard has an embedded device. When a person comes within communication range of the billboard, his device sends a request to the billboard asking it to print the message in the language of the person. In the case where several travellers are in proximity of the billboard, the board sends a translation of its information message to each person. The Ubi-board application illustrates personal context in use, i.e., the choice of natural language, and also how actions can be provoked in the physical world without explicit intervention by the person.
Figure 1. Physical Tuple Space
3.3. Coupled objects

Integrity checking is an important concern in many activities, both in the real world and in the information society. The basic purpose is to verify that a set of objects, parts, components, people remains the same along some activity or process, or remains consistent against a given property (such as a part count).

In the real world, it is a common step in logistic: objects to be transported are usually checked by the sender (for their conformance to the recipient expectation), and at arrival by the recipient. When a school get a group of children to a museum, people responsible for the children will regularly check that no one is missing. Yet another common example is to check for our personal belongings when leaving a place, to avoid lost. While important, these verification are tedious, vulnerable to human errors, and often forgotten.

Because of these vulnerabilities, problems arise: E-commerce clients sometimes receive incomplete packages, valuable and important objects (notebook computers, passports etc.) get lost in airports, planes, trains, hotels, etc. with sometimes dramatic consequences.

While there are very few automatic solutions to improve the situation in the real world, integrity checking in the computing world is a basic and widely used mechanism: magnetic and optical storage devices, network communications are all using checksums and error checking code to detect information corruption, to name a few.

The emergence of ubiquitous computing and the rapid penetration of RFID devices enable similar integrity checking solutions to work for physical objects. We introduced the concept of coupled object, which offers simple yet powerful mechanisms to check and ensure integrity properties for set of physical objects.

Essentially, coupled objects are a set of physical objects which defines a logical group. An important feature is that the group information is self contained on the objects which allow to verify group properties, such as completeness, only with the objects. Said it another way, the physical objects can be seen as fragments of a composite object. A trivial example could be a group made of a person, his jacket, his mobile phone, his passport and his cardholder.

The important feature of the concept are its distributed, autonomous and anonymous nature: it allows the design and implementation of pervasive security applications without any database tracking or centralized information system support. This is a significant advantage of this approach given the strong privacy issues that affect pervasive computing.
3. Research Program

3.1. Motivations

Multicores have become mainstream in general-purpose as well as embedded computing in the last few years. The integration technology trend allows to anticipate that a 1000-core chip will become feasible before 2020. On the other hand, while traditional parallel application domains, e.g. supercomputing and transaction servers, are benefiting from the introduction of multicores, there are very few new parallel applications that have emerged during the last few years.

In order to allow the end-user to benefit from the technological breakthrough, new architectures have to be defined for the 2020’s many-cores, new compiler and code generation techniques as well as new performance prediction/guarantee techniques have to be proposed.

3.2. The context

3.2.1. Technological context: The advent of multi- and many-core architecture

For almost 30 years since the introduction of the first microprocessor, the processor industry was driven by the Moore’s law till 2002, delivering performance that doubled every 18-24 months on a uniprocessor. However since 2002, and despite new progress in integration technology, the efforts to design very aggressive and very complex wide issue superscalar processors have essentially been stopped due to poor performance returns, as well as power consumption and temperature walls.

Since 2002-2003, the microprocessor industry has followed a new path for performance: the so-called multicore approach, i.e., integrating several processors on a single chip. This direction has been followed by the whole processor industry. At the same time, most of the computer architecture research community has taken the same path, focusing on issues such as scalability in multicores, power consumption, temperature management and new execution models, e.g. hardware transactional memory.

In terms of integration technology, the current trend will allow to continue to integrate more and more processors on a single die. Doubling the number of cores every two years will soon lead to up to a thousand processor cores on a single chip. The computer architecture community has coined these future processor chips as many-cores.

3.2.2. The application context: multicores, but few parallel applications

For the past five years, small scale parallel processor chips (hyperthreading, dual and quad-core) have become mainstream in general-purpose systems. They are also entering the high-end embedded system market. At the same time, very few (scalable) mainstream parallel applications have been developed. Such development of scalable parallel applications is still limited to niche market segments (scientific applications, transaction servers).

3.2.3. The overall picture

Till now, the end-user of multicores is experiencing improved usage comfort because he/she is able to run several applications at the same time. Eventually, in the near future with the 8-core or the 16-core generation, the end-user will realize that he/she is not experiencing any functionality improvement or performance improvement on current applications. The end-user will then realize that he/she needs more effective performance rather than more cores. The end-user will then ask either for parallel applications or for more effective performance on sequential applications.
3.3. Technology induced challenges

3.3.1. The power and temperatures walls

The power and the temperature walls largely contributed to the emergence of the small-scale multicores. For the past five years, mainstream general-purpose multicores have been built by assembling identical superscalar cores on a chip (e.g. IBM Power series). No new complex power hungry mechanisms were introduced in the core architectures, while power saving techniques such as power gating, dynamic voltage and frequency scaling were introduced. Therefore, since 2002, the designers have been able to keep the power consumption budget and the temperature of the chip within reasonable envelopes while scaling the number of cores with the technology.

Unfortunately, simple and efficient power saving techniques have already caught most of the low hanging fruits on energy consumption. Complex power and thermal management mechanisms are now becoming mainstream; e.g. the Intel Montecito (IA64) featured an adjunct (simple) core whose unique mission is to manage the power and temperature on two cores. Processor industry will require more and more heroic efforts on this power and temperature management policy to maintain its current performance scaling path. Hence the power and temperature walls might slow the race towards 100’s and 1000’s cores unless the processor industry takes a new paradigm shift from the current "replicating complex cores" (e.g. Intel Nehalem) towards many simple cores (e.g. Intel Larrabee) or heterogeneous manycores (e.g. new GPUs, IBM Cell).

3.3.2. The memory wall

For the past 20 years, the memory access time has been one of the main bottlenecks for performance in computer systems. This was already true for uniprocessors. Complex memory hierarchies have been defined and implemented in order to limit the visible memory access time as well as the memory traffic demands. Up to three cache levels are implemented for uniprocessors. For multi- and many-cores the problems are even worse. The memory hierarchy must be replicated for each core, memory bandwidth must be shared among the distinct cores, data coherency must be maintained. Maintaining cache coherency for up to 8 cores can be handled through relatively simple bus protocols. Unfortunately, these protocols do not scale for large numbers of cores, and there is no consensus on coherency mechanism for manycore systems. Moreover there is no consensus on core organization (flat ring? flat grid? hierarchical ring or grid?). Therefore, organizing and dimensioning the memory hierarchy will be a major challenge for the computer architects. The successful architecture will also be determined by the ability of the applications (i.e., the programmers or the compilers or the run-time) to efficiently place data in the memory hierarchy and achieve high performance.

Finally new technology opportunities may demand to revisit the memory hierarchy. As an example, 3D memory stacking enables a huge last-level cache (maybe several gigabytes) with huge bandwidth (several Kbits/processor cycle). This dwarfs the main memory bandwidth and may lead to other architectural tradeoffs.

3.4. Need for efficient execution of parallel applications

Achieving high performance on future multicores will require the development of parallel applications, but also an efficient compiler/runtime tool chain to adapt codes to the execution platform.

3.4.1. The diversity of parallelisms

Many potential execution parallelism patterns may coexist in an application. For instance, one can express some parallelism with different tasks achieving different functionalities. Within a task, one can expose different granularities of parallelism; for instance a first layer message passing parallelism (processes executing the same functionality on different parts of the data set), then a shared memory thread level parallelism and fine grain loop parallelism (a.k.a vector parallelism).
Current multicores already feature hardware mechanisms to address these different parallelisms: physically distributed memory — e.g. the new Intel Nehalem already features 6 different memory channels — to address task parallelism, thread level parallelism — e.g. on conventional multicores, but also on GPUs or on Cell-based machines —, vector/SIMD parallelism — e.g. multimedia instructions. Moreover they also attack finer instruction level parallelism and memory latency issues. Compilers have to efficiently discover and manage all these forms to achieve effective performance.

3.4.2. Portability is the new challenge

Up to now, most parallel applications were developed for specific application domains in high end computing. They were used on a limited set of very expensive hardware platforms by a limited number of expert users. Moreover, they were executed in batch mode.

In contrast, the expectation of most end-users of the future mainstream parallel applications running on multicores will be very different. The mainstream applications will be used by thousands, maybe millions of non-expert users. These users consider functional portability of codes as granted. They will expect their codes to run faster on new platforms featuring more cores. They will not be able to tune the application environment to optimize performance. Finally, multiple parallel applications may have to be executed concurrently.

The variety of possible hardware platforms, the lack of expertise of the end-users and the varying run-time execution environments will represent major difficulties for applications in the multicore era.

First of all, the end user considers functional portability without recompilation as granted, this is a major challenge on parallel machines. Performance portability/scaling is even more challenging. It will become inconceivable to rewrite/retune each application for each new parallel hardware platform generation to exploit them. Therefore, apart from the initial development of parallel applications, the major challenge for the next decade will be to efficiently run parallel applications on hardware architectures radically different from their original hardware target.

3.4.3. The need for performance on sequential code sections

3.4.3.1. Most software will exhibit substantial sequential code sections

For the foreseeable future, the majority of applications will feature important sequential code sections.

First, many legacy codes were developed for uniprocessors. Most of these codes will not be completely redeveloped as parallel applications, but will evolve to applications using parallel sections for the most compute-intensive parts. Second, the overwhelming majority of the programmers have been educated to program in a sequential programming style. Parallel programming is much more difficult, time consuming and error prone than sequential programming. Debugging and maintaining a parallel code is a major issue. Investing in the development of a parallel application will not be cost-effective for the vast majority of software developments. Therefore, sequential programming style will continue to be dominant in the foreseeable future. Most developers will rely on the compiler to parallelize their application and/or use some software components from parallel libraries.

3.4.3.2. Future parallel applications will require high performance sequential processing on 1000’s cores chip

With the advent of universal parallel hardware in multicores, large diffusion parallel applications will have to run on a broad spectrum of parallel hardware platforms. They will be used by non-expert users who will not be able to tune the application environment to optimize performance. They will be executed concurrently with other processes which may be interactive.

The variety of possible hardware platforms, the lack of expertise of the end-user and the varying run-time execution environments are major difficulties for parallel applications. This tends to constrain the programming style and therefore reinforces the sequential structure of the control of the application.

Therefore, most future parallel applications will rely on a single main thread or a few main threads in charge of distinct functionalities of the application. Each main thread will have a general sequential control and can initiate and control the parallel execution of parallel tasks.
In 1967, Amdahl [39] pointed out that, if only a portion of an application is accelerated, the execution time cannot be reduced below the execution time of the residual part of the application. Unfortunately, even highly parallelized applications exhibit some residual sequential part. For parallel applications, this indicates that the effective performance of the future 1000’s cores chip will significantly depend on their ability to be efficient on the execution of the control portions of the main thread as well as on the execution of sequential portions of the application.

3.4.3.3. The success of 1000’s cores architecture will depend on single thread performance

While the current emphasis of computer architecture research is on the definition of scalable multi-/many-core architectures for highly parallel applications, we believe that the success of the future 1000-core architecture will depend not only on their performance on parallel applications including sequential sections, but also on their performance on single thread workloads.

3.5. Performance evaluation/guarantee

Predicting/evaluating the performance of an application on a system without explicitly executing the application on the system is required for several usages. Two of these usages are central to the research of the ALF project-team: microarchitecture research (the system to be be evaluated does not exist) and Worst Case Execution Time estimation for real-time systems (the numbers of initial states or possible data inputs is too large).

When proposing a micro-architecture mechanism, its impact on the overall processor architecture has to be evaluated in order to assess its potential performance advantages. For microarchitecture research, this evaluation is generally done through the use of cycle-accurate simulation. Developing such simulators is quite complex and microarchitecture research was helped but also biased by some popular public domain research simulators (e.g. Simplescalar [40]). Such simulations are CPU consuming and simulations cannot be run on a complete application. Sampling representative slices of the application was proposed [4] and popularized by the Simpoint [48] framework.

Real-time systems need a different use of performance prediction; on hard real-time systems, timing constraints must be respected independently from the data inputs and from the initial execution conditions. For such a usage, the Worst Case Execution Time (WCET) of an application must be evaluated and then checked against the timing constraints. While safe and tight WCET estimation techniques and tools exist for reasonably simple embedded processors (e.g. techniques based on abstract interpretation such as [42]), accurate evaluation of the WCET of an algorithm on a complex uniprocessor system is a difficult problem. Accurately modelling data cache behavior [3] and complex superscalar pipelines are still research questions as illustrated by the presence of so-called timing anomalies in dynamically scheduled processors, resulting from complex interactions between processor elements (among others, interactions between caching and instruction scheduling) [46].

With the advance of multicores, evaluating / guaranteeing a computer system response time is becoming much more difficult. Interactions between processes occurs at different levels. The execution time on each core depends on the behavior of the other cores. Simulations of 1000’s cores micro-architecture will be needed in order to evaluate future many-core proposals. While a few multiprocessor simulators are available for the community, these simulators cannot handle realistic 1000’s cores micro-architecture. New techniques have to be invented to achieve such simulations. WCET estimations on multicore platforms will also necessitate radically new techniques, in particular, there are predictability issues on a multicore where many resources are shared; those resources include the memory hierarchy, but also the processor execution units and all the hardware resources if SMT is implemented [52].

3.6. General research directions

The overall performance of a 1000’s core system will depend on many parameters including architecture, operating system, runtime environment, compiler technology and application development. In the ALF project, we will essentially focus on architecture, compiler/execution environment as well as performance
predictability, and in particular WCET estimation. Moreover, architecture research, and to a smaller extent, compiler and WCET estimation researches rely on processor simulation. A significant part of the effort in ALF will be devoted to define new processor simulation techniques.

3.6.1. Microarchitecture research directions

The overall performance of a multicore system depends on many parameters including architecture, operating system, runtime environment, compiler technology and application development. Even the architecture dimension of a 1000’s core system cannot be explored by a single research project. Many research groups are exploring the parallel dimension of the multicores essentially targeting issues such as coherency and scalability.

We have identified that high performance on single threads and sequential codes is one of the key issues for enabling overall high performance on a 1000’s core system and we anticipate that the general architecture of such 1000’s core chip will feature many simple cores and a few very complex cores.

Therefore our research in the ALF project will focus on refining the microarchitecture to achieve high performance on single process and/or sequential code sections within the general framework of such an heterogeneous architecture. This leads to two main research directions 1) enhancing the microarchitecture of high-end superscalar processors, 2) exploiting/modifying heterogeneous multicore architecture on a single process. The temperature wall is also a major technological/architectural issue for the design of future processor chips.

3.6.1.1. Enhancing complex core microarchitecture

Research on wide issue superscalar processors was merely stopped around 2002 due to limited performance returns and the power consumption wall.

When considering a heterogeneous architecture featuring hundreds of simple cores and a few complex cores, these two obstacles will partially vanish: 1) the complex cores will represent only a fraction of the chip and a fraction of its power consumption. 2) any performance gain on (critical) sequential threads will result in a performance gain of the whole system.

On the complex core, the performance of a sequential code is limited by several factors. At first, on current architectures, it is limited by the peak performance of the processor. To push back this first limitation, we will explore new microarchitecture mechanisms to increase the potential peak performance of a complex core enabling larger instruction issue width. The processor performance is also limited by control dependencies. To push back this limitation, we will explore new branch prediction mechanisms as well as new directions for reducing branch misprediction penalties [8], [10]. As data dependencies may strongly limit performance, we will revisit data prediction. Processor performance is also often highly dependent on the presence or absence of data in a particular level of the memory hierarchy. For the ALF multicore, we will focus on sharing the access to the memory hierarchy in order to adapt the performance of the main thread to the performance of the other cores. All these topics should be studied with the new perspective of quasi unlimited silicon budget.

3.6.1.2. Exploiting heterogeneous multicores on single process

When executing a sequential section on the complex core, the simple cores will be free. Two main research directions to exploit thread level parallelism on a sequential thread have been initiated in late 90’s within the context of simultaneous multithreading and early chip multiprocessor proposals: helper threads and speculative multithreading.

Helper threads were initially proposed to improve the performance of the main threads on simultaneous multithreaded architectures [41]. The main idea of helper threads is to execute codes that will accelerate the main thread without modifying its semantic.

In many cases, the compiler cannot determine if two code sections are independent due to some unresolved memory dependency. When no dependency occurs at execution time, the code sections can be executed in parallel. Thread-Level Speculation has been proposed to exploit coarse grain speculative parallelism. Several hardware-only proposals were presented [47], but the most promising solutions integrate hardware support for software thread-level speculation [50].
In the context of future manycores, thread-level speculation and helper threads should be revisited. Many simple cores will be available for executing helper threads or speculative thread execution during the execution of sequential programs or sequential code sections. The availability of these many cores is an opportunity as well as a challenge. For example, one can try to use the simple cores to execute many different helper threads that could not be implemented within a simultaneous multithreaded processor. For thread level speculation, the new challenge is the use of less powerful cores for speculative threads. Moreover the availability of many simple cores may lead to the use of helper threads and thread level speculation at the same time.

3.6.1.3. Temperature issues

Temperature is one of the constraints that have prevented the processor clock frequency to be increased in recent years. Besides techniques to decrease the power consumption, the temperature issue can be tackled with *dynamic thermal management* [7] through techniques such as clock gating or throttling and *activity migration* [49][5]. Dynamic thermal management (DTM) is now implemented on existing processors. For high performance, processors are dimensioned according to the average situation rather than to the worst case situation. Temperature sensors are used on the chip to trigger dynamic thermal management actions, for instance thermal throttling whenever necessary. On multicores, it is possible to migrate the activity from one core to another in order to limit temperature.

A possible way to increase sequential performance is to take advantage of the smaller gate delay that comes with miniaturization, which permits in theory to increase the clock frequency. However increasing the clock frequency generally requires to increase the instantaneous power density. This is why DTM and activity migration will be key techniques to deal with Amdahl’s law in future many-core processors.

3.6.2. Processor simulation research

Architecture studies, and in particular microarchitecture studies, require extensive validations through detailed simulations. Cycle accurate simulators are needed to validate the microarchitectural mechanisms.

Within the ALF project, we can distinguish two major requirements on the simulation: 1) single process and sequential code simulations 2) parallel code sections simulations.

For simulating parallel code sections, a cycle-accurate microarchitecture simulator of a 1000-core architecture will be unacceptably slow. In [6], we showed that mixing analytical modeling of the global behavior of a processor with detailed simulation of a microarchitecture mechanism allows to evaluate this mechanism. Karkhanis and Smith [43] further developed a detailed analytical simulation model of a superscalar processor. Building on top of these preliminary researches, simulation methodology mixing analytical modeling of the simple cores with a more detailed simulation of the complex cores is appealing. The analytical model of the simple cores will aim at approximately modeling the impact of the simple core execution on the shared resources (e.g. data bandwidth, memory hierarchy) that are also used by the complex cores.

Other techniques such as regression modeling [44] can also be used for decreasing the time required to explore the large space of microarchitecture parameter values. We will explore these techniques in the context of many-core simulation.

In particular, research on temperature issues will require the definition and development of new simulation tools able to simulate several minutes or even hours of processor execution, which is necessary for modeling thermal effects faithfully.

3.6.3. Compiler research directions

3.6.3.1. General directions

Compilers are keystone solutions for any approach that deals with high performance on 100+ processors systems. But general-purpose compilers try to embrace so many domains and try to serve so many constraints that they frequently fail to achieve very high performance. They need to be deeply revisited. We identify four main compiler/software related issues that must be addressed in order to allow efficient use of multi- and many-cores: 1) programming 2) resource management 3) application deployment 4) portable performance. Addressing these challenges will require to revisit parallel programming and code generation extensively.
The past of parallel programming is scattered with hundreds of parallel languages. Most of these languages were designed to program homogeneous architectures and were targeting a small and well-trained community of HPC programmers. With the new diversity of parallel hardware platforms and the new community of non-expert developers, expressing parallelism is not sufficient anymore. Resource management, application deployment and portable performance are intermingled issues that require to be addressed holistically.

As many decisions should be taken according to the available hardware, resource management cannot be separated from parallel programming. Deploying applications on various systems without having to deal with thousands of hardware configurations (different numbers of cores, accelerators, ...) will become a major concern for software distribution. The grail of parallel computing is to be able to provide portable performance on a large set of parallel machines and varying execution contexts.

Recent techniques are showing promises. Iterative compilation techniques, exploiting the huge CPU cycle count now available, can be used to explore the optimization space at compile-time. Second, machine-learning techniques can be used to automatically improve compilers and code generation strategies. Speculation can be used to deal with necessary but missing information at compile-time. Finally, dynamic techniques can select or generate at run-time the most efficient code adapted to the execution context and available hardware resources.

Future compilers will benefit from past research, but they will also need to combine static and dynamic techniques. Moreover, domain specific approaches might be needed to ensure success. The ALF research effort will focus on these static and dynamic techniques to address the multicore application development challenges.

3.6.3.2. Portability of applications and performance through virtualization

The life cycle is much longer for applications than for hardware. Unfortunately the multicore era jeopardizes the old binary compatibility recipe. Binaries cannot automatically exploit additional computing cores or new accelerators available on the silicon. Moreover maintaining backward binary compatibility on future parallel architectures will rapidly become a nightmare, applications will not run at all unless some kind of dynamic binary translation is at work.

Processor virtualization addresses the problem of portability of functionalities. Applications are not compiled to the final native code but to a target independent format. This is the purpose of languages such as Java and .NET. Bytecode formats are often a priori perceived as inappropriate for performance intensive applications and for embedded systems. However, it was shown that compiling a C or C++ program to a bytecode format produces a code size similar to dense instruction sets [2]. Moreover, this bytecode representation can be compiled to native code with performance similar to static compilation [1]. Therefore processor virtualization for high performance, i.e., for languages like C or C++, provides significant advantages: 1) it simplifies software engineering with fewer tools to maintain and upgrade; 2) it allows better code readability and easier code maintenance since it avoids code specialization for specific targets using compile time macros such as #ifdef ; 3) the execution code deployed on the system is the execution code that has been debugged and validated, as opposed to the same source code has been recompiled for another platform; 4) new architectures will come with their JIT compiler. The JIT will (should) automatically take advantage of new architecture features such as SIMD/vector instructions or extra processors.

Our objective is to enrich processor virtualization to allow both functional portability and high performance using JIT at runtime, or bytecode-to-native code offline compiler. Split compilation can be used to annotate the bytecode with relevant information that can be helpful to the JIT at runtime or to the bytecode to native code offline compiler. Because the first compilation pass occurs offline, aggressive analyses can be run and their outcomes encoded in the bytecode. For example, such information include vectorizability, memory references (in)dependencies, suggestions derived from iterative compilation, polyhedral analysis, or integer linear programming. Virtualization allows to postpone some optimizations to run time, either because they increase the code size and would increase the cost of an embedded system or because the actual hardware platform characteristics are unknown.

3.6.4. Performance predictability for real-time systems
While compiler and architecture research efforts often focus on maximizing average case performance, applications with real-time constraints do not need only high performance but also performance guarantees in all situations, including the worst-case situation. Worst-Case Execution Time estimates (WCET) need to be upper bounds of any possible execution time. The safety level required depends on the criticality of applications: missing a frame on a video in the airplane for passenger in seat 20B is less critical than a safety critical decision in the control of the airplane.

Within the ALF project, our objective is to study performance guarantees for both (i) sequential codes running on complex cores; (ii) parallel codes running on the multicore. This results in two quite distinct problems. For sequential code executing on a single core, one can expect that, in order to provide real-time possibility, the architecture will feature an execution mode where a given processor will be guaranteed to access a fixed portion of the shared resources (caches, memory bandwidth). Moreover, this guaranteed share could be optimized at compile time to enforce the respect of the time constraints. However, estimating the WCET of an application on a complex micro-architecture is still a research challenge. This is due to the complex interaction of micro-architectural elements (superscalar pipelines, caches, branch prediction, out-of-order execution) [46]. We will continue to explore pure analytical and static methods. However when accurate static hardware modeling methods cannot handle the hardware complexity, new probabilistic methods [45] might be needed to explore to obtain as safe as possible WCET estimates.

Providing performance guarantees for parallel applications executed on a multicore is a new and challenging issue. Entirely new WCET estimation methods have to be defined for these architectures to cope with dynamic resource sharing between cores, in particular on-chip memory (either local memory or caches) are shared, but also buses, network-on-chip and the access to the main memory. Current pure analytical methods are too pessimistic at capturing interferences between cores [53], therefore hardware-based or compiler methods such as [51] have to be defined to provide some degree of isolation between cores. Finally, similarly to simulation methods, new techniques to reduce the complexity of WCET estimation will be explored to cope with manycore architectures.
3. Research Program

3.1. Distributed computing

Distributed computing \(^1\) was born in the late seventies when people started taking into account the intrinsic characteristics of physically distributed systems. The field then emerged as a specialized research area distinct from networks, operating systems and parallelism. Its birth certificate is usually considered as the publication in 1978 of Lamport’s most celebrated paper "Time, clocks and the ordering of events in a distributed system" [60] (that paper was awarded the Dijkstra Prize in 2000). Since then, several high-level journals and (mainly ACM and IEEE) conferences have been devoted to distributed computing. The distributed systems area has continuously been evolving, following the progresses of all the above-mentioned areas such as networks, computing architecture, operating systems.

The last decade has witnessed significant changes in the area of distributed computing. This has been acknowledged by the creation of several conferences such as NSDI and IEEE P2P. The NSDI conference is an attempt to reassemble the networking and system communities while the IEEE P2P conference was created to be a forum specialized in peer-to-peer systems. At the same time, the EuroSys conference originated as an initiative of the European Chapter of the ACM SIGOPS to gather the system community in Europe.

3.2. Theory of distributed systems

Finding models for distributed computations prone to asynchrony and failures has received a lot of attention. A lot of research in this domain focuses on what can be computed in such models, and, when a problem can be solved, what are its best solutions in terms of relevant cost criteria. An important part of that research is focused on distributed computability: what can be computed when failure detectors are combined with conditions on process input values for example. Another part is devoted to model equivalence. What can be computed with a given class of failure detectors? Which synchronization primitives is a given failure class equivalent to? These are among the main topics addressed in the leading distributed computing community. A second fundamental issue related to distributed models, is the definition of appropriate models suited to dynamic systems. Up to now, the researchers in that area consider that nodes can enter and leave the system, but do not provide a simple characterization, based on properties of computation instead of description of possible behaviors [61], [55], [56]. This shows that finding dynamic distributed computing models is today a "Holy Grail", whose discovery would allow a better understanding of the essential nature of dynamic systems.

3.3. Peer-to-peer overlay networks

A standard distributed system today is related to thousands or even millions of computing entities scattered all over the world and dealing with a huge amount of data. This major shift in scalability requirements has lead to the emergence of novel computing paradigms. In particular, the peer-to-peer communication paradigm imposed itself as the prevalent model to cope with the requirements of large scale distributed systems. Peer-to-peer systems rely on a symmetric communication model where peers are potentially both clients and servers. They are fully decentralized, thus avoiding the bottleneck imposed by the presence of servers in traditional systems. They are highly resilient to peers arrivals and departures. Finally, individual peer behavior is based on a local knowledge of the system and yet the system converges toward global properties.

\(^1\)This is an extract from Michel Raynal’s new book [42].
A peer-to-peer overlay network logically connects peers on top of IP. Two main classes of such overlays dominate, structured and unstructured. The differences relate to the choice of the neighbors in the overlay, and the presence of an underlying naming structure. Overlay networks represent the main approach to build large-scale distributed systems that we retained. An overlay network forms a logical structure connecting participating entities on top of the physical network, be it IP or a wireless network. Such an overlay might form a structured overlay network [62], [63], [64] following a specific topology or an unstructured network [59], [65] where participating entities are connected in a random or pseudo-random fashion. In between, lie weakly structured peer-to-peer overlays where nodes are linked depending on a proximity measure providing more flexibility than structured overlays and better performance than fully unstructured ones. Proximity-aware overlays connect participating entities so that they are connected to close neighbors according to a given proximity metric reflecting some degree of affinity (computation, interest, etc.) between peers. We extensively use this approach to provide algorithmic foundations of large-scale dynamic systems.

3.4. Epidemic protocols

Epidemic algorithms, also called gossip-based algorithms [58], [57], constitute a fundamental topic in our research. In the context of distributed systems, epidemic protocols are mainly used to create overlay networks and to ensure a reliable information dissemination in a large-scale distributed system. The principle underlying technique, in analogy with the spread of a rumor among humans via gossiping, is that participating entities continuously exchange information about the system in order to spread it gradually and reliably. Epidemic algorithms have proved efficient to build and maintain large-scale distributed systems in the context of many applications such as broadcasting [57], monitoring, resource management, search, and more generally in building unstructured peer-to-peer networks.

3.5. Malicious process behaviors

When assuming that processes fail by simply crashing, bounds on resiliency (maximum number of processes that may crash), number of exchanged messages, number of communication steps, etc. either in synchronous and augmented asynchronous systems (recall that in purely asynchronous systems some problems are impossible to solve) are known. If processes can exhibit malicious behaviors, these bounds are seldom the same. Sometimes, it is even necessary to change the specification of the problem. For example, the consensus problem for correct processes does not make sense if some processes can exhibit a Byzantine behavior and thus propose an arbitrary value. In this case, the validity property of consensus, which is normally "a decided value is a proposed value", must be changed to "if all correct processes propose the same value then only this value can be decided." Moreover, the resilience bound of less than half of faulty processes is at least lowered to "less than a third of Byzantine processes." These are some of the aspects that underlie our studies in the context of the classical model of distributed systems, in peer-to-peer systems and in sensor networks.

3.6. Online social networks

Social Networks have rapidly become a fundamental component of today’s distributed applications. Web 2.0 applications have dramatically changed the way users interact with the Internet and with each other. The number of users of websites like Flickr, Delicious, Facebook, or MySpace is constantly growing, leading to significant technical challenges. On the one hand, these websites are called to handle enormous amounts of data. On the other hand, news continue to report the emergence of privacy threats to the personal data of social-network users. Our research aims to exploit our expertise in distributed systems to lead to a new generation of scalable, privacy-preserving, social applications.
3. Research Program

3.1. Overview

Since we mainly work on new software structuring concepts and programming language design, we first briefly introduce some basic notions and problems of software components (understood in a broad sense, i.e., including modules, objects, architecture description languages and services), aspects, and domain-specific languages. We conclude by presenting the main issues related to distribution and concurrency that are relevant to our work.

3.2. Software Composition

Modules and services. The idea that building software components, i.e., composable prefabricated and parameterized software parts, was key to create an effective software industry was realized very early [86]. At that time, the scope of a component was limited to a single procedure. In the seventies, the growing complexity of software made it necessary to consider a new level of structuring and programming and led to the notions of information hiding, modules, and module interconnection languages [93], [71]. Information hiding promotes a black-box model of program development whereby a module implementation, basically a collection of procedures, is strongly encapsulated behind an interface. This makes it possible to guarantee logical invariant properties of the data managed by the procedures and, more generally, makes modular reasoning possible.

In the context of today’s Internet-based information society, components and modules have given rise to software services whose compositions are governed by explicit orchestration or choreography specifications that support notions of global properties of a service-oriented architecture. These horizontal compositions have, however, to be frequently adapted dynamically. Dynamic adaptations, in particular in the context of software evolution processes, often conflict with a black-box composition model either because of the need for invasive modifications, for instance, in order to optimize resource utilization or modifications to the vertical compositions implementing the high-level services.

Object-Oriented Programming. Classes and objects provide another kind of software component, which makes it necessary to distinguish between component types (classes) and component instances (objects). Indeed, unlike modules, objects can be created dynamically. Although it is also possible to talk about classes in terms of interfaces and implementations, the encapsulation provided by classes is not as strong as the one provided by modules. This is because, through the use of inheritance, object-oriented languages put the emphasis on incremental programming to the detriment of modular programming. This introduces a white-box model of software development and more flexibility is traded for safety as demonstrated by the fragile base class issue [89].

Architecture Description Languages. The advent of distributed applications made it necessary to consider more sophisticated connections between the various building blocks of a system. The software architecture [97] of a software system describes the system as a composition of components and connectors, where the connectors capture the interaction protocols between the components [62]. It also describes the rationale behind such a given architecture, linking the properties required from the system to its implementation. Architecture Description Languages (ADLs) are languages that support architecture-based development [87]. A number of these languages make it possible to generate executable systems from architectural descriptions, provided implementations for the primitive components are available. However, guaranteeing that the implementation conforms to the architecture is an issue.

Protocols. Today, protocols constitute a frequently used means to precisely define, implement, and analyze contracts between two or more hardware or software entities. They have been used to define interactions between communication layers, security properties of distributed communications, interactions between objects and components, and business processes.
Object interactions \[91\], component interactions \[103\], \[95\] and service orchestrations \[72\] are most frequently expressed in terms of regular interaction protocols that enable basic properties, such as compatibility, substitutability, and deadlocks between components to be defined in terms of basic operations and closure properties of finite-state automata. Furthermore, such properties may be analyzed automatically using, e.g., model checking techniques \[69\], \[78\].

However, the limited expressive power of regular languages has led to a number of approaches using more expressive non-regular interaction protocols that often provide distribution-specific abstractions, e.g., session types \[80\], or context-free or turing-complete expressiveness \[96\], \[67\]. While these protocol types allow conformance between components to be defined (e.g., using unbounded counters), property verification can only be performed manually or semi-automatically.

3.3. Programming languages for advanced modularization

The main driving force for the structuring means, such as components and modules, is the quest for clean separation of concerns \[73\] on the architectural and programming levels. It has, however, early been noted that concern separation in the presence of crosscutting functionalities requires specific language and implementation level support. Techniques of so-called computational reflection, for instance, Smith’s 3-Lisp or Kiczales’s CLOS meta-object protocol \[98\], \[83\] as well as metaprogramming techniques have been developed to cope with this problem but proven unwieldy to use and not amenable to formalization and property analysis due to their generality. Methods and techniques from two fields have been particularly useful in addressing such advanced modularization problems: Aspect-Oriented Software Development as the field concerned with the systematic handling of modularization issues and domain-specific languages that provide declarative and efficient means for the definition of crosscutting functionalities.

Aspect-Oriented Software Development \[82\], \[60\] has emerged over the previous decade as the domain of systematic exploration of crosscutting concerns and corresponding support throughout the software development process. The corresponding research efforts have resulted, in particular, in the recognition of crosscutting as a fundamental problem of virtually any large-scale application, and the definition and implementation of a large number of aspect-oriented models and languages.

However, most current aspect-oriented models, notably AspectJ \[81\], rely on pointcuts and advice defined in terms of individual execution events. These models are subject to serious limitations concerning the modularization of crosscutting functionalities in distributed applications, the integration of aspects with other modularization mechanisms such as components, and the provision of correctness guarantees of the resulting AO applications. They do, in particular, only permit the manipulation of distributed applications on a per-host basis, that is, without direct expression of coordination properties relating different distributed entities \[99\]. Similarly, current approaches for the integration of aspects and (distributed) components do not directly express interaction properties between sets of components but rather seemingly unrelated modifications to individual components \[70\]. Finally, current formalizations of such aspect models are formulated in terms of low-level semantic abstractions (see, e.g., Wand’s et al semantics for AspectJ \[102\]) and provide only limited support for the analysis of fundamental aspect properties.

Recently, first approaches have been put forward to tackle these problems, in particular, in the context of so-called stateful or history-based aspect languages \[74\], \[75\], which provide pointcut and advice languages that directly express rich relationships between execution events. Such languages have been proposed to directly express coordination and synchronization issues of distributed and concurrent applications \[92\], \[65\], \[77\], provide more concise formal semantics for aspects and enable analysis of their properties \[63\], \[76\], \[74\], \[61\]. Furthermore, first approaches for the definition of aspects over protocols have been proposed, as well as over regular structures \[74\] and non-regular ones \[101\], \[90\], which are helpful for the modular definition and verification of protocols over crosscutting functionalities.

Due to the novelty of these approaches, they represent, however, only first results and many important questions concerning these fundamental issues remain open.
Domain-specific languages (DSLs) represent domain knowledge in terms of suitable basic language constructs and their compositions at the language level. By trading generality for abstraction, they enable complex relationships among domain concepts to be expressed concisely and their properties to be expressed and formally analyzed. DSLs have been applied to a large number of domains; they have been particularly popular in the domain of software generation and maintenance [88], [104].

Many modularization techniques and tasks can be naturally expressed by DSLs that are either specialized with respect to the type of modularization constructs, such as a specific brand of software component, or to the compositions that are admissible in the context of an application domain that is targeted by a modular implementation. Moreover, software development and evolution processes can frequently be expressed by transformations between applications implemented using different DSLs that represent an implementation at different abstraction levels or different parts of one application.

Functionalities that crosscut a component-based application, however, complicate such a DSL-based transformational software development process. Since such functionalities belong to another domain than that captured by the components, different DSLs should be composed. Such compositions (including their syntactic expression, semantics and property analysis) have only very partially been explored until now. Furthermore, restricted composition languages and many aspect languages that only match execution events of a specific domain (e.g., specific file accesses in the case of security functionality) and trigger only domain-specific actions clearly are quite similar to DSLs but remain to be explored.

3.4. Distribution and Concurrency

While ASCOLA does not investigate distribution and concurrency as research domains per se (but rather from a software engineering and modularization viewpoint), there are several specific problems and corresponding approaches in these domains that are directly related to its core interests that include the structuring and modularization of large-scale distributed infrastructures and applications. These problems include crosscutting functionalities of distributed and concurrent systems, support for the evolution of distributed software systems, and correctness guarantees for the resulting software systems.

Underlying our interest in these domains is the well-known observation that large-scale distributed applications are subject to numerous crosscutting functionalities (such as the transactional behavior in enterprise information systems, the implementation of security policies, and fault recovery strategies). These functionalities are typically partially encapsulated in distributed infrastructures and partially handled in an ad hoc manner by using infrastructure services at the application level. Support for a more principled approach to the development and evolution of distributed software systems in the presence of crosscutting functionalities has been investigated in the field of open adaptable middleware [66], [85]. Open middleware design exploits the concept of reflection to provide the desired level of configurability and openness. However, these approaches are subject to several fundamental problems. One important problem is their insufficient, framework-based support that only allows partial modularization of crosscutting functionalities.

There has been some criticism on the use of AspectJ-like aspect models (which middleware aspect models like that of JBoss AOP are an instance of) for the modularization of distribution and concurrency related concerns, in particular, for transaction concerns [84] and the modularization of the distribution concern itself [99]. Both criticisms are essentially grounded in AspectJ’s inability to explicitly represent sophisticated relationships between execution events in a distributed system: such aspects therefore cannot capture the semantic relationships that are essential for the corresponding concerns. History-based aspects, as those proposed by the ASCOLA project-team provide a starting point that is not subject to this problem.

From a point of view of language design and implementation, aspect languages, as well as domain specific languages for distributed and concurrent environments share many characteristics with existing distributed languages: for instance, event monitoring is fundamental for pointcut matching, different synchronization strategies and strategies for code mobility [79] may be used in actions triggered by pointcuts. However, these relationships have only been explored to a small degree. Similarly, the formal semantics and formal properties of aspect languages have not been studied yet for the distributed case and only rudimentarily for the concurrent one [63], [77].
3.5. Security

Security properties and policies over complex service-oriented and standalone applications become ever more important in the context of asynchronous and decentralized communicating systems. Furthermore, they constitute prime examples of crosscutting functionalities that can only be modularized in highly insufficient ways with existing programming language and service models. Security properties and related properties, such as accountability properties, are therefore very frequently awkward to express and difficult to analyze and enforce (provided they can be made explicit in the first place).

Two main issues in this space are particularly problematic from a compositional point of view. First, information flow properties of programming languages, such as flow properties of Javascript [64], and service-based systems [68] are typically specially-tailored to specific properties, as well as difficult to express and analyze. Second, the enforcement of security properties and security policies, especially accountability-related properties [94], [100], is only supported using ad hoc means with rudimentary support for property verification.

The ASCOLA team has recently started to work on providing formal methods, language support and implementation techniques for the modular definition and implementation of information flow properties as well as policy enforcement in service-oriented systems as well as, mostly object-oriented, programming languages.

3.6. Capacity Planning for Large Scale Distributed System

Since the last decade, cloud computing has emerged as both a new economic model for software (provision) and as flexible tools for the management of computing capacity. Nowadays, the major cloud features have become part of the mainstream (virtualization, storage and software image management) and the big market players offer effective cloud-based solutions for resource pooling. It is now possible to deploy virtual infrastructures that involve virtual machines (VMs), middleware, applications, and networks in such a simple manner that a new problem has emerged over the last two years: VM sprawl (virtual machine proliferation) that consumes valuable computing, memory, storage and energy resources, thus menacing serious resource shortages. Scientific approaches that address VM sprawl are both based on classical administration techniques like the lifecycle management of a large number of VMs as well as the arbitration and the careful management of all resources consumed and provided by the hosting infrastructure (energy, power, computing, memory, network etc.).

The ASCOLA team investigates fundamental techniques for cloud computing and capacity planning, from infrastructures to the application level. Capacity planning is the process of planning for, analyzing, sizing, managing and optimizing capacity to satisfy demand in a timely manner and at a reasonable cost. Applied to distributed systems like clouds, a capacity planning solution must mainly provide the minimal set of resources necessary for the proper execution of the applications (i.e., to ensure SLA). The main challenges in this context are: scalability, fault tolerance and reactivity of the solution in a large-scale distributed system, the analysis and optimization of resources to minimize the cost (mainly costs related to the energy consumption of datacenters), as well as the profiling and adaptation of applications to ensure useful levels of quality of service (throughput, response time, availability etc.).

Our solutions are mainly based on virtualized infrastructures that we apply from the IaaS to the SaaS levels. We are mainly concerned by the management and the execution of the applications by harnessing virtualization capabilities, the investigation of alternative solutions that aim at optimizing the trade-off between performance and energy costs of both applications and cloud resources, as well as arbitration policies in the cloud in the presence of energy-constrained resources.
3. Research Program

3.1. Interacting Monte Carlo methods and particle approximation of Feynman–Kac distributions

Monte Carlo methods are numerical methods that are widely used in situations where (i) a stochastic (usually Markovian) model is given for some underlying process, and (ii) some quantity of interest should be evaluated, that can be expressed in terms of the expected value of a functional of the process trajectory, which includes as an important special case the probability that a given event has occurred. Numerous examples can be found, e.g. in financial engineering (pricing of options and derivative securities) [40], in performance evaluation of communication networks (probability of buffer overflow), in statistics of hidden Markov models (state estimation, evaluation of contrast and score functions), etc. Very often in practice, no analytical expression is available for the quantity of interest, but it is possible to simulate trajectories of the underlying process. The idea behind Monte Carlo methods is to generate independent trajectories of this process or of an alternate instrumental process, and to build an approximation (estimator) of the quantity of interest in terms of the weighted empirical probability distribution associated with the resulting independent sample. By the law of large numbers, the above estimator converges as the size N of the sample goes to infinity, with rate $1/\sqrt{N}$ and the asymptotic variance can be estimated using an appropriate central limit theorem. To reduce the variance of the estimator, many variance reduction techniques have been proposed. Still, running independent Monte Carlo simulations can lead to very poor results, because trajectories are generated blindly, and only afterwards are the corresponding weights evaluated. Some of the weights can happen to be negligible, in which case the corresponding trajectories are not going to contribute to the estimator, i.e. computing power has been wasted. A recent and major breakthrough, has been the introduction of interacting Monte Carlo methods, also known as sequential Monte Carlo (SMC) methods, in which a whole (possibly weighted) sample, called system of particles, is propagated in time, where the particles

- explore the state space under the effect of a mutation mechanism which mimics the evolution of the underlying process,
- and are replicated or terminated, under the effect of a selection mechanism which automatically concentrates the particles, i.e. the available computing power, into regions of interest of the state space.

In full generality, the underlying process is a discrete–time Markov chain, whose state space can be finite, continuous, hybrid (continuous / discrete), graphical, constrained, time varying, pathwise, etc., the only condition being that it can easily be simulated.

In the special case of particle filtering, originally developed within the tracking community, the algorithms yield a numerical approximation of the optimal Bayesian filter, i.e. of the conditional probability distribution of the hidden state given the past observations, as a (possibly weighted) empirical probability distribution of the system of particles. In its simplest version, introduced in several different scientific communities under the name of bootstrap filter [42], Monte Carlo filter [47] or condensation (conditional density propagation) algorithm [44], and which historically has been the first algorithm to include a redistribution step, the selection mechanism is governed by the likelihood function: at each time step, a particle is more likely to survive and to replicate at the next generation if it is consistent with the current observation. The algorithms also provide as a by–product a numerical approximation of the likelihood function, and of many other contrast functions for parameter estimation in hidden Markov models, such as the prediction error or the conditional least–squares criterion.
Particle methods are currently being used in many scientific and engineering areas
positioning, navigation, and tracking [43], [37], visual tracking [44], mobile robotics [38], [59],
ubiquitous computing and ambient intelligence, sensor networks, risk evaluation and simulation
of rare events [41], genetics, molecular simulation [39], etc.

Other examples of the many applications of particle filtering can be found in the contributed volume [23] and
in the special issue of IEEE Transactions on Signal Processing devoted to Monte Carlo Methods for Statistical
Signal Processing in February 2002, where the tutorial paper [25] can be found, and in the textbook [56]
dedicated to applications in target tracking. Applications of sequential Monte Carlo methods to other areas,
beyond signal and image processing, e.g. to genetics, can be found in [55]. A recent overview can also be
found in [29].

Particle methods are very easy to implement, since it is sufficient in principle to simulate independent
trajectories of the underlying process. The whole problematic is multidisciplinary, not only because of the
already mentioned diversity of the scientific and engineering areas in which particle methods are used, but
also because of the diversity of the scientific communities which have contributed to establish the foundations
of the field

target tracking, interacting particle systems, empirical processes, genetic algorithms (GA),
hidden Markov models and nonlinear filtering, Bayesian statistics, Markov chain Monte Carlo
(MCMC) methods.

These algorithms can be interpreted as numerical approximation schemes for Feynman–Kac distributions, a
pathwise generalization of Gibbs–Boltzmann distributions, in terms of the weighted empirical probability
distribution associated with a system of particles. This abstract point of view [35], [33], has proved
to be extremely fruitful in providing a very general framework to the design and analysis of numerical
approximation schemes, based on systems of branching and / or interacting particles, for nonlinear dynamical
systems with values in the space of probability distributions, associated with Feynman–Kac distributions.
Many asymptotic results have been proved as the number N of particles (sample size) goes to infinity, using
techniques coming from applied probability (interacting particle systems, empirical processes [60]), see e.g.
the survey article [35] or the textbooks [33], [32], and references therein

convergence in L^p, convergence as empirical processes indexed by classes of functions, uniform
convergence in time, see also [52], [53], central limit theorem, see also [49], propagation of
chaos, large deviations principle, etc.

The objective here is to systematically study the impact of the many algorithmic variants on the convergence
results.

3.2. Statistics of HMM

Hidden Markov models (HMM) form a special case of partially observed stochastic dynamical systems, in
which the state of a Markov process (in discrete or continuous time, with finite or continuous state space)
should be estimated from noisy observations. The conditional probability distribution of the hidden state
given past observations is a well-known example of a normalized (nonlinear) Feynman–Kac distribution,
see 3.1. These models are very flexible, because of the introduction of latent variables (non observed) which
allows to model complex time dependent structures, to take constraints into account, etc. In addition, the
underlying Markovian structure makes it possible to use numerical algorithms (particle filtering, Markov
chain Monte Carlo methods (MCMC), etc.) which are computationally intensive but whose complexity is
rather small. Hidden Markov models are widely used in various applied areas, such as speech recognition,
alignment of biological sequences, tracking in complex environment, modeling and control of networks, digital
communications, etc.

Beyond the recursive estimation of a hidden state from noisy observations, the problem arises of statistical
inference of HMM with general state space [30], including estimation of model parameters, early monitoring
and diagnosis of small changes in model parameters, etc.
Large time asymptotics A fruitful approach is the asymptotic study, when the observation time increases to infinity, of an extended Markov chain, whose state includes (i) the hidden state, (ii) the observation, (iii) the prediction filter (i.e. the conditional probability distribution of the hidden state given observations at all previous time instants), and possibly (iv) the derivative of the prediction filter with respect to the parameter. Indeed, it is easy to express the log–likelihood function, the conditional least–squares criterion, and many other classical contrast processes, as well as their derivatives with respect to the parameter, as additive functionals of the extended Markov chain.

The following general approach has been proposed
- first, prove an exponential stability property (i.e. an exponential forgetting property of the initial condition) of the prediction filter and its derivative, for a misspecified model,
- from this, deduce a geometric ergodicity property and the existence of a unique invariant probability distribution for the extended Markov chain, hence a law of large numbers and a central limit theorem for a large class of contrast processes and their derivatives, and a local asymptotic normality property,
- finally, obtain the consistency (i.e. the convergence to the set of minima of the associated contrast function), and the asymptotic normality of a large class of minimum contrast estimators.

This programme has been completed in the case of a finite state space [7], and has been generalized [36] under an uniform minoration assumption for the Markov transition kernel, which typically does only hold when the state space is compact. Clearly, the whole approach relies on the existence of an exponential stability property of the prediction filter, and the main challenge currently is to get rid of this uniform minoration assumption for the Markov transition kernel [34], [53], so as to be able to consider more interesting situations, where the state space is noncompact.

Small noise asymptotics Another asymptotic approach can also be used, where it is rather easy to obtain interesting explicit results, in terms close to the language of nonlinear deterministic control theory [48]. Taking the simple example where the hidden state is the solution to an ordinary differential equation, or a nonlinear state model, and where the observations are subject to additive Gaussian white noise, this approach consists in assuming that covariances matrices of the state noise and of the observation noise go simultaneously to zero. If it is reasonable in many applications to consider that noise covariances are small, this asymptotic approach is less natural than the large time asymptotics, where it is enough (provided a suitable ergodicity assumption holds) to accumulate observations and to see the expected limit laws (law of large numbers, central limit theorem, etc.). In opposition, the expressions obtained in the limit (Kullback–Leibler divergence, Fisher information matrix, asymptotic covariance matrix, etc.) take here a much more explicit form than in the large time asymptotics.

The following results have been obtained using this approach
- the consistency of the maximum likelihood estimator (i.e. the convergence to the set M of global minima of the Kullback–Leibler divergence), has been obtained using large deviations techniques, with an analytical approach [45],
- if the abovementioned set M does not reduce to the true parameter value, i.e. if the model is not identifiable, it is still possible to describe precisely the asymptotic behavior of the estimators [46]: in the simple case where the state equation is a noise–free ordinary differential equation and using a Bayesian framework, it has been shown that (i) if the rank r of the Fisher information matrix I is constant in a neighborhood of the set M, then this set is a differentiable submanifold of codimension r, (ii) the posterior probability distribution of the parameter converges to a random probability distribution in the limit, supported by the manifold M, absolutely continuous w.r.t. the Lebesgue measure on M, with an explicit expression for the density, and (iii) the posterior probability distribution of the suitably normalized difference between the parameter and its projection on the manifold M, converges to a mixture of Gaussian probability distributions on the normal spaces to the manifold M, which generalized the usual asymptotic normality property,
it has been shown [54] that (i) the parameter dependent probability distributions of the observations are locally asymptotically normal (LAN) [51], from which the asymptotic normality of the maximum likelihood estimator follows, with an explicit expression for the asymptotic covariance matrix, i.e. for the Fisher information matrix I, in terms of the Kalman filter associated with the linear tangent linear Gaussian model, and (ii) the score function (i.e. the derivative of the log–likelihood function w.r.t. the parameter), evaluated at the true value of the parameter and suitably normalized, converges to a Gaussian r.v. with zero mean and covariance matrix I.

3.3. Multilevel splitting for rare event simulation

See 4.2, and 5.3, 5.6, and 5.7.

The estimation of the small probability of a rare but critical event, is a crucial issue in industrial areas such as nuclear power plants, food industry, telecommunication networks, finance and insurance industry, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly unefficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread technique consists in multilevel splitting [50], where trajectories going towards the critical set are given offsprings, thus increasing the number of trajectories that eventually reach the critical set. As shown in [5], the Feynman–Kac formalism of 3.1 is well suited for the design and analysis of splitting algorithms for rare event simulation.

Propagation of uncertainty Multilevel splitting can be used in static situations. Here, the objective is to learn the probability distribution of an output random variable $Y = F(X)$, where the function F is only defined pointwise for instance by a computer programme, and where the probability distribution of the input random variable X is known and easy to simulate from. More specifically, the objective could be to compute the probability of the output random variable exceeding a threshold, or more generally to evaluate the cumulative distribution function of the output random variable for different output values. This problem is characterized by the lack of an analytical expression for the function, the computational cost of a single pointwise evaluation of the function, which means that the number of calls to the function should be limited as much as possible, and finally the complexity and / or unavailability of the source code of the computer programme, which makes any modification very difficult or even impossible, for instance to change the model as in importance sampling methods.

The key issue is to learn as fast as possible regions of the input space which contribute most to the computation of the target quantity. The proposed splitting methods consists in (i) introducing a sequence of intermediate regions in the input space, implicitly defined by exceeding an increasing sequence of thresholds or levels, (ii) counting the fraction of samples that reach a level given that the previous level has been reached already, and (iii) improving the diversity of the selected samples, usually using an artificial Markovian dynamics. In this way, the algorithm learns

- the transition probability between successive levels, hence the probability of reaching each intermediate level,

- and the probability distribution of the input random variable, conditionned on the output variable reaching each intermediate level.

A further remark, is that this conditional probability distribution is precisely the optimal (zero variance) importance distribution needed to compute the probability of reaching the considered intermediate level.

Rare event simulation To be specific, consider a complex dynamical system modelled as a Markov process, whose state can possibly contain continuous components and finite components (mode, regime, etc.), and the objective is to compute the probability, hopefully very small, that a critical region of the state space is reached by the Markov process before a final time T, which can be deterministic and fixed, or random (for instance the time of return to a recurrent set, corresponding to a nominal behaviour).
The proposed splitting method consists in (i) introducing a decreasing sequence of intermediate, more and more critical, regions in the state space, (ii) counting the fraction of trajectories that reach an intermediate region before time T, given that the previous intermediate region has been reached before time T, and (iii) regenerating the population at each stage, through redistribution. In addition to the non–intrusive behaviour of the method, the splitting methods make it possible to learn the probability distribution of typical critical trajectories, which reach the critical region before final time T, an important feature that methods based on importance sampling usually miss. Many variants have been proposed, whether

- the branching rate (number of offsprings allocated to a successful trajectory) is fixed, which allows for depth–first exploration of the branching tree, but raises the issue of controlling the population size,
- the population size is fixed, which requires a breadth–first exploration of the branching tree, with random (multinomial) or deterministic allocation of offsprings, etc.

Just as in the static case, the algorithm learns

- the transition probability between successive levels, hence the probability of reaching each intermediate level,
- and the entrance probability distribution of the Markov process in each intermediate region.

Contributions have been given to

- minimizing the asymptotic variance, obtained through a central limit theorem, with respect to the shape of the intermediate regions (selection of the importance function), to the thresholds (levels), to the population size, etc.
- controlling the probability of extinction (when not even one trajectory reaches the next intermediate level),
- designing and studying variants suited for hybrid state space (resampling per mode, marginalization, mode aggregation),

and in the static case, to

- minimizing the asymptotic variance, obtained through a central limit theorem, with respect to intermediate levels, to the Metropolis kernel introduced in the mutation step, etc.

A related issue is global optimization. Indeed, the difficult problem of finding the set M of global minima of a real–valued function V can be replaced by the apparently simpler problem of sampling a population from a probability distribution depending on a small parameter, and asymptotically supported by the set M as the small parameter goes to zero. The usual approach here is to use the cross–entropy method [57], [31], which relies on learning the optimal importance distribution within a prescribed parametric family. On the other hand, multilevel splitting methods could provide an alternate nonparametric approach to this problem.

3.4. Nearest neighbor estimates

This additional topic was not present in the initial list of objectives, and has emerged only recently.

In pattern recognition and statistical learning, also known as machine learning, nearest neighbor (NN) algorithms are amongst the simplest but also very powerful algorithms available. Basically, given a training set of data, i.e. an N–sample of i.i.d. object–feature pairs, with real–valued features, the question is how to generalize, that is how to guess the feature associated with any new object. To achieve this, one chooses some integer k smaller than N, and takes the mean–value of the k features associated with the k objects that are nearest to the new object, for some given metric.
In general, there is no way to guess exactly the value of the feature associated with the new object, and the minimal error that can be done is that of the Bayes estimator, which cannot be computed by lack of knowledge of the distribution of the object–feature pair, but the Bayes estimator can be useful to characterize the strength of the method. So the best that can be expected is that the NN estimator converges, say when the sample size N grows, to the Bayes estimator. This is what has been proved in great generality by Stone [58] for the mean square convergence, provided that the object is a finite–dimensional random variable, the feature is a square–integrable random variable, and the ratio k/N goes to 0. Nearest neighbor estimator is not the only local averaging estimator with this property, but it is arguably the simplest.

The asymptotic behavior when the sample size grows is well understood in finite dimension, but the situation is radically different in general infinite dimensional spaces, when the objects to be classified are functions, images, etc.

Nearest neighbor classification in infinite dimension In finite dimension, the k–nearest neighbor classifier is universally consistent, i.e. its probability of error converges to the Bayes risk as N goes to infinity, whatever the joint probability distribution of the pair, provided that the ratio k/N goes to zero. Unfortunately, this result is no longer valid in general metric spaces, and the objective is to find out reasonable sufficient conditions for the weak consistency to hold. Even in finite dimension, there are exotic distances such that the nearest neighbor does not even get closer (in the sense of the distance) to the point of interest, and the state space needs to be complete for the metric, which is the first condition. Some regularity on the regression function is required next. Clearly, continuity is too strong because it is not required in finite dimension, and a weaker form of regularity is assumed. The following consistency result has been obtained: if the metric space is separable and if some Besicovich condition holds, then the nearest neighbor classifier is weakly consistent. Note that the Besicovich condition is always fulfilled in finite dimensional vector spaces (this result is called the Besicovich theorem), and that a counterexample [3] can be given in an infinite dimensional space with a Gaussian measure (in this case, the nearest neighbor classifier is clearly nonconsistent). Finally, a simple example has been found which verifies the Besicovich condition with a noncontinuous regression function.

Rates of convergence of the functional k–nearest neighbor estimator Motivated by a broad range of potential applications, such as regression on curves, rates of convergence of the k–nearest neighbor estimator of the regression function, based on N independent copies of the object–feature pair, have been investigated when the object is in a suitable ball in some functional space. Using compact embedding theory, explicit and general finite sample bounds can be obtained for the expected squared difference between the k–nearest neighbor estimator and the Bayes regression function, in a very general setting. The results have also been particularized to classical function spaces such as Sobolev spaces, Besov spaces and reproducing kernel Hilbert spaces. The rates obtained are genuine nonparametric convergence rates, and up to our knowledge the first of their kind for k–nearest neighbor regression.

This emerging topic has produced several theoretical advances [1], [2] in collaboration with Gérard Biau (université Pierre et Marie Curie, ENS Paris and EPI CLASSIC, Inria Paris—Rocquencourt), and a possible target application domain has been identified in the statistical analysis of recommendation systems, that would be a source of interesting problems.
3. Research Program

3.1. MDE Foundations

Traditionally, models were often used as initial design sketches mainly aimed for communicating ideas among developers. On the contrary, MDE promotes models as the primary artifacts that drive all software engineering activities (i.e. not only software development but also evolution, reverse engineering, interoperability and so on) and are considered as the unifying concept [43]. Therefore, rigorous techniques for model definition and manipulation are the basis of any MDE framework.

The MDE community distinguishes three levels of models: (terminal) model, metamodel, and metametamodel. A terminal model is a (partial) representation of a system/domain that captures some of its characteristics (different models can provide different knowledge views on the domain and be combined later on to provide a global view). In MDE we are interested in terminal models expressed in precise modeling languages. The abstract syntax of a language, when expressed itself as a model, is called a metamodel. A complete language definition is given by an abstract syntax (a metamodel), one or more concrete syntaxes (the graphical or textual syntaxes that designers use to express models in that language) plus one or more definition of its semantics. The relation between a model expressed in a language and the metamodel of that language is called \textit{conformsTo}.

Metamodels are in turn expressed in a modeling language called metamodeling language. Similar to the model/metamodel relationship, the abstract syntax of a metamodeling language is called a metametamodel and metamodels defined using a given metamodeling language must conform to its metametamodel. Terminal models, metamodels, and metametamodel form a three-level architecture with levels respectively named M1, M2, and M3. A formal definition of these concepts is provided in [50] and [44]. MDE promotes unification by models, like object technology proposed in the eighties [42]. These MDE principles may be implemented in several standards. For example, OMG proposes a standard metametamodel called Meta Object Facility (MOF) while the most popular example of metamodel in the context of OMG standards is the UML metamodel.

In our view the main way to automate MDE is by providing model manipulation facilities in the form of model transformation operations that taking one or more models as input generate one or more models as output (where input and output models are not necessarily conforming to the same metamodel). More specifically, a model transformation \(Mt \) defines the production of a model \(Mb \) from a model \(Ma \). When the source and target metamodels (MMs) are identical (\(MMa = MMb \)), we say that the transformation is endogenous. When this is not the case (\(MMa \neq MMb \)) we say the transformation is exogenous. An example of an endogenous transformation is a UML refactoring that transforms public class attributes into private attributes while adding accessor methods for each transformed attribute. Many other operations may be considered as transformations as well. For example verifications or measurements on a model can be expressed as transformations [46]. One can see then why large libraries of reusable modeling artifacts (mainly metamodels and transformations) will be needed.

Another important idea is the fact that a model transformation is itself a model [4]. This means that the transformation program \(Mt \) can be expressed as a model and as such conforms to a metamodel \(MMt \). This allows an homogeneous treatment of all kinds of terminal models, including transformations. \(Mt \) can be manipulated using the same existing MDE techniques already developed for other kinds of models. For instance, it is possible to apply a model transformation \(Mt' \) to manipulate \(Mt \) models. In that case, we say that \(Mt' \) is a higher order transformation (HOT), i.e. a transformation taking other transformations (expressed as transformation models) as input or/and producing other transformations as output.
As MDE developed, it became apparent that this was a branch of language engineering [45]. In particular, MDE offers an improved way to develop DSLs (Domain-Specific Languages). DSLs are programming or modeling languages that are tailored to solve specific kinds of problems in contrast with General Purpose Languages (GPLs) that aim to handle any kind of problem. Java is an example of a programming GPL and UML an example of a modeling GPL. DSLs are already widely used for certain kinds of programming; probably the best-known example is SQL, a language specifically designed for the manipulation of relational data in databases. The main benefit of DSLs is that they allow everybody to write programs/models using the concepts that actually make sense to their domain or to the problem they are trying to solve (for instance Matlab has matrices and lets the user express operations on them, Excel has cells, relations between cells, and formulas and allows the expression of simple computations in a visual declarative style, etc.). As well as making domain code programmers more productive, DSLs also tend to offer greater optimization opportunities. Programs written with these DSLs may be independent of the specific hardware they will eventually run on. Similar benefits are obtained when using modeling DSLs. In MDE, new DSLs can be easily specified by using the metamodel concept to define their abstract syntax. Models specified with those DSLs can then be manipulated by means of model transformations (with ATL for example [8]).

When following the previously described principles, one may take advantage of the uniformity of the MDE organization. As an example, considering similarly models of the static architecture and models of the dynamic behavior of a system allows at the same time economy of concepts and economy of implementation.

The following sections describe the main MDE research challenges the team is addressing. They go beyond the development of core MDE techniques (topic on which the team, as mentioned above, has largely contributed in the past, and that we believe is quite well-covered already) and focus on new aspects that are critical for the successful application of MDE in industrial contexts.

3.2. Reverse Engineering

One important domain that is being investigated by the AtlanMod team is the reverse engineering of existing IT systems. We do believe that efficiently dealing with such legacy systems is one of the main challenges in Software Engineering and related industry today. Having a better understanding of these systems in order to document, maintain, improve or migrate them is thus a key requirement for both academic and industrial actors in this area. However, it is not an easy task and it still raises interesting challenging issues to be explored [48].

We have shown how reverse engineering practices may be advantageously revisited with the help of the MDE approach and techniques, applying (as base principle) the systematic representation as models of the required information discovered from the legacy software artifacts (e.g. source code, configuration files, documentation, metadata, etc). The rise in abstraction allowed by MDE can bring new hopes that reverse engineering is now able to move beyond more traditional ad-hoc practices. For instance, a industrial PhD in partnership with IBM France aims to investigate the possibilities of conceptualizing a generic framework enabling the extraction of business rules from a legacy application, as much as possible, independently of the language used to code it. Moreover, different pragmatic solutions for improving the overall scalability when dealing with large-scale legacy systems (handling huge data volumes) are intensively studied by the team.

In this context, AtlandMod has set up within the past years and is still developing the open source Eclipse MoDisco project (see 5.2). MoDisco is notably being referenced by the OMG ADM (Architecture Driven Modernization) normalization task force as the reference implementation for several of its standard metamodels. It is also used practically and improved in various collaborative projects the team is currently involved in (e.g. FP7 ARTIST).

We have also opened a novel research line focused on integration of APIs into MDE. In the application of reverse engineering processes while modernizing software system it is very common to face the need of integrating Application Programming Interfaces (APIs). Indeed, building any application usually involves managing a plethora of APIs to access different software assets such as: basic infrastructures (e.g. operating system, databases, or middleware), general-purpose or domain specific libraries, frameworks, software components,
web services, and even other applications. Thus, to promote the interoperability between the API and model
technical spaces, we have developed API2MoL, which is an approach aimed at automating the implementation
of API-MDE bridges. This new language allows defining mappings between the artefacts of a given API (e.g.
API classes in object-oriented APIs) and the elements of a metamodel that represents this API in the MDE
technical space. A mapping definition provides the information which is necessary to build a bridge for a con-
crete API specification and metamodel. Thanks to the API-MDE bridges automatically created, developers are
liberated from having to manually implement the tasks of obtaining models from API objects and generating
such objects from models. Therefore, API2MoL may improve the productivity and quality of the part of the
MDE application that deals with the APIs.

Reverse engineering techniques have also been used in the context of the Web. In the last years the development
of Web APIs has become a discipline that companies have to master to succeed in the Web. The so-called API
economy requires, on the one hand, companies to provide access to their data by means of Web APIs and,
on the other hand, web developers to study and integrate such APIs into their applications. The exchange of
data with these APIs is usually performed by using JSON, a schemaless data format easy for computers to
parse and use. While JSON data is easy to read, its structure is implicit, thus entailing serious problems when
integrating APIs coming from different vendors. Web developers have therefore to understand the domain
behind each API and study how they can be composed. We tackle this problem by developing a MDE-based
process able to reverse engineer the domain of Web APIs and to identify composition links among them. The
approach therefore allows developers to easily visualize what is behind the API and the connections points
that may be used in their applications.

3.3. Security Engineering

Several components are required to build up a system security architecture, such as firewalls, database user
access control, intrusion detection systems, and VPN (Virtual Private Network) routers. These components
must be properly configured to provide an appropriate degree of security to the system. The configuration
process is highly complex and error-prone. In most organizations, security components are either manually
configured based on security administrators expertise and flair; or simply recycled from existing configurations
already deployed in other systems (even if they may not be appropriated for the current one). These practices
put at risk the security of the whole organization.

We have started a PhD thesis in this domain intended to investigate the construction of a model-driven
automatic reverse engineering mechanism (implemented as an extension of the MoDisco project) capable
of analyzing deployed security aspects of components (e.g. concrete firewall configurations) to derive the
abstract model (e.g. network security global policy) that is actually enforced over the system. Once the model
is obtained, it can be reconciled with the expected security directives, to check its compliance, can be queried
to test consistency or used in a process of forward engineering to generate validated security configurations.

As a first step we intend to apply model-driven techniques for the extraction of high level model representations
of security policies enforced by firewalls. Firewalls, core components in network security systems, are
generally configured by using very low level vendor specific rule-based languages, difficult to understand
and to maintain. As a consequence, as the configuration files grow, understanding which security policy is
being actually enforced or checking if inconsistencies has been introduced becomes a very complex and time
consuming task. We propose to raise the level of abstraction so that the user can deal directly with the high
level policies. Once a model representation of the enforced policy is available, model-driven techniques will
ease some of the tasks we need to perform, like consistency checking, validation, querying and visualization.
Easy migration between different firewall vendors will be also enabled.

3.4. Software Quality

As with any type of production, an essential part of software production is determining the quality of the
software. The level of quality associated to a software product is inevitably tied to properties such as how
well it was developed and how useful it is to its users. AtlanMod team focus on researching techniques for the
formal verification and testing of software models and model transformations.
These techniques must be applied at the model level (to evaluate the quality of specific software designs) and at the metamodel level (to evaluate the quality of modeling languages). In both cases, the Object Constraint Language (OCL) of the OMG is widely accepted as a standard textual language to complement (meta)model specifications with all those rules/constraints that cannot be easily defined using graphical modeling constructs. Among all possible properties to verify, we take as the basic property the \textit{satisfiability} property, from which many others may be derived (as liveliness, redundancy, subsumption,...). Satisfiability checks whether it is possible to create a valid instantiation (i.e. one that respects all modeling constraints) of a given (meta)model. Satisfiability is an undecidable problem when general OCL constraints are used as part of the model definition. To deal with this problem, the team maintains the tool EMFtoCSP which translates the model verification challenge into the domain of constraint logic programming (CLP) for which sophisticated decision procedures exist. The tool integrates the described functionality in the Eclipse Modeling Framework (EMF) and the Eclipse Modeling Tools (MDT), making the functionality available for MDE in practice.

To complement these formal verification techniques we are also working on testing techniques, specially to optimize the testing of model transformations. White-box testing for model transformations is a technique that involves the extraction of knowledge embedded in the transformation code to generate test models. In our work, we apply static analysis techniques to model transformation specifications and represent the extracted knowledge as partial models that can drive the generation of highly effective test models (specially in terms of coverage).

3.5. Collaborative Development

Software development processes are collaborative in nature. The active participation of end-users in the early phases of the software development life-cycle is key when developing software. Among other benefits, the collaboration promotes a continual validation of the software to be build, thus guaranteeing that the final software will satisfy the users’ needs. In this context, we have opened two novel research lines focused on the collaborative development in MDE and the collaborative development with MDE. The former is aimed at promoting the collaboration in the context of MDE while the latter uses MDE techniques to promote the participation in software development processes.

Collaboration is important in the context of MDE, in particular, when creating Domain-Specific Modeling Languages (DSMLs) which are (modeling) languages specifically designed to carry out the tasks of a particular domain. While end-users are actually the experts of the domain for which a DSML is developed, their participation in the DSML specification process is still rather limited nowadays (they are normally only involved in providing domain knowledge or testing the resulting language). This means that the MDE technical experts and not end-users are the ones in control of the DSML construction and evolution. This is a problem because errors in understanding the domain may hamper the development process and the quality of the resulting DSML. Thus, it would be beneficial to promote a more active participation of end-users in the DSML development process.

We have been working on the required support to make effective this participation, in particular, we have developed Collaboro, an approach which enables the involvement of the community (i.e., end-users and developers) in the DSML creation process. Collaboro allows modeling the collaborations between community members taking place during the definition of a new DSML and supports both the collaborative definition of the abstract (i.e., metamodel) and concrete (i.e., notation) syntaxes for DSMLs by providing specific constructs to enable the discussion. Thus, each community member will have the chance to request changes, propose solutions and give an opinion (and vote) about those from others. We believe this discussion will enrich the language definition significantly and ensure that the end result satisfies as much as possible the expectations of the end-users. Collaboro has also been extended to support the example-driven development of DSMLs, thus promoting the engagement of end-users in the process.

The lessons learnt from this MDE-focused collaboration research are now being applied to the more general context of software development. In particular, our interest is to study how software development processes are governed (i.e. how the collaboration among developers and user takes place). Any software development
Thus, we believe the explicit definition of governance rules along with the corresponding infrastructure to help developers follow them would have several benefits, including improvements in the transparency of the decision-making process, traceability (being able to track why a decision was made and who decided it) and the automation of the governance process (e.g. liberating developers from having to be aware and follow the rules manually, minimizing the risk of inconsistent behaviour in the evolution of the project). We resort on MDE techniques to tackle this problem and provide a DSL specially adapted to the domain of governance in software projects to let project managers easily define the governance rules of their projects.

3.6. Scalability

As MDE is increasingly applied to larger and more complex industrial applications, the current generation of modelling and model management technologies are being stressed to their limits in terms of their capacity to accommodate collaborative development, efficient management and persistence of models larger than a few hundreds of megabytes in size. Additional research and development is imperative in order to enable MDE to remain relevant with industrial practice and to continue delivering its widely recognised productivity, quality, and maintainability benefits. Achieving scalability in modelling and MDE involves being able to construct large models and domain-specific languages in a systematic manner, enabling teams of modellers to construct and refine large models in a collaborative manner, advancing the state-of-the-art in model querying and transformations tools so that they can cope with large models (of the scale of millions of model elements), and providing an infrastructure for efficient storage, indexing and retrieval of large models. AtlanMod wants to provide a solution for these aspects of scalability in MDE by extending the Eclipse modeling framework, to create an open-source solution to scalable modeling in industry.

3.7. Industrialization of open source tools

Research labs, as a source of innovation, are potential key actors of the Software Engineering market. However, an important collaborative effort with the other players in the software industry is still needed in order to actually transfer the corresponding techniques or technologies from the research lab to a company. Based on the AtlanMod concrete experience with the previously mentioned open source tools/projects, we have extracted a pragmatic approach [3] for transforming the results of scientific experimentation into practical industrial solutions.

While dealing with innovation, this approach is also innovation-driven itself, as the action is actually conducted by the research lab via a technology transfer. Three different partners are directly involved in this process, using open source as the medium for maintaining a constant interaction between all of them:

- **Use Case Provider.** Usually a company big enough to have to face real complex industrial scenarios which need to be solved (at least partially) by applying new innovative principles and techniques;
- **Research Lab.** Usually a group from a research institute (public or private) or university evaluating the scientific relevance of the problems, identifying the research challenges and prototyping possible solutions;
- **Technology Provider.** Usually a small or medium company, with a particular technical expertise on the given domain or Software Engineering field, building and delivering the industrial version of the designed solutions;
From our past and current experience, three main characteristics of this industrialization business model can be highlighted:

- **Win-win situation.** Each partner can actually focus on its core activity while also directly benefiting from the results obtained by the others (notably the research lab can continue to do research);
- **Application-driven context.** The end-user need is at the origin of the process, which finally makes the developed solution actually relevant;
- **Iterative process.** The fact of having three distinct partners requires different regular and consecutive exchanges between all of them.
CAIRN Project-Team

3. Research Program

3.1. Panorama

The development of complex applications is traditionally split in three stages: a theoretical study of the algorithms, an analysis of the target architecture and the implementation. When facing new emerging applications such as high-performance, low-power and low-cost mobile communication systems or smart sensor-based systems, it is mandatory to strengthen the design flow by a joint study of both algorithmic and architectural issues.¹

Figure 1 shows the global design flow we propose to develop. This flow is organized in levels which refer to our three research themes: application optimization (new algorithms, fixed-point arithmetic and advanced representations of numbers), architecture optimization (reconfigurable and specialized hardware, application-specific processors), and stepwise refinement and code generation (code transformations, hardware synthesis, compilation).

In the rest of this part, we briefly describe the challenges concerning **new reconfigurable platforms** in Section 3.2, the issues on **compiler and synthesis tools** related to these platforms in Section 3.3, and the remaining challenges in **algorithm architecture interaction** in Section 3.4.

¹Often referenced as algorithm-architecture mapping or interaction.
3.2. Reconfigurable Architecture Design

Over the last two decades, there has been a strong push of the research community to evolve static programmable processors into run-time dynamic and partial reconfigurable (DPR) architectures. Several research groups around the world have hence proposed reconfigurable hardware systems operating at various levels of granularity. For example, functional-level reconfiguration has been proposed to increase the efficiency of programmable processors without having to pay for the FPGA penalties. These coarse-grained reconfigurable architectures (CGRAs) provide operator-level configurable functional blocks and word-level datapaths. The main goal of this class of architectures is to provide flexibility while minimizing reconfiguration overhead (there exists several recent surveys on this topic [119], [103], [84], [120]). Compared to fine-grained architectures, CGRAs benefit from a massive reduction in configuration memory and configuration delay, as well as a considerable reduction in routing and placement complexity. This, in turn, results in an improvement in the computation volume over energy cost ratio, even if it comes at the price of a loss of flexibility compared to bit-level operations. Such constraints have been taken into account in the design of DART [99][12], CRIP [87], Adres [111] or others [122]. These works have led to commercial products such as the Extreme Processor Platform (XPP) [88] from PACT or Montium 2 from Recore systems.

Another strong trend is the design of hybrid architectures which combine standard GPP or DSP cores with arrays of configurable elements such as the Lx [102], or of field-configurable elements such as the Xirisc processor [109] and more recently by commercial platforms such as the Xilinx Zynq-7000. Some of their benefits are the following: functionality on demand (set-top boxes for digital TV equipped with decoding hardware on demand), acceleration on demand (coprocessors that accelerate computationally demanding applications in multimedia or communications applications), and shorter time-to-market (products that target ASIC platforms can be released earlier using reconfigurable hardware).

Dynamic reconfiguration enables an architecture to adapt itself to various incoming tasks. This requires complex resource management and control which can be provided as services by a real-time operating system (RTOS) [110]: communication, memory management, task scheduling [98], [91][1] and task placement. Such an Operating System (OS) based approach has many advantages: it provides a complete design framework, that is independent of the technology and of the underlying hardware architecture, helping to drastically reduce the full platform design time. Due to the unpredictable execution of tasks, the OS must be able to allocate resource to tasks at run-time along with mechanisms to support inter-task communication. An efficient way to support such communications is to resort to a network-on-chip [117]. The role of the communication infrastructure is then to support transactions between different components of the platform, either between macro-components – main processor, dedicated modules, dynamically reconfigurable component – or within the elements of the reconfigurable components themselves.

In CAIRN we mainly target reconfigurable system-on-chip (RSoC) defined as a set of computing and storing resources organized around a flexible interconnection network and integrated within a single silicon chip (or programmable chip such as FPGAs). The architecture is customized for an application domain, and the flexibility is provided by both hardware reconfiguration and software programmability. Computing resources are therefore highly heterogeneous and raise many issues that we discuss in the following:

- **Reconfigurable hardware blocks with a dynamic behavior** where reconfigurability can be achieved at the bit- or operator-level. Our research aims at defining new reconfigurable architectures including computing and memory resources. Since reconfiguration must happen as fast as possible (typically within a few cycles), reducing the configuration time overhead is also a key issue.
- When performance and power consumption are major constraints, it is acknowledged that optimized specialized hardware blocks (often called IPs for Intellectual Properties) are the best (and often the only) solution. Therefore, we also study architecture and tools for specialized hardware accelerators and for multi-mode components.

• Customized processors with a specialized instruction-set also offer a viable solution to trade between energy efficiency and flexibility. They are particularly relevant for modern FPGA platforms where many processor cores can be embedded. For this topic, we focus on the automatic generation of heterogeneous (sequential or parallel) reconfigurable processor extensions that are tightly coupled to processor cores.

3.3. Compilation and Synthesis for Reconfigurable Platforms

In spite of their advantages, reconfigurable architectures lack efficient and standardized compilation and design tools. As of today, this still makes the technology impractical for large scale industrial use. Generating and optimizing the mapping from high-level specifications to reconfigurable hardware platforms is therefore a key research issue, and the problem has received considerable interest over the last years [114], [90], [121], [124]. In the meantime, the complexity (and heterogeneity) of these platforms has also been increasing quite significantly, with complex heterogeneous multi-cores architectures becoming a de facto standard. As a consequence, the focus of designers is now geared toward optimizing overall system-level performance and efficiency [105], [114], [113]. Here again, existing tools are not well suited, as they fail at providing a unified programming view of the programmable and/or reconfigurable components implemented on the platform.

In this context we have been pursuing our efforts to propose tools whose design principles are based on a tight coupling between the compiler and the target hardware architectures. We build on the expertise of the team members in High Level Synthesis (HLS) [8], ASIP optimizing compilers [15] and automatic parallelization for massively parallel specialized circuits [6]. We first study how to increase the efficiency of standard programmable processor by extending their instruction set to speed-up compute intensive kernels. Our focus is on efficient and exact algorithms for the identification, selection and scheduling of such instructions [9]. We also propose techniques to synthesize reconfigurable (or multi-mode) architectures.

We address these challenges by borrowing techniques from high-level synthesis, optimizing compilers and automatic parallelization, especially when dealing with nested loop kernels. The goal is then either to derive a custom fine-grain parallel architecture and/or to derive the configuration of a Coarse Grain Reconfigurable Architecture (CGRA). In addition, and independently of the scientific challenges mentioned above, proposing such flows also poses significant software engineering issues. As a consequence, we also study how leading edge Object Oriented software engineering techniques (Model Driven Engineering) can help the Computer Aided Design (CAD) and optimizing compiler communities prototyping new research ideas.

Efficient implementation of multimedia and signal processing applications (in software for DSP cores or as special-purpose hardware) often requires, for reasons related to cost, power consumption or silicon area constraints, the use of fixed-point arithmetic, whereas the algorithms are usually specified in floating-point arithmetic. Unfortunately, fixed-point conversion is very challenging and time-consuming, typically demanding up to 50% of the total design or implementation time [92]. Thus, tools are required to automate this conversion. For hardware or software implementation, the aim is to optimize the fixed-point specification. The implementation cost is minimized under a numerical accuracy or an application performance constraint. For DSP-software implementation, methodologies have been proposed [107], [112] to achieve a conversion leading to an ANSI-C code with integer data types. For hardware implementation, the best results are obtained when the word-length optimization process is coupled with the high-level synthesis [106], [95]. Evaluating the effects of finite precision is one of the major and often the most time consuming step while performing fixed-point refinement. Indeed, in the word-length optimization process, the numerical accuracy is evaluated as soon as a new word-length is tested, thus, several times per iteration of the optimization process. Classical approaches are based on fixed-point simulations [96], [118]. They lead to long evaluation times and cannot be used to explore the entire design space. Therefore, our aim is to propose closed-form expressions of errors due to fixed-point approximations that are used by a fast analytical framework for accuracy evaluation.

3.4. Interaction between Algorithms and Architectures

As CAIRN mainly targets domain-specific system-on-chip including reconfigurable capabilities, algorithmic-level optimizations have a great potential on the efficiency of the overall system. Based on the skills and...
experiences in “signal processing and communications” of some CAIRN’s members, we conduct research on algorithmic optimization techniques under two main constraints: energy consumption and computation accuracy; and for two main application domains: fourth-generation (4G) mobile communications and wireless sensor networks (WSN). These application domains are very conducive to our research activities. The high complexity of the first one and the stringent power constraint of the second one, require the design of specific high-performance and energy-efficient SoCs. We also consider other applications such as video or bioinformatics, but this short state-of-the-art will be limited to wireless applications.

The radio in both transmit and receive modes consumes the bulk of the total power consumption of the system. Therefore, protocol optimization is one of the main sources of significant energy reduction to be able to achieve self-powered autonomous systems. Reducing power due to radio communications can be achieved by two complementary main objectives: (i) minimizing the output transmit power while maintaining sufficient wireless link quality and (ii) minimizing useless wake-up and channel hearing while still being reactive.

As the physical layer affects all higher layers in the protocol stack, it plays an important role in the energy-constrained design of WSNs. The question to answer can be summarized as: how much signal processing can be added to decrease the transmission energy (i.e. the output power level at the antenna) such that the global energy consumption be decreased? The temporal and spatial diversity of relay and multiple antenna techniques are very attractive due to their simplicity and their performance for wireless transmission over fading channels. Cooperative MIMO (multiple-input and multiple-output) techniques have been first studied in [100], [108] and have shown their efficiency in terms of energy consumption [97]. Our research aims at finding new energy-efficient cooperative protocols associating distributed MIMO with opportunistic and/or multiple relays and considering wireless channel impairments such as transmitters desynchronisation.

Another way to reduce the energy consumption consists in decreasing the radio activity, controlled by the medium access (MAC) layer protocols. In this regard, low duty-cycle protocols, such as preamble-sampling MAC protocols, are very efficient because they improve the lifetime of the network by reducing the unnecessary energy waste [86]. As the network parameters (data rate, topology, etc.) can vary, we propose new adaptive MAC protocols to avoid overhearing and idle listening.

Finally, MIMO precoding is now recognized as a very interesting technique to enhance the data rate in wireless systems, and is already used in Wi-Max standard (802.16e). This technique can also be used to reduce transmission energy for the same transmission reliability and the same throughput requirement. One of the most efficient precoders is based on the maximization of the minimum Euclidean distance ($\max -d_{\min}$) between two received data vectors [93], but it is difficult to define the closed-form of the optimized precoding matrix for large MIMO system with high-order modulations. Our goal is to derive new generic precoders with simple expressions depending only on the channel angle and the modulation order.
3. Research Program

3.1. Static program analysis

Static program analysis is concerned with obtaining information about the run-time behaviour of a program without actually running it. This information may concern the values of variables, the relations among them, dependencies between program values, the memory structure being built and manipulated, the flow of control, and, for concurrent programs, synchronisation among processes executing in parallel. Fully automated analyses usually render approximate information about the actual program behaviour. The analysis is correct if the information includes all possible behaviour of a program. Precision of an analysis is improved by reducing the amount of information describing spurious behaviour that will never occur.

Static analysis has traditionally found most of its applications in the area of program optimisation where information about the run-time behaviour can be used to transform a program so that it performs a calculation faster and/or makes better use of the available memory resources. The last decade has witnessed an increasing use of static analysis in software verification for proving invariants about programs. The Celtique project is mainly concerned with this latter use. Examples of static analysis include:

- Data-flow analysis as it is used in optimising compilers for imperative languages. The properties can either be approximations of the values of an expression (“the value of variable \(x \) is greater than 0” or \(x \) is equal to \(y \) at this point in the program”) or more intensional information about program behaviour such as “this variable is not used before being re-defined” in the classical “dead-variable” analysis [75].

- Analyses of the memory structure includes shape analysis that aims at approximating the data structures created by a program. Alias analysis is another data flow analysis that finds out which variables in a program addresses the same memory location. Alias analysis is a fundamental analysis for all kinds of programs (imperative, object-oriented) that manipulate state, because alias information is necessary for the precise modelling of assignments.

- Control flow analysis will find a safe approximation to the order in which the instructions of a program are executed. This is particularly relevant in languages where parameters or functions can be passed as arguments to other functions, making it impossible to determine the flow of control from the program syntax alone. The same phenomenon occurs in object-oriented languages where it is the class of an object (rather than the static type of the variable containing the object) that determines which method a given method invocation will call. Control flow analysis is an example of an analysis whose information in itself does not lead to dramatic optimisations (although it might enable in-lining of code) but is necessary for subsequent analyses to give precise results.

Static analysis possesses strong semantic foundations, notably abstract interpretation [57], that allow to prove its correctness. The implementation of static analyses is usually based on well-understood constraint-solving techniques and iterative fixpoint algorithms. In spite of the nice mathematical theory of program analysis and the solid algorithmic techniques available one problematic issue persists, viz., the gap between the analysis that is proved correct on paper and the analyser that actually runs on the machine. While this gap might be small for toy languages, it becomes important when it comes to real-life languages for which the implementation and maintenance of program analysis tools become a software engineering task. A certified static analysis is an analysis that has been formally proved correct using a proof assistant.
In previous work we studied the benefit of using abstract interpretation for developing certified static analyses [55], [78]. The development of certified static analysers is an ongoing activity that will be part of the Celtique project. We use the Coq proof assistant which allows for extracting the computational content of a constructive proof. A Caml implementation can hence be extracted from a proof of existence, for any program, of a correct approximation of the concrete program semantics. We have isolated a theoretical framework based on abstract interpretation allowing for the formal development of a broad range of static analyses. Several case studies for the analysis of Java byte code have been presented, notably a memory usage analysis [56]. This work has recently found application in the context of Proof Carrying Code and have also been successfully applied to particular form of static analysis based on term rewriting and tree automata [5].

3.1. Static analysis of Java

Precise context-sensitive control-flow analysis is a fundamental prerequisite for precisely analysing Java programs. Bacon and Sweeney’s Rapid Type Analysis (RTA) [48] is a scalable algorithm for constructing an initial call-graph of the program. Tip and Palsberg [83] have proposed a variety of more precise but scalable call graph construction algorithms e.g., MTA, FTA, XTA which accuracy is between RTA and 0’CFA. All those analyses are not context-sensitive. As early as 1991, Palsberg and Schwartzbach [76], [77] proposed a theoretical parametric framework for typing object-oriented programs in a context-sensitive way. In their setting, context-sensitivity is obtained by explicit code duplication and typing amounts to analysing the expanded code in a context-insensitive manner. The framework accommodates for both call-contexts and allocation-contexts.

To assess the respective merits of different instantiations, scalable implementations are needed. For Cecil and Java programs, Grove et al. [64], [63] have explored the algorithmic design space of contexts for benchmarks of significant size. Latter on, Milanova et. al. [70] have evaluated, for Java programs, a notion of context called object-sensitivity which abstracts the call-context by the abstraction of the this pointer. More recently, Lhotak and Hendren [68] have extended the empiric evaluation of object-sensitivity using a BDD implementation allowing to cope with benchmarks otherwise out-of-scope. Besson and Jensen [52] proposed to use DATALOG in order to specify context-sensitive analyses. Whaley and Lam [84] have implemented a context-sensitive analysis using a BDD-based DATALOG implementation.

Control-flow analyses are a prerequisite for other analyses. For instance, the security analyses of Livshits and Lam [69] and the race analysis of Naik, Aiken [71] and Whaley [72] both heavily rely on the precision of a control-flow analysis.

Control-flow analysis allows to statically prove the absence of certain run-time errors such as "message not understood" or cast exceptions. Yet it does not tackle the problem of "null pointers". Fahnrich and Leino [60] propose a type-system for checking that after object creation fields are non-null. Hubert, Jensen and Pichardie have formalised the type-system and derived a type-inference algorithm computing the most precise typing [67]. The proposed technique has been implemented in a tool called NIT [66]. Null pointer detection is also done by bug-detection tools such as FindBugs [66]. The main difference is that the approach of findbugs is neither sound nor complete but effective in practice.

3.1.2. Quantitative aspects of static analysis

Static analyses yield qualitative results, in the sense that they compute a safe over-approximation of the concrete semantics of a program, w.r.t. an order provided by the abstract domain structure. Quantitative aspects of static analysis are two-sided: on one hand, one may want to express and verify (compute) quantitative properties of programs that are not captured by usual semantics, such as time, memory, or energy consumption; on the other hand, there is a deep interest in quantifying the precision of an analysis, in order to tune the balance between complexity of the analysis and accuracy of its result.

The term of quantitative analysis is often related to probabilistic models for abstract computation devices such as timed automata or process algebras. In the field of programming languages which is more specifically addressed by the Celtique project, several approaches have been proposed for quantifying resource usage: a non-exhaustive list includes memory usage analysis based on specific type systems [65], [47], linear
logic approaches to implicit computational complexity [49], cost model for Java byte code [43] based on size relation inference, and WCET computation by abstract interpretation based loop bound interval analysis techniques [58].

We have proposed an original approach for designing static analyses computing program costs: inspired from a probabilistic approach [79], a quantitative operational semantics for expressing the cost of execution of a program has been defined. Semantics is seen as a linear operator over a dioid structure similar to a vector space. The notion of long-run cost is particularly interesting in the context of embedded software, since it provides an approximation of the asymptotic behaviour of a program in terms of computation cost. As for classical static analysis, an abstraction mechanism allows to effectively compute an over-approximation of the semantics, both in terms of costs and of accessible states [54]. An example of cache miss analysis has been developed within this framework [82].

3.2. Software certification

The term "software certification" has a number of meanings ranging from the formal proof of program correctness via industrial certification criteria to the certification of software developers themselves. We are interested in two aspects of software certification:

- industrial, mainly process-oriented certification procedures
- software certificates that convey semantic information about a program

Semantic analysis plays a role in both varieties.

Criteria for software certification such as the Common criteria or the DOA aviation industry norms describe procedures to be followed when developing and validating a piece of software. The higher levels of the Common Criteria require a semi-formal model of the software that can be refined into executable code by traceable refinement steps. The validation of the final product is done through testing, respecting criteria of coverage that must be justified with respect to the model. The use of static analysis and proofs has so far been restricted to the top level 7 of the CC and has not been integrated into the aviation norms.

3.2.1. Process-oriented software certification

Testing requirements present in existing certification procedures pose a challenge in terms of the automation of the test data generation process for satisfying functional and structural testing requirements. For example, the standard document which currently governs the development and verification process of software in airborne system (DO-178B) requires the coverage of all the statements, all the decisions of the program at its higher levels of criticality. It is well-known that DO-178B structural coverage is a primary cost driver on avionics project. Although they are widely used, existing marketed testing tools are currently restricted to test coverage monitoring and measurements 1 but none of these tools tries to find the test data that can execute a given statement, branch or path in the source code. In most industrial projects, the generation of structural test data is still performed manually and finding automatic methods for this problem remains a challenge for the test community. Automatic test case generation methods requires the development of precise semantic analysis which have to scale up to software that contains thousands of lines of code.

So far, static analysis tools are not a part of the approved certification procedures. This would require the acceptance of the static analyzers by the certification authorities in a process called “Qualification of the tools” in which the tools are shown to be as robust as the software it will certify. We believe that proof assistants have a role to play in building such certified static analysis as we have already shown by extracting provably correct analysers for Java byte code.

1Coverage monitoring answers to the question: what are the statements or branches covered by the test suite ? While coverage measurements answers to: how many statements or branches have been covered ?
3.2.2. Semantic software certificates

The particular branch of information security called "language-based security" is concerned with the study of programming language features for ensuring the security of software. Programming languages such as Java offer a variety of language constructs for securing an application. Verifying that these constructs have been used properly to ensure a given security property is a challenge for program analysis. One such problem is confidentiality of the private data manipulated by a program and a large group of researchers have addressed the problem of tracking information flow in a program in order to ensure that e.g., a credit card number does not end up being accessible to all applications running on a computer [81], [51]. Another kind of problems concern the way computational resources are being accessed and used, in order to ensure the correct implementation of a given access policy, and that a given application does not consume more resources that it has been allocated. Members of the Celtique team have proposed a verification technique that can check the proper use of resources of Java applications running on mobile telephones [53]. Semantic software certificates have been proposed as a means of dealing with the security problems caused by mobile code that is downloaded from foreign sites of varying trustworthiness and which can cause damage to the receiving host, either deliberately or inadvertently. These certificates should contain enough information about the behaviour of the downloaded code to allow the code consumer to decide whether it adheres to a given security policy.

Proof-Carrying Code (PCC) [73] is a technique to download mobile code on a host machine while ensuring that the code adheres to a specified security policy. The key idea is that the code producer sends the code along with a proof (in a suitably chosen logic) that the code is secure. Upon reception of the code and before executing it, the consumer submits the proof to a proof checker for the logic. Our project focus on two components of the PCC architecture: the proof checker and the proof generator.

In the basic PCC architecture, the only components that have to be trusted are the program logic, the proof checker of the logic, and the formalization of the security property in this logic. Neither the mobile code nor the proposed proof—and even less the tool that generated the proof—need be trusted.

In practice, the proof checker is a complex tool which relies on a complex Verification Condition Generator (VCG). VCGs for real programming languages and security policies are large and non-trivial programs. For example, the VCG of the Touchstone verifier represents several thousand lines of C code, and the authors observed that "there were errors in that code that escaped the thorough testing of the infrastructure" [74]. Many solutions have been proposed to reduce the size of the trusted computing base. In the foundational proof carrying code of Appel and Felty [46], [45], the code producer gives a direct proof that, in some "foundational" higher-order logic, the code respects a given security policy. Wildmoser and Nipkow [86], [85]. prove the soundness of a weakest precondition calculus for a reasonable subset of the Java bytecode. Necula and Schneck [74] extend a small trusted core VCG and describe the protocol that the untrusted verifier must follow in interactions with the trusted infrastructure.

One of the most prominent examples of software certificates and proof-carrying code is given by the Java byte code verifier based on stack maps. Originally proposed under the term "lightweight Byte Code Verification" by Rose [80], the techniques consists in providing enough typing information (the stack maps) to enable the byte code verifier to check a byte code in one linear scan, as opposed to inferring the type information by an iterative data flow analysis. The Java Specification Request 202 provides a formalization of how such a verification can be carried out.

Inspired by this, Albert et al. [44] have proposed to use static analysis (in the form of abstract interpretation) as a general tool in the setting of mobile code security for building a proof-carrying code architecture. In their abstraction-carrying code framework, a program comes equipped with a machine-verifiable certificate that proves to the code consumer that the downloaded code is well-behaved.

3.2.3. Certified static analysis

In spite of the nice mathematical theory of program analysis (notably abstract interpretation) and the solid algorithmic techniques available one problematic issue persists, viz., the gap between the analysis that is proved correct on paper and the analyser that actually runs on the machine. While this gap might be small for
toy languages, it becomes important when it comes to real-life languages for which the implementation and
maintenance of program analysis tools become a software engineering task.

A certified static analysis is an analysis whose implementation has been formally proved correct using a proof
assistant. Such analysis can be developed in a proof assistant like Coq [42] by programming the analyser inside
the assistant and formally proving its correctness. The Coq extraction mechanism then allows for extracting a
Caml implementation of the analyser. The feasibility of this approach has been demonstrated in [7].

We also develop this technique through certified reachability analysis over term rewriting systems. Term
rewriting systems are a very general, simple and convenient formal model for a large variety of computing
systems. For instance, it is a very simple way to describe deduction systems, functions, parallel processes or
state transition systems where rewriting models respectively deduction, evaluation, progression or transitions.
Furthermore rewriting can model every combination of them (for instance two parallel processes running
functional programs).

Depending on the computing system modelled using rewriting, reachability (and unreachability) permits to
achieve some verifications on the system: respectively prove that a deduction is feasible, prove that a function
call evaluates to a particular value, show that a process configuration may occur, or that a state is reachable
from the initial state. As a consequence, reachability analysis has several applications in equational proofs
used in the theorem provers or in the proof assistants as well as in verification where term rewriting systems
can be used to model programs.

For proving unreachability, i.e. safety properties, we already have some results based on the over-
approximation of the set of reachable terms [61], [62]. We defined a simple and efficient algorithm [59]
for computing exactly the set of reachable terms, when it is regular, and construct an over-approximation
otherwise. This algorithm consists of a completion of a tree automaton, taking advantage of the ability of tree
automata to finitely represent infinite sets of reachable terms.

To certify the corresponding analysis, we have defined a checker guaranteeing that a tree automaton is a valid
fixpoint of the completion algorithm. This consists in showing that for all term recognised by a tree automaton
all his rewrites are also recognised by the same tree automaton. This checker has been formally defined in
Coq and an efficient Ocaml implementation has been automatically extracted [5]. This checker is now used to
certify all analysis results produced by the regular completion tool as well as the optimised version of [50].
3. Research Program

3.1. Our perspective

For many aspects of our everyday life, we rely heavily on information systems, many of which are based on massively networked devices that support a population of interacting and cooperating entities. While these information systems become increasingly open and complex, accidental and intentional failures get considerably more frequent and severe.

Two research communities traditionally address the concern of accidental and intentional failures: the distributed computing community and the security community. While both these communities are interested in the construction of systems that are correct and secure, an ideological gap and a lack of communication exist between them that is often explained by the incompatibility of the assumptions each of them traditionally makes. Furthermore, in terms of objectives, the distributed computing community has favored systems availability while the security community has focused on integrity and confidentiality, and more recently on privacy.

By contrast with this traditional conception, we are convinced that by looking at information systems as a combination of possibly revisited basic protocols, each one specified by a set of properties such as synchronization and agreement, security properties should emerge. This vision is shared by others and in particular by Myers et al. [57], whose objectives are to explore new methods for constructing distributed systems that are trustworthy in the aggregate even when some nodes in the system have been compromised by malicious attackers.

In accordance with this vision, the first main characteristic of the CIDRE group is to gather researchers from the two aforementioned communities, in order to address intentional failures, using foundations and approaches coming from both communities.

The second main characteristic of the CIDRE group lies in the scope of the systems it considers. Indeed, we consider three complementary levels of study:

- The Node Level: The term node either refers to a device that hosts a network client or service or to the process that runs this client or service. Node security management must be the focus of a particular attention, since from the user point of view, security of his own devices is crucial. Sensitive information and services must therefore be locally protected against various forms of attacks. This protection may take a dual form, namely prevention and detection.

- The Group Level: Distributed applications often rely on the identification of sets of interacting entities. These subsets are either called groups, clusters, collections, neighborhoods, spheres, or communities according to the criteria that define the membership. Among others, the adopted criteria may reflect the fact that its members are administrated by a unique person, or that they share the same security policy. It can also be related to the localization of the physical entities, or the fact that they need to be strongly synchronized, or even that they share mutual interests. Due to the vast number of possible contexts and terminologies, we refer to a single type of set of entities, that we call set of nodes. We assume that a node can locally and independently identify a set of nodes and modify the composition of this set at any time. The node that manages one set has to know the identity of each of its members and should be able to communicate directly with them without relying on a third party. Despite these two restrictions, this definition remains general enough to include as particular cases most of the examples mentioned above. Of course, more restrictive behaviors can be specified by adding other constraints. We are convinced that security can benefit from the existence and the identification of sets of nodes of limited size as they can help in improving the efficiency of the detection and prevention mechanisms.
The third characteristic of the CIDRE group is to focus on three different aspects of security, namely trust, intrusion detection, and privacy as well as on the bridges that exist between these aspects. Indeed, we believe that to study new security solutions for nodes, set of nodes and open network levels, one must take into account that it is now a necessity to interact with devices whose owners are unknown. To reduce the risk to rely on dishonest entities, a trust mechanism is an essential prevention tool that aims at measuring the capacity of a remote node to provide a service compliant with its specification. Such a mechanism should allow to overcome ill-founded suspicions and to be aware of established misbehaviors. To identify such misbehaviors, intrusion detection systems are necessary. Such systems aim at detecting, by analyzing data flows, whether violations of the security policies have occurred. Finally, Privacy Protection, which is now recognized as a fundamental individual right, should be respected despite the presence of tools that continuously observe or even control users actions or behaviors.

3.2. Intrusion Detection

By exploiting vulnerabilities in operating systems, applications, or network services, an attacker can defeat the preventive security mechanisms and violate the security policy of the whole system. The goal of intrusion detection systems (IDS) is to be able to detect, by analyzing some data generated on a monitored system, violations of the security policy. From our point of view, while useful in practice, misuse detection is intrinsically limited. Indeed, it requires to update the signatures database in real-time similarly to what has to be done for antivirus tools. Given that there are thousands of machines that are every day victims of malware, such an approach may appear as insufficient especially due to the incredible expansion of malware, drastically limiting the capabilities of human intervention and response. The CIDRE group takes the alternative approach, i.e. the anomaly approach, which consists in detecting a deviation from a referenced behavior. Specifically, we propose to study two complementary methods:

- Illegal Flow Detection: This first method intends to detect information flows that violate the security policy [60], [56]. Our goal is here to detect information flows in the monitored system that are allowed by the access control mechanism, but are illegal from the security policy point of view.
- Data Corruption Detection: This second method aims at detecting intrusions that target specific applications, and make them execute illegal actions by using these applications incorrectly [54], [59]. This approach complements the previous one in the sense that the incorrect use of the application can possibly be legal from the point of view of the information flows and access control mechanisms, but is incorrect considering the security policy.

In both approaches, the access control mechanisms or the monitored applications can be either configured and executed on a single node, or distributed on a set of nodes. Thus, our approach must be studied at least at these first two levels.

To complement these two approaches, we started two years ago to study the impact that visualization could have in the context of security and particularly how it could improve intrusion detection and forensics analysis. We finally plan to work on intrusion detection system evaluation methods. For that research, we set a priori aside no particular IDS approach or technique. Here are some concrete examples of our research goals (both short term and long term objectives) in the intrusion detection field:

- at node level, we apply the defensive programming approach (coming from the dependability field) to data corruption detection. The challenge is to determine which invariant/properties must be and
can be verified either at runtime or statically. Regarding illegal flow detection, we try to extend this method to build anti-viruses by determining viruses signatures.

- at the set of nodes level, we revisit the distributed problems such as clock synchronization, logical clocks, consensus, properties detection, to extend the solutions proposed at node levels to cope with distributed flow control checking mechanisms. Regarding illegal flow detection, we study the collaboration and consistency at nodes and set of nodes levels to obtain a global intrusion detection mechanism. Regarding the data corruption detection approach, our challenge is to identify local predicates/properties/invariants so that global predicates/properties/invariants would emerge at the system level.

3.3. Privacy

In our world of ubiquitous technologies, each individual constantly leaves digital traces related to his activities and interests which can be linked to his identity. The protection of privacy is one of the greatest challenges that lies ahead and also an important condition for the development of the Information Society. Moreover, due to legality and confidentiality issues, problematics linked to privacy emerge naturally for applications working on sensitive data, such as medical records of patients or proprietary datasets of enterprises. Privacy Enhancing Technologies (PETs) are generally designed to respect both the principles of data minimization and data sovereignty. The data minimization principle states that only the information necessary to complete a particular application should be disclosed (and no more). This principle is a direct application of the legitimacy criteria defined by the European data protection directive (Article 7). This directive is currently being revised into a regulation (probably released in 2014) that is going to strengthen the privacy rights of individuals and puts forward the concept of "privacy-by-design", which integrates the privacy aspects into the conception phase of a service or product. The data sovereignty principle states that data related to an individual belong to him and that he should stay in control of how this data is used and for which purpose. This principle can be seen as an extension of many national legislations on medical data that consider that a patient record belongs to the patient, and not to the doctors that create or update it, nor to the hospital that stores it. In the CIDRE project, we investigate PETs that operate at the three different levels (node, set of nodes or open distributed system) and are generally based on a mix of different foundations such as cryptographic techniques, security policies and access control mechanisms just to name a few. Examples of domains where privacy and utility aspects collide and that will be studied within the context of CIDRE include: identity management and privacy, geo-privacy, distributed systems and privacy, privacy-preserving data mining and privacy issues in social networks. Here are some concrete examples of our research goals in the privacy field:

- at the node level, we design privacy preserving identification scheme, automated reasoning on privacy policies [58], and policy-based adaptive PETs.
- at the set of nodes level, we augment distributed algorithms (i.e., routing) with privacy properties such as anonymity, unlinkability, and unobservability.
- at the open distributed system level, we target both geo-privacy concerns (that typically occur in location-based services) and privacy issues in social networks. In the former case, we adopt a sanitization approach while in the latter one we define privacy policies at user level, and their enforcement by all the intervening actors (e.g. at the social network sites providers).

3.4. Trust Management

While the distributed computing community relies on the trustworthiness of its algorithms to ensure systems availability, the security community historically makes the hypothesis of a Trusted Computing Base (TCB) that contains the security mechanisms (such as access controls, and cryptography) that implement the security policy. Unfortunately, as information systems get increasingly complex and open, the TCB management may itself get very complex, dynamic and error-prone. From our point of view, an appealing approach is to distribute and manage the TCB on each node and to leverage the trustworthiness of the distributed algorithms in order to strengthen each node’s TCB. Accordingly, the CIDRE group studies automated trust management systems at all the three identified levels:
• at the node level, such a system should allow each node to evaluate by itself the trustworthiness of its neighborhood and to self-configure the security mechanisms it implements;
• at the group level, such a system might rely on existing trust relations with other nodes of the group to enhance the significance and the reliability of the gathered information;
• at the open network level, such a system should rely on reputation mechanisms to estimate the trustworthiness of the peers the node interacts with. The system might also benefit from the information provided by a priori trusted peers that, for instance, would belong to the same group (see previous item).

For the last two items, the automated trust management system will de facto follow the distributed computing approach. As such, emphasis will be put on the trustworthiness of the designed distributed algorithms. Thus, the proposed approach will provide both the adequate security mechanisms and a trustworthy distributed way of managing them. Regarding trust management, we still have research goals that are to be tackled. We briefly list hereafter some of our short and long term objectives at node, group and open networks levels:

1. at node level, we are going to investigate how implicit trust relationships, identified and deduced by a node during its interactions with its neighborhood, could be explicitly used by the node (for instance by means of a series of rules) to locally evaluate the trustworthiness of its neighborhood. The impact of trust on the local security policy, and on its enforcement will be studied accordingly.

2. at the set of nodes level, we plan to take advantage of the pre-existing trust relationship among the set of nodes to design composition mechanisms that would guarantee that automatically configured security policies are consistent with each group member security policy.

3. at the open distributed system level, we are going to design reputation mechanisms to both defend the system against specific attacks (whitewashing, bad mouthing, ballot stuffing, isolation) by relying on the properties guaranteed at nodes and set of nodes levels, and guaranteeing persistent and safe feedback, and for specific cases in guaranteeing the right to be forgotten (i.e., the right to data erasure).
3. Research Program

3.1. Introduction

The scientific foundations of our work are those of network design and network analysis. Specifically, this concerns the principles of packet switching and in particular of IP networks (protocol design, protocol testing, routing, scheduling techniques), and the mathematical and algorithmic aspects of the associated problems, on which our methods and tools are based.

These foundations are described in the following paragraphs. We begin by a subsection dedicated to Quality of Service (QoS) and Quality of Experience (QoE), since they can be seen as unifying concepts in our activities. Then we briefly describe the specific sub-area of model evaluation and about the particular multidisciplinary domain of network economics.

3.2. Quality of Service and Quality of Experience

Since it is difficult to develop as many communication solutions as possible applications, the scientific and technological communities aim towards providing general services allowing to give to each application or user a set of properties nowadays called “Quality of Service” (QoS), a terminology lacking a precise definition. This QoS concept takes different forms according to the type of communication service and the aspects which matter for a given application: for performance it comes through specific metrics (delays, jitter, throughput, etc.), for dependability it also comes through appropriate metrics: reliability, availability, or vulnerability, in the case for instance of WAN (Wide Area Network) topologies, etc.

QoS is at the heart of our research activities: We look for methods to obtain specific “levels” of QoS and for techniques to evaluate the associated metrics. Our ultimate goal is to provide tools (mathematical tools and/or algorithms, under appropriate software “containers” or not) allowing users and/or applications to attain specific levels of QoS, or to improve the provided QoS, if we think of a particular system, with an optimal use of the resources available. Obtaining a good QoS level is a very general objective. It leads to many different areas, depending on the systems, applications and specific goals being considered. Our team works on several of these areas. We also investigate the impact of network QoS on multimedia payloads to reduce the impact of congestion.

Some important aspects of the behavior of modern communication systems have subjective components: the quality of a video stream or an audio signal, as perceived by the user, is related to some of the previous mentioned parameters (packet loss, delays, ...) but in an extremely complex way. We are interested in analyzing these types of flows from this user-oriented point of view. We focus on the user perceived quality, the main component of what is nowadays called Quality of Experience (in short, QoE), to underline the fact that, in this case, we want to center the analysis on the user. In this context, we have a global project called PSQA, which stands for Pseudo-Subjective Quality Assessment, and which refers to a methodology allowing to automatically measure QoE (see 3.2).

Another special case to which we devote research efforts in the team is the analysis of qualitative properties related to interoperability assessment. This refers to the act of determining if end-to-end functionality between at least two communicating systems is as required by the base standards for those systems. Conformance is the act of determining to what extent a single component conforms to the individual requirements of the standard it is based on. Our purpose is to provide such a formal framework (methods, algorithms and tools) for interoperability assessment, in order to help in obtaining efficient interoperability test suites for new generation networks, mainly around IPv6-related protocols. The interoperability test suites generation is based on specifications (standards and/or RFCs) of network components and protocols to be tested.
3.3. Stochastic modeling

The scientific foundations of our modeling activities are composed of stochastic processes theory and, in particular, Markov processes, queuing theory, stochastic graphs theory, etc. The objectives are either to develop numerical solutions, or analytical ones, or possibly discrete event simulation or Monte Carlo (and Quasi-Monte Carlo) techniques. We are always interested in model evaluation techniques for dependability and performability analysis, both in static (network reliability) and dynamic contexts (depending on the fact that time plays an explicit role in the analysis or not). We look at systems from the classical so-called call level, leading to standard models (for instance, queues or networks of queues) and also at the burst level, leading to fluid models.

In recent years, our work on the design of the topologies of WANs led us to optimization techniques, in particular in the case of very large optimization problems, usually formulated in terms of graphs. The associated methods we are interested in are composed of simulated annealing, genetic algorithms, TABU search, etc. For the time being, we have obtained our best results with GRASP techniques.

Network pricing is a good example of a multi-disciplinary research activity half-way between applied mathematics, economy and networking, centered on stochastic modeling issues. Indeed, the Internet is facing a tremendous increase of its traffic volume. As a consequence, real users complain that large data transfers take too long, without any possibility to improve this by themselves (by paying more, for instance). A possible solution to cope with congestion is to increase the link capacities; however, many authors consider that this is not a viable solution as the network must respond to an increasing demand (and experience has shown that demand of bandwidth has always been ahead of supply), especially now that the Internet is becoming a commercial network. Furthermore, incentives for a fair utilization between customers are not included in the current Internet. For these reasons, it has been suggested that the current flat-rate fees, where customers pay a subscription and obtain an unlimited usage, should be replaced by usage-based fees. Besides, the future Internet will carry heterogeneous flows such as video, voice, email, web, file transfers and remote login among others. Each of these applications requires a different level of QoS: for example, video needs very small delays and packet losses, voice requires small delays but can afford some packet losses, email can afford delay (within a given bound) while file transfer needs a good average throughput and remote login requires small round-trip times. Some pricing incentives should exist so that each user does not always choose the best QoS for her application and so that the final result is a fair utilization of the bandwidth. On the other hand, we need to be aware of the trade-off between engineering efficiency and economic efficiency; for example, traffic measurements can help in improving the management of the network but is a costly option. These are some of the various aspects often present in the pricing problems we address in our work. More recently, we have switched to the more general field of network economics, dealing with the economic behavior of users, service providers and content providers, as well as their relations.
3. Research Program

3.1. Computer assisted monitoring and diagnosis of physical systems

keywords: monitoring, diagnosis, deep model, fault model, simulation, chronicle acquisition

Our work on monitoring and diagnosis relies on model-based approaches developed by the Artificial Intelligence community since the seminal studies by R. Reiter and J. de Kleer [78], [89]. Two main approaches have been proposed then: (i) the consistency-based approach, relying on a model of the expected correct behavior; (ii) the abductive approach which relies on a model of the failures that might affect the system, and which identifies the failures or the faulty behavior explaining the anomalous observations. See the references [29], [31] for a detailed exposition of these investigations.

Since 1990, the researchers in the field have studied dynamic system monitoring and diagnosis, in a similar way as researchers in control theory do. What characterizes the AI approach is the use of qualitative models instead of quantitative ones and the importance given to the search for the actual source/causes of the faulty behavior. Model-based diagnosis approaches rely on qualitative simulation or on causal graphs in order to look for the causes of the observed deviations. The links between the two communities have been enforced, in particular for what concerns the work about discrete events systems and hybrid systems. Used formalisms are often similar (automata, Petri nets, ...) [37], [35].

Our team focuses on monitoring and on-line diagnosis of discrete events systems and in particular on monitoring by alarm management.

Two different methods have been studied by our team in the last years:

- In the first method, the automaton used as a model is transformed off-line into an automaton adapted to diagnosis. This automaton is called a diagnoser. This method has first been proposed by M. Sampath and colleagues [80]. The main drawback of this approach is its centralized nature that requires to explicitly build the global model of the system, which is most of the time unrealistic. It is why we proposed a decentralized approach in [75].

- In the second method, the idea is to associate each failure that we want to detect with a chronicle (or a scenario), i.e. a set of observable events interlinked by time constraints. The chronicle recognition approach consists in monitoring and diagnosing dynamic systems by recognizing those chronicles on-line [53], [77], [51].

One of our research focus is to extend the chronicle recognition methods to a distributed context. Local chronicle bases and local recognizers are used to detect and diagnose each component. However, it is important to take into account the interaction model (messages exchanged by the components). Computing a global diagnosis requires then to check the synchronisation constraints between local diagnoses.

Another issue is the chronicle base acquisition. An expert is often needed to create the chronicle base, and that makes the creation and the maintenance of the base very expensive. That is why we are working on an automatic method to acquire the base.

Developing diagnosis methodologies is not enough, especially when on-line monitoring is required. Two related concerns must be tackled, and are the topics of current research in the team:

- The ultimate goal is usually not merely to diagnose, but to put the system back in some acceptable state after the occurrence of a fault. One of our aim is to develop self-healable systems able to self-diagnose and -repair.
When designing a system and equipping it with diagnosis capabilities, it may be crucial to be able to check off-line that the system will behave correctly, i.e., that the system is actually 'diagnosable'. A lot of techniques have been developed in the past (see Lafortune and colleagues [79]), essentially in automata models. We extended them to cope with temporal patterns. A recent focus has been to study the self-healability of systems (ability to self-diagnose and self-repair).

3.2. Machine learning and data mining

keywords: machine learning, Inductive Logic Programming (ILP), temporal data mining, temporal abstraction, data-streams

The machine learning and data mining techniques investigated in the group aim at acquiring and improving models automatically. They belong to the field of machine (artificial) learning [48]. In this domain, the goal is the induction or the discovery of hidden objects characterizations from their descriptions by a set of features or attributes. For several years we investigated Inductive Logic Programming (ILP) but now we are also working on data-mining techniques.

We are especially interested in structural learning which aims at making explicit dependencies among data where such links are not known. The relational (temporal or spatial) dimension is of particular importance in applications we are dealing with, such as process monitoring in health-care, environment or telecommunications. Being strongly related to the dynamics of the observed processes, attributes related to temporal or spatial information must be treated in a special way. Additionally, we consider that the legibility of the learned results is of crucial importance as domain experts must be able to evaluate and assess these results.

The discovery of spatial patterns or temporal relations in sequences of events involve two main steps: the choice of a learning space and the choice of a learning technique.

We are mainly interested in symbolic supervised and unsupervised learning methods. Furthermore, we are investigating methods that can cope with temporal or spatial relationships in data. In the sequel, we will give some details about relational learning, relational data-mining and data streams mining.

3.2.1. Relational learning

Relational learning, also called inductive logic programming (ILP), lies at the intersection of machine learning, logic programming and automated deduction. Relational learning aims at inducing classification or prediction rules from examples and from domain knowledge. As relational learning relies on first order logic, it provides a very expressive and powerful language for representing learning hypotheses especially those learnt from temporal data. Furthermore, domain knowledge represented in the same language can also be used. This is a very interesting feature which enables taking into account already available knowledge and avoids starting learning from scratch.

Concerning temporal data, our work is more concerned with applying relational learning rather than developing or improving the techniques. Nevertheless, as noticed by Page and Srinivasan [74], the target application domains (such as signal processing in health-care) can benefit from adapting relational learning scheme to the particular features of the application data. Therefore, relational learning makes use of constraint programming to infer numerical values efficiently [81]. Extensions, such as QSIM [62], have also been used for learning a model of the behavior of a dynamic system [54]. Precisely, we investigate how to associate temporal abstraction methods to learning and to chronicle recognition. We are also interested in constraint clause induction, particularly for managing temporal aspects. In this setting, the representation of temporal phenomena uses specific variables managed by a constraint system [76] in order to deal efficiently with the associated computations (such as the covering tests).

For environmental data, we have investigated tree structures where a set of attributes describe nodes. Our goal is to find patterns expressed as sub-trees [47] with attribute selectors associated to nodes.
3.2.2. Data mining

Data mining is an unsupervised learning method which aims at discovering interesting knowledge from data. Association rule extraction is one of the most popular approach and has deserved a lot of interest in the last 10 years. For instance, many enhancements have been proposed to the well-known Apriori algorithm [33]. It is based on a level-wise generation of candidate patterns and on efficient candidate pruning having a sufficient relevance, usually related to the frequency of the candidate pattern in the data-set (i.e., the support): the most frequent patterns should be the most interesting. Later, Agrawal and Srivastava proposed a framework for "mining sequential patterns" [34], which extends Apriori by coping with the order of elements in patterns.

In [69], Mannila and Toivonen extended the work of Aggrawal et al. by introducing an algorithm for mining patterns involving temporal episodes with a distinction between parallel and sequential event patterns. Later, in [52], Dousson and Vu Duong introduced an algorithm for mining chronicles. Chronicles are sets of events associated with temporal constraints on their occurrences. They generalize the temporal patterns of Mannila and Toivonen. The candidate generation is an Apriori-like algorithm. The chronicle recognizer CRS [50] is used to compute the support of patterns. Then, the temporal constraints are computed as an interval whose bounds are the minimal and the maximal temporal extent of the delay separating the occurrences of two given events in the data-set. Chronicles are very interesting because they can model a system behavior with sufficient precision to compute fine diagnoses. Their extraction from a data-set is reasonably efficient. They can be efficiently recognized on an input data stream.

Relational data-mining [30] can be seen as generalizing these works to first order patterns. In this field, the work of Dehaspe for extracting first-order association rules have strong links with chronicles. Another interesting research concerns inductive databases which aim at giving a theoretical and logical framework to data-mining [63], [49]. In this view, the mining process means to query a database containing raw data as well as patterns that are implicitly coded in the data. The answer to a query is, either the solution patterns that are already present in the database, or computed by a mining algorithm, e.g., Apriori. The original work concerns sequential patterns only [67]. We have investigated an extension of inductive databases where patterns are very close to chronicles [85].

3.2.3. Mining data streams

During the last years, a new challenge has appeared in the data mining community: mining from data streams [32]. Data coming for example from monitoring systems observing patients or from telecommunication systems arrive in such huge volumes that they cannot be stored in totality for further processing: the key feature is that "you get only one look at the data" [56]. Many investigations have been made to adapt existing mining algorithms to this particular context or to propose new solutions: for example, methods for building synopses of past data in the form of summaries have been proposed, as well as representation models taking advantage of the most recent data. Sequential pattern stream mining is still an issue [70]. At present, research topics such as, sampling, summarizing, clustering and mining data streams are actively investigated.

A major issue in data streams is to take into account the dynamics of process generating data, i.e., the underlying model is evolving and, so, the extracted patterns have to be adapted constantly. This feature, known as concept drift [86], [64], occurs within an evolving system when the state of some hidden system variables changes. This is the source of important challenges for data stream mining [55] because it is impossible to store all the data for off-line processing or learning. Thus, changes must be detected on-line and the current mined models must be updated on line as well.
3. Research Program

3.1. Knowledge representation with constraint programming

Biological networks are built with data-driven approaches aiming at translating genomic information into a functional map. Most methods are based on a probabilistic framework which defines a probability distribution over the set of models. The reconstructed network is then defined as the most likely model given the data. In the last few years, our team has investigated an alternative perspective where each observation induces a set of constraints - related to the steady state response of the system dynamics - on the set of possible values in a network of fixed topology. The methods that we have developed complete the network with product states at the level of nodes and influence types at the level of edges, able to globally explain experimental data. In other words, the selection of relevant information in the model is no more performed by selecting the network with the highest score, but rather by exploring the complete space of models satisfying constraints on the possible dynamics supported by prior knowledge and observations. In the (common) case when there is no model satisfying all the constraints, we need to relax the problem and to study the space of corrections to prior knowledge in order to fit reasonably with observation data. In this case, this issue is modeled as combinatorial (sub)-optimization issues. In both cases, common properties to all solutions are considered as a robust information about the system, as they are independent from the choice of a single solution to the satisfiability problem (in the case of existing solutions) or to the optimization problem (in the case of required corrections to the prior knowledge) [6].

Solving these computational issues requires addressing NP-hard qualitative (non-temporal) issues. We have developed a long-term collaboration with Potsdam University in order to use a logical paradigm named Answer Set Programming [36], [41] to solve these constraint satisfiability and combinatorial optimization issues. Applied on transcriptomic or cancer networks, our methods identified which regions of a large-scale network shall be corrected [1], and proposed robust corrections [5]. See Fig. 1 for details. The results obtained so far suggest that this approach is compatible with efficiency, scale and expressivity needed by biological systems. Our goal is now to provide formal models of queries on biological networks with the focus of integrating dynamical information as explicit logical constraints in the modeling process. This would definitely introduce such logical paradigms as a powerful approach to build and query reconstructed biological systems, in complement to discriminative approaches. Notice that our main issue is in the field of knowledge representation. More precisely, we do not wish to develop new solvers or grounders, a self-contained computational issue which is addressed by specialized teams such as our collaborator team in Potsdam. Our goal is rather to investigate whether progresses in the field of constraint logical programming, shown by the performance of ASP-solvers in several recent competitions, are now sufficient to address the complexity of constraint-satisfiability and combinatorial optimization issues explored in systems biology.

By exploring the complete space of models, our approach typically produces numerous candidate models compatible with the observations. We began investigating to what extent domain knowledge can further refine the analysis of the set of models by identifying classes of similar models, or by selecting the models that best fit biological knowledge. We anticipate that this will be particularly relevant when studying non-model species for which little is known but valuable information from other species can be transposed or adapted. These efforts consist in developing reasoning methods based on ontologies as formal representation of symbolic knowledge. We use Semantic Web tools such as SPARQL for querying and integrating large sources of external knowledge, and measures of semantic similarity and particularity for analyzing data.

Using these technologies requires to revisit and reformulate constraint-satisfiability problems at hand in order both to decrease the search space size in the grounding part of the process and to improve the exploration of this search space in the solving part of the process. Concretely, getting logical encoding for the optimization problems forces to clarify the roles and dependencies between parameters involved in the problem. This opens
the way to a refinement approach based on a fine investigation of the space of hypotheses in order to make it smaller and gain in the understanding of the system.

Figure 1.

An example of reasoning process in order to identify which expression of non-observed nodes (white nodes) are fixed by partial observations and rules derived from the system dynamics. The ASP-based logical approach is flexible enough to model in a single framework network characteristics (products, interactions, partial information on signs of regulations and observations) and static rules about the effects of the dynamics of the system. Extensions of this framework include the exhaustive search for system repair or more constrained dynamical rules. [6], [5]

Step 1. Regulation knowledge is represented as a signed oriented graph. Edge colors stand for regulatory effects (red/green→ inhibition or activation). Vertex colors stand for gene expression data (red/green→ under or over-expression).

Step 2. Integrity constraints on the whole colored graph come from the necessity to find a consistent explanation of the link between regulation and expression.

Step 3. The model allows both the prediction of values (e.g. for fnr in the figure) and the detection of contradictions (e.g. the expression level of rpmC is inconsistent with the regulation in the graph).

3.2. Probabilistic and symbolic dynamics

We work on new techniques to emphasize biological strategies that must occur to reproduce quantitative measurements in order to predict the quantitative response of a system at a larger-scale. Our framework mixes mechanistic and probabilistic modeling [2]. The system is modeled by an Event Transition Graph, that is, a
Markovian qualitative description of its dynamics together with quantitative laws which describe the effect of the dynamic transitions over higher scale quantitative measurements. Then, a few time-series quantitative measurements are provided. Following an ergodic assumption and average case analysis properties, we know that a multiplicative accumulation law on a Markov chain asymptotically follows a log-normal law with explicit parameters [40]. This property can be derived into constraints to describe the set of admissible weighted Markov chains whose asymptotic behavior agrees with the quantitative measures at hand. A precise study of this constrained space via local search optimization emphasizes the most important discrete events that must occur to reproduce the information at hand. These methods have been validated on the *E. coli* regulatory network benchmark. See Figure 2 for illustration. We now plan to apply these techniques to reduced networks representing the main pathways and actors automatically generated from the integrative methods developed in the former section. This requires to improve the range of dynamics that can be modeled by these techniques, as well as the efficiency and scalability of the local search algorithms.

3.3. Grammatical inference and highly expressive structures

Our main field of expertise in machine learning concerns grammatical models with a strong expertise in finite state automata learning. By introducing a similar fragment merging heuristic approach, we have proposed an algorithm that learns successfully automata modeling families of (non homologous) functional families of proteins [4], leading to a tool named Protomata-learner. As an example, this tools allows us to properly model the multi-domain function of the protein family TNF, which is impossible with other existing probabilistic-based approach (see Fig. 3). It was also applied to model families of proteins in cyanobacteria [3]. Our future goal is to demonstrate the relevance of formal language theory by addressing the question of enzyme prediction, from their genomic or protein sequences, aiming at better sensitivity and specificity. As enzyme-substrate interactions are very specific central relations for integrated genome/metabolome studies and are characterized by faint signatures, we shall rely on models for active sites involved in cellular regulation or catalysis mechanisms. This requires to build models gathering both structural and sequence information in order to describe (potentially nested or crossing) long-term dependencies such as contacts of amino-acids that are far in the sequence but close in the 3D protein folding. We wish to extend our expertise towards inferring Context-Free Grammars including the topological information coming from the structural characterization of active sites.

Using context-free grammars instead of regular patterns increases the complexity of parsing issues. Indeed, efficient parsing tools have been developed to identify patterns within genomes but most of them are restricted to simple regular patterns. Definite Clause Grammars (DCG), a particular form of logical context-free grammars have been used in various works to model DNA sequence features [42]. An extended formalism, String Variable Grammars (SVGs), introduces variables that can be associated to a string during a pattern search (see Fig. 4) [46], [45]. This increases the expressivity of the formalism towards midly context sensitive grammars. Thus, those grammars model not only DNA/RNA sequence features but also structural features such as repeats, palindromes, stem/loop or pseudo-knots. We have designed a tool, STAN (suffix-tree analyser) which makes it possible to search for a subset of SVG patterns in full chromosome sequences [9]. This tool was used for the recognition of transposable elements in *Arabidopsis thaliana* [47] or for the design of a CRISPR database [10]. See Figure 4 for illustration. Our goal is to extend the framework of STAN. Generally, a suitable language for the search of particular components in languages has to meet several needs : expressing existing structures in a compact way, using existing databases of motifs, helping the description of interacting components. In other words, the difficulty is to find a good tradeoff between expressivity and complexity to allow the specification of realistic models at genome scale. In this direction, we are working on Logol, a language and framework based on a systematic introduction of constraints on string variables.
Figure 2.

Prediction of the quantitative behavior of a system using average-case analysis of dynamical systems and identification of key interactions [2].

Input data are provided by a qualitative description of the system dynamics at the transcription level (interaction graph) and 3 concentration measurements of the fis protein (population scale). The method computes an Event-Transition Graph. Interaction frequencies required to predict the population scale behavior as the asymptotic behavior of an accumulation multiplicative law over a Markov chain. Estimation by local searches in the space of Markov chains consistent with the observed dynamics and whose asymptotic behavior is consistent with quantitative observations at the population scale. Edge thickness reflects their sensitivity in the search space. It allows to predict the Cya protein concentration (red curve) which fits with observations. Additionally, literature evidences that high sensitivity ETG transitions correspond to key interaction in E. Coli response to nutritional stress.
Figure 3. **Protomata Learner workflow.** Starting from a set of protein sequences, a partial local alignment is computed and an automaton is inferred, which can be considered as a signature of the family of proteins. This allows searching for new members of the family [3]. Adding further information about the specific properties of proteins within the family allows to exhibit a refined classification.
Figure 4. A typical RNA structure such as the pseudo-knot can be graphical modeling of a pseudo-knot based on the expressivity of String Variable Grammars used in the Logol framework. Combined with parsers, this leads to composite pattern identification such as CRISPR [43].
3. Research Program

3.1. Introduction

Embedded systems are not new, but their pervasive introduction in ordinary-life objects (cars, telephone, home appliances) brought a new focus onto design methods for such systems. New development techniques are needed to meet the challenges of productivity in a competitive environment. Synchronous languages rely on the synchronous hypothesis, which lets computations and behaviors be divided into a discrete sequence of computation steps which are equivalently called reactions or execution instants. In itself this assumption is rather common in practical embedded system design.

But the synchronous hypothesis adds to this the fact that, inside each instant, the behavioral propagation is well-behaved (causal), so that the status of every signal or variable is established and defined prior to being tested or used. This criterion, which may be seen at first as an isolated technical requirement, is in fact the key point of the approach. It ensures strong semantic soundness by allowing universally recognized mathematical models to be used as supporting foundations. In turn, these models give access to a large corpus of efficient optimization, compilation, and formal verification techniques. The synchronous hypothesis also guarantees full equivalence between various levels of representation, thereby avoiding altogether the pitfalls of non-synthesizability of other similar formalisms. In that sense the synchronous hypothesis is, in our view, a major contribution to the goal of model-based design of embedded systems.

Declarative formalisms implementing the synchronous hypothesis can be cast into a model of computation consisting of a domain of traces or behaviors and of semi-lattice structure that renders the synchronous hypothesis using a timing equivalence relation: clock equivalence. Asynchrony can be superimposed on this model by considering a flow equivalence relation as well as heterogeneous systems by parameterizing composition with arbitrary timing relations.

3.2. Polychronous model of computation

We consider a partially-ordered set of tags t to denote instants seen as symbolic periods in time during which a reaction takes place. The relation $t_1 \leq t_2$ says that t_1 occurs before t_2. Its minimum is noted 0. A totally ordered set of tags C is called a chain and denotes the sampling of a possibly continuous or dense signal over a countable series of causally related tags. Events, signals, behaviors and processes are defined as follows:

- an event is a pair consisting of a value v and a tag t,
- a signal is a function from a chain of tags to a set of values,
- a behavior is a function from a set of names x to signals,
- a process is a set of behaviors that have the same domain.

In the remainder, we write $\text{tags}(s)$ for the tags of a signal s, $\text{vars}(b)$ for the domain of b, $b|_X$ for the projection of a behavior b on a set of names X and b/X for its complementary.

Figure 1 depicts a behavior b over three signals named x, y and z. Two frames depict timing domains formalized by chains of tags. Signals x and y belong to the same timing domain: x is a down-sampling of y. Its events are synchronous to odd occurrences of events along y and share the same tags, e.g. t_1. Even tags of y, e.g. t_2, are ordered along its chain, e.g. $t_1 < t_2$, but absent from x. Signal z belongs to a different timing domain. Its tags are not ordered with respect to the chain of y.
Figure 1. Behavior b over three signals x, y and z in two clock domains
Figure 2. Synchronous composition of \(b \in p \) and \(c \in q \)
3.2.1. Composition

Synchronous composition is noted \(p \mid q \) and defined by the union \(b \cup c \) of all behaviors \(b \) (from \(p \)) and \(c \) (from \(q \)) which hold the same values at the same tags \(b|_I = c|_I \) for all signal \(x \in I = \text{vars}(b) \cap \text{vars}(c) \) they share. Figure 2 depicts the synchronous composition (Figure 2, right) of the behaviors \(b \) (Figure 2, left) and the behavior \(c \) (Figure 2, middle). The signal \(y \), shared by \(b \) and \(c \), carries the same tags and the same values in both \(b \) and \(c \). Hence, \(b \cup c \) defines the synchronous composition of \(b \) and \(c \).

3.2.2. Scheduling

A scheduling structure is defined to schedule the occurrence of events along signals during an instant \(t \). A scheduling \(\to \) is a pre-order relation between dates \(x_t \) where \(t \) represents the time and \(x \) the location of the event. Figure 3 depicts such a relation superimposed to the signals \(x \) and \(y \) of Figure 1. The relation \(y_{t_1} \to x_{t_1} \), for instance, requires \(y \) to be calculated before \(x \) at the instant \(t_1 \). Naturally, scheduling is contained in time: if \(t < t' \) then \(x_t \to b x_{t'} \) for any \(x \) and \(b \) and if \(x_t \to b x_{t'} \) then \(\neg(t' < t) \).

3.2.3. Structure

A synchronous structure is a semi-lattice representing behaviors with the same timing structure. We interpret a signal as an elastic with ordered marks on it (tags). If the elastic is stretched, marks remain in the same relative (partial) order but have more space (time) between each other. The same holds for a set of elastics: a behavior. Stretching is a partial-order relation which defines clock equivalence. Formally, a behavior \(c \) is a stretching of \(b \) of same domain, written \(b \leq c \), iff there exists an increasing bijection on tags \(f \) that preserves the timing and scheduling relations. If so, \(c \) is the image of \(b \) by \(f \). Last, the behaviors \(b \) and \(c \) are said clock-equivalent, written \(b \sim c \), iff there exists a behavior \(d \) s.t. \(d \leq b \) and \(d \leq c \).

3.3. A declarative design language

Signal [32], [45], [39] is a declarative design language using the polychronous model of computation. A process \(P \) is an infinite loop that consists of the synchronous composition \(P \mid Q \) of simultaneous equations \(x := y f z \) over signals named \(x, y, z \). The restriction of a signal name \(x \) to a process \(P \) is noted \(P/x \).

\[
P, Q := x := y f z \mid P/x \mid P \mid Q
\]

Equations \(x := y f z \) denote processes that define timing relations between input and output signals. There are four primitive combinators in Signal:

- **delay** \(x := y \lhd \text{init } v \), initially defines the signal \(x \) by the value \(v \) and then by the previous value of the signal \(y \). The signal \(y \) and its delayed copy \(x := y \lhd \text{init } v \) are synchronous: they share the same set of tags \(t_1, t_2, \ldots \). Initially, at \(t_1 \), the signal \(x \) takes the declared value \(v \) and then, at tag \(t_n \), the value of \(y \) at tag \(t_{n-1} \).

\[
y \lhd\lhd t_1, v_1 \lhd\lhd t_2, v_2 \lhd\lhd t_3, v_3 \ldots
\]

\[
y \text{init } v \lhd t_1, v \lhd t_2, v_2 \lhd t_3, v_3 \ldots
\]

- **sampling** \(x := y \text{when } z \), defines \(x \) by \(y \) when \(z \) is true (and both \(y \) and \(z \) are present); \(x \) is present with the value \(v_2 \) at \(t_2 \) only if \(y \) is present with \(v_2 \) at \(t_2 \) and if \(z \) is present at \(t_2 \) with the value true. When this is the case, one needs to schedule the calculation of \(y \) and \(z \) before \(x \), as depicted by \(y_{t_2} \to x_{t_2} \leftarrow z_{t_2} \).
Figure 3. Scheduling relations between simultaneous events
Figure 4. Relating synchronous behaviors by stretching.
• merge $x := y \text{ default } z$, defines x by y when y is present and by z otherwise. If y is absent and z present with v_1 at t_1 then x holds (t_1, v_1). If y is present (at t_2 or t_3) then x holds its value whether z is present (at t_2) or not (at t_3).

![Diagram of signal processing]

The structuring element of a Signal specification is a process. A process accepts input signals originating from possibly different clock domains to produce output signals when needed. This allows, for instance, to specify a counter where the inputs tick and reset and the output value have independent clocks. The body of counter consists of one equation that defines the output signal value. Upon the event reset, it sets the count to 0. Otherwise, upon a tick event, it increments the count by referring to the previous value of value and adding 1 to it. Otherwise, if the count is solicited in the context of the counter process (meaning that its clock is active), the counter just returns the previous count without having to obtain a value from the tick and reset signals.

```plaintext
process counter = (? event tick, reset; ! integer value;)
           (| value := (0 when reset)
              default (value$ init 0 + 1 when tick)
              default (value$ init 0)
           |);
```

A Signal process is a structuring element akin to a hierarchical block diagram. A process may structurally contain sub-processes. A process is a generic structuring element that can be specialized to the timing context of its call. For instance, the definition of a synchronized counter starting from the previous specification consists of its refinement with synchronization. The input tick and reset clocks expected by the process counter are sampled from the boolean input signals tick and reset by using the when tick and when reset expressions. The count is then synchronized to the inputs by the equation reset ^= tick ^= value.

```plaintext
process synccounter = (? boolean tick, reset; ! integer value;)
           (| value := counter (when tick, when reset)
              reset ^= tick ^= value
           |);
```

3.4. Compilation of Signal

Sequential code generation starting from a Signal specification starts with an analysis of its implicit synchronization and scheduling relations. This analysis yields the control and dataflow graphs that define the class of sequentially executable specifications and allow to generate code.

3.4.1. Synchronization and scheduling specifications

In Signal, the clock `x of a signal x denotes the set of instants at which the signal x is present. It is represented by a signal that is true when x is present and that is absent otherwise. Clock expressions represent control. The clock when x (resp. when not x) represents the time tags at which a boolean signal x is present and true (resp. false).
The empty clock is written $\hat{0}$ and clock expressions e combined using conjunction, disjunction and symmetric difference. Clock equations E are Signal processes: the equation $e\hat{=}e'$ synchronizes the clocks e and e' while $e\hat{<}e'$ specifies the containment of e in e'. Explicit scheduling relations $x \rightarrow y$ when e allow to schedule the calculation of signals (e.g. x after y at the clock e).

$$
e ::= \hat{x} | \text{when } x | \text{not } x | e\hat{+}e' | e\hat{-}e' | e\hat{*}e' | \hat{0} \\
E ::= () | e\hat{=}e' | e\hat{<}e' | x \rightarrow y \text{ when } e | E | E' | E/x$$

3.4.2. Synchronization and scheduling analysis

A Signal process P corresponds to a system of clock and scheduling relations E that denotes its timing structure. It can be defined by induction on the structure of P using the inference system $P : E$ of Figure 5.

```plaintext
x := y$ init v : \hat{x} = \hat{y} \\
x := y \text{ when } z : \hat{x} = \hat{y} \text{ when } z | y \rightarrow x \text{ when } \hat{x} \\
x := y \text{ default } z : \hat{x} = \hat{y} \text{ default } \hat{z} | y \rightarrow x \text{ when } \hat{y} | z \rightarrow x \text{ when } \hat{z} \hat{-} \hat{y}
```

Figure 5. Clock inference system

3.4.3. Hierarchization

The clock and scheduling relations E of a process P define the control flow and dataflow graphs that hold all necessary information to compile a Signal specification upon satisfaction of the property of endochrony. A process is said endochronous iff, given a set of input signals and flow-equivalent input behaviors, it has the capability to reconstruct a unique synchronous behavior up to clock-equivalence: the input and output signals are ordered in clock-equivalent ways.

```
../../projets/espresso/IMG/tree.png
```

Figure 6. Hierarchization of clocks
To determine the order \(x \preceq y \) in which signals are processed during the period of a reaction, clock relations \(E \) play an essential role. The process of determining this order is called hierarchization and consists of an insertion algorithm which hooks elementary control flow graphs (in the form of if-then-else structures) one to the others. Figure 6, right, let \(h_3 \) be a clock computed using \(h_1 \) and \(h_2 \). Let \(h \) be the head of a tree from which \(h_1 \) and \(h_2 \) are computed (an if-then-else), \(h_3 \) is computed after \(h_1 \) and \(h_2 \) and placed under \(h \) [27].
3. Research Program

3.1. Estimation of fluid characteristic features from images

The measurement of fluid representative features such as vector fields, potential functions or vorticity maps, enables physicists to have better understanding of experimental or geophysical fluid flows. Such measurements date back to one century and more but became an intensive subject of research since the emergence of correlation techniques [35] to track fluid movements in pairs of images of a particles laden fluid or by the way of clouds photometric pattern identification in meteorological images. In computer vision, the estimation of the projection of the apparent motion of a 3D scene onto the image plane, referred to in the literature as optical-flow, is an intensive subject of researches since the 80’s and the seminal work of B. Horn and B. Schunk [48]. Unlike to dense optical flow estimators, the former approach provides techniques that supply only sparse velocity fields. These methods have demonstrated to be robust and to provide accurate measurements for flows seeded with particles. These restrictions and their inherent discrete local nature limit too much their use and prevent any evolutions of these techniques towards the devising of methods supplying physically consistent results and small scale velocity measurements. It does not authorize also the use of scalar images exploited in numerous situations to visualize flows (image showing the diffusion of a scalar such as dye, pollutant, light index refraction, fluorecein,...). At the opposite, variational techniques enable in a well-established mathematical framework to estimate spatially continuous velocity fields, which should allow more properly to go towards the measurement of smaller motion scales. As these methods are defined through PDE’s systems they allow quite naturally including as constraints kinematic properties or dynamic laws governing the observed fluid flows. Besides, within this framework it is also much easier to define characteristic features estimation procedures on the basis of physically grounded data model that describes the relation linking the observed luminance function and some state variables of the observed flow.

A substantial progress has been done in this direction with the design of dedicated dense estimation techniques to estimate dense fluid motion fields[4], [10], the setting up of tomographic techniques to carry out 3D velocity measurements [42], the inclusion of physical constraints to infer 3D motions in atmospheric satellite images [8] or the design of dynamically consistent velocity measurements to provide coherent motion fields from time resolved fluid flow image sequences [9]. These progresses have brought further accuracy and an improved spatial resolution for a variety of applications ranging from experimental fluid mechanics to geophysical sciences. For a detailed review of these approaches see [6].

We believe that such approaches must be first enlarged to the wide variety of imaging modalities enabling the observation of fluid flows. This covers for instance, the systematic study of motion estimation for the different channels of meteorological satellites, but also of other experimental imaging tools such as Shadowgraphs, Background oriented Schlieren, Schlieren [55], diffusive scalar images, fluid holography [56], or Laser Induced Fluorimetry. All these modalities offer the possibility to visualize time resolved sequences of the flow. The velocity measurement processes available to date for that kind of images suffer from a lack of physical relevancy to keep up with the increasing amount of fine and coherent information provided by the images. We think, and have begun to prove, that a significant step forward can be taken by providing new tools based on sound data models and adapted regularization functional, both built on physical grounds.

Additional difficulties arise when considering the necessity to go towards 3D measurements and 3D volumetric reconstruction of the observed flows (e.g., the tomographic PIV paradigm). First, unlike in the standard setup, the 2D images captured by the experimentalists only provide a partial information about the structure of the particles transported by the fluid. As a matter of fact, inverse problems have to be solved in order to recover this crucial information. Secondly, another issue stands in the increase of the underdetermination of the problem, that is the important decrease of the ratio between the number of observations and the total number of unknowns. In particular, this point asks for methodologies able to gather and exploit observations
captured at different time instants. Finally, the dimensions of the problem (that is, the number of unknown) dramatically increase with the transition from the 2D to the 3D paradigm. This leads, as a by-product, to a significant amplification of the computational burden and requires the conception of efficient algorithms, exhibiting a reasonable scaling with the problem dimensions.

The first problem can be addressed by resorting to state-of-the-art methodologies pertaining to sparse representations. These techniques consist in identifying the solution of an inverse problem with the most “zero” components which, in the case of the tomographic PIV, turns out to be a physically relevant option. Hence, the design of sparse representation algorithms and the study of their conditions of success constitute an important research topic of the group. On the other hand, we believe that the dramatic increase of the under-determination appearing in the 3D setup can be tackled by combining tomographic reconstruction of several planar views of the flow with data assimilation techniques. These techniques enable to couple a dynamical model with incomplete observations of the flow. Each applicative situation under concern defines its proper required scale of measurement and a scale for the dynamical model. For instance, for control or monitoring purposes, very rapid techniques are needed whereas for analysis purpose the priority is to get accurate measurements of the smallest motion scales as possible. These two extreme cases imply the use of different models but also of different algorithmic techniques. Recursive techniques and large scale representation of the flow are relevant for the first case whereas batch techniques relying on the whole set of data available and models refined down to small scales have to be used for the latter case.

The question of the scale of the velocity measurement is also an open question that must be studied carefully. Actually, no scale considerations are taken into account in the estimation schemes. It is more or less abusively assumed that the measurements supplied have a subpixel accuracy, which is obviously erroneous due to implicit smoothness assumptions made either in correlation techniques or in variational estimation techniques. We are convinced that to go towards the measurement of the smaller scales of the flow it is necessary to introduce some turbulence or uncertainty subgrid modeling within the estimation scheme and also to devise alternative regularization schemes that fit well with phenomenological statistical descriptions of turbulence described by the velocity increments moments. As a by product such schemes should offer the possibility to have a direct characterization, from image sequences, of the flow turbulent regions in term of vortex tube, area of pure straining, or vortex sheet. This philosophy should allow us to elaborate methods enabling the estimation of relevant characteristics of the turbulence like second-order structure functions, mean energy dissipation rate, turbulent viscosity coefficient, or dissipative scales.

We are planning to study these questions for a wide variety of application domains ranging from experimental fluid mechanics to geophysical sciences. We believe there are specific needs in different application domains that require clearly identified developments and modeling. Let us for instance mention meteorology and oceanography which both involve very specific dynamical modeling but also micro-fluidic applications or bio-fluid applications that are ruled by other types of dynamics.

3.2. Data assimilation and Tracking of characteristic fluid features

Real flows have an extent of complexity, even in carefully controlled experimental conditions, which prevents any set of sensors from providing enough information to describe them completely. Even with the highest levels of accuracy, space-time coverage and grid refinement, there will always remain at least a lack of resolution and some missing input about the actual boundary conditions. This is obviously true for the complex flows encountered in industrial and natural conditions, but remains also an obstacle even for standard academic flows thoroughly investigated in research conditions.

This unavoidable deficiency of the experimental techniques is nevertheless more and more compensated by numerical simulations. The parallel advances in sensors, acquisition, treatment and computer efficiency allow the mixing of experimental and simulated data produced at compatible scales in space and time. The inclusion of dynamical models as constraints of the data analysis process brings a guaranty of coherency based on fundamental equations known to correctly represent the dynamics of the flow (e.g. Navier Stokes equations) [3], [5].
Conversely, the injection of experimental data into simulations ensures some fitting of the model with reality. When used with the correct level of expertise to calibrate the models at the relevant scales, regarding data validity and the targeted representation scale, this collaboration represents a powerful tool for the analysis and reconstruction of the flows. Automated back and forth sequencing between data integration and calculations have to be elaborated for the different types of flows with a correct adjustment of the observed and modeled scales. This appears more and more feasible when considering the sensitivity, the space resolution and above all the time resolution that the imaging sensors are reaching now.

That becomes particularly true, for instance, for satellite imaging, the foreseeable advances of which will soon give the right complement to the progresses in atmospheric and ocean modeling to dramatically improve the analysis and predictions of physical states and streams for weather and environment monitoring. In that domain, there is a particular interest in being able to combine image data, models and in-situ measurements, as high densities of data supplied by meteorological stations are available only for limited regions of the world, typically Europe and USA, while Africa, or the south hemisphere lack of refined and frequent in situ measurements. Moreover, we believe that such an approach can favor great advances in the analysis and prediction of complex flows interactions like those encountered in sea-atmosphere interactions, dispersion of polluting agents in seas and rivers, etc. In other domains we believe that image data and dynamical models coupling may bring interesting solutions for the analysis of complex phenomena which involve multi-phasic flows, interaction between fluid and structures, and the general case of flows with complex unknown border conditions.

The coupling approach can be extended outside the fluidics domain to complex dynamics that can be modeled either from physical laws or from learning strategies based on the observation of previous events [1]. This concerns for instance forest combustion, the analysis of the biosphere evolution, the observation and prediction of the melting of pack ice, the evolution of sea ice, the study of the consequences of human activity like deforestation, city growing, landscape and farming evolution, etc. All these phenomena are nowadays rapidly evolving due to global warming. The measurement of their evolution is a major societal interest for analysis purpose or risk monitoring and prevention.

To enable data and models coupling to achieve its potential, some difficulties have to be tackled. It is in particular important to outline the fact that the coupling of dynamical models and image data are far from being straightforward. The first difficulty is related to the space of the physical model. As a matter of fact, physical models describe generally the phenomenon evolution in a 3D Cartesian space whereas images provide generally only 2D tomographic views or projections of the 3D space on the 2D image plane. Furthermore, these views are sometimes incomplete because of partial occlusions and the relations between the model state variables and the image intensity function are otherwise often intricate and only partially known. Besides, the dynamical model and the image data may be related to spatio-temporal scale spaces of very different natures which increases the complexity of an eventual multiscale coupling. As a consequence of these difficulties, it is necessary generally to define simpler dynamical models in order to assimilate image data. This redefinition can be done for instance on an uncertainty analysis basis, through physical considerations or by the way of data based empirical specifications. Such modeling comes to define inexact evolution laws and leads to the handling of stochastic dynamical models. The necessity to make use and define sound approximate models, the dimension of the state variables of interest and the complex relations linking the state variables and the intensity function, together with the potential applications described earlier constitute very stimulating issues for the design of efficient data-model coupling techniques based on image sequences.

On top of the problems mentioned above, the models exploited in assimilation techniques often suffer from some uncertainties on the parameters which define them. Hence, a new emerging field of research focuses on the characterization of the set of achievable solutions as a function of these uncertainties. This sort of characterization indeed turns out to be crucial for the relevant analysis of any simulation outputs or the correct interpretation of operational forecasting schemes. In this context, the tools provided by the Bayesian theory play a crucial role since they encompass a variety of methodologies to model and process uncertainty. As a consequence, the Bayesian paradigm has already been present in many contributions of the Fluminance group.
This wide theme of research problems is a central topic in our research group. As a matter of fact, such a coupling may rely on adequate instantaneous motion descriptors extracted with the help of the techniques studied in the first research axis of the FLUMINANCE group. In the same time, this coupling is also essential with respect to visual flow control studies explored in the third theme. The coupling between a dynamics and data, designated in the literature as a Data Assimilation issue, can be either conducted with optimal control techniques [50], [51] or through stochastic filtering approaches [43], [46]. These two frameworks have their own advantages and deficiencies. We rely indifferently on both approaches.

3.3. Optimization and control of fluid flows with visual servoing

Fluid flow control is a recent and active research domain. A significant part of the work carried out so far in that field has been dedicated to the control of the transition from laminarity to turbulence. Delaying, accelerating or modifying this transition is of great economical interest for industrial applications. For instance, it has been shown that for an aircraft, a drag reduction can be obtained while enhancing the lift, leading consequently to limit fuel consumption. In contrast, in other application domains such as industrial chemistry, turbulence phenomena are encouraged to improve heat exchange, increase the mixing of chemical components and enhance chemical reactions. Similarly, in military and civilians applications where combustion is involved, the control of mixing by means of turbulence handling rouses a great interest, for example to limit infra-red signatures of fighter aircraft.

Flow control can be achieved in two different ways: passive or active control. Passive control provides a permanent action on a system. Most often it consists in optimizing shapes or in choosing suitable surfacing (see for example [39] where longitudinal riblets are used to reduce the drag caused by turbulence). The main problem with such an approach is that the control is, of course, inoperative when the system changes. Conversely, in active control the action is time varying and adapted to the current system’s state. This approach requires an external energy to act on the system through actuators enabling a forcing on the flow through for instance blowing and suction actions [58], [45]. A closed-loop problem can be formulated as an optimal control issue where a control law minimizing an objective cost function (minimization of the drag, minimization of the actuators power, etc.) must be applied to the actuators [36]. Most of the works of the literature indeed comes back to open-loop control approaches [53], [47], [52] or to forcing approaches [44] with control laws acting without any feedback information on the flow actual state. In order for these methods to be operative, the model used to derive the control law must describe as accurately as possible the flow and all the eventual perturbations of the surrounding environment, which is very unlikely in real situations. In addition, as such approaches rely on a perfect model, a high computational costs is usually required. This inescapable pitfall has motivated a strong interest on model reduction. Their key advantage being that they can be specified empirically from the data and represent quite accurately, with only few modes, complex flows’ dynamics. This motivates an important research axis in the Fluminance group.

Another important part of the works conducted in Fluminance concerns the study of closed-loop approaches, for which the convergence of the system to a target state is ensured even in the presence of errors (related either to the flow model, the actuators, or the sensors) [41]. However, designing a closed loop control law requires the use of sensors that are both non-intrusive, accurate and adapted to the time and spacial scales of the phenomenon to monitor. Such sensors are unfortunately hardly available in the context of flow control. The only sensors currently used are wall sensors located in a limited set of measurement points [37], [40]. The difficulty is then to reconstruct the entire state of the controlled system from a model based only on the few measurements available on the walls [49]. Instead of relying on sparse measurements, we propose to use denser features estimated from images. With the capabilities of up-to-date imaging sensors, we can expect an improved reconstruction of the flow (both in space and time) enabling the design of efficient image based control laws. This formulation is referred to as visual servoing control scheme.
Visual servoing is a widely used technique for robot control. It consists in using data provided by a vision sensor for controlling the motions of a robot [38]. This technique, historically embedded in the larger domain of sensor-based control [54], can be properly used to control complex robotic systems or, as we showed it recently, flows [57].

Classically, to achieve a visual servoing task, a set of visual features, s, has to be selected from visual measurements, m, extracted from a current image. A control law is then designed so that these visual features reach a desired value, s^*, related to the target state of the system. The control principle consists in regulating to zero the error vector: $e = s - s^*$. To build the control law, the knowledge of the so-called interaction matrix L_u is usually required. This matrix links the time variation of s to the signal command u. However, computing this matrix in the context of flow control is far more complex than in the case of robot control as flows are associated to chaotic nonlinear systems living in infinite dimensional spaces. As such, it is possible to formalize the model through a Galerkin projection in terms of an ODE system for which classical control laws can be applied. It is also possible to express the system with finite difference approximations and to use discrete time control algorithms amenable to modern micro-controllers. Alternatively, one may develop control methods directly on the infinite dimensional system and then finally discretize the resulting process for implementation purpose. Each approach has its own advantages and drawbacks. For the first two, known control methods can be used at the expense of a great sensibility to space discretization. The last one is less sensitive to discretization errors but more difficult to set up. These practical issues and their related theoretical difficulties make this study a very interesting field of research.
GENSCALE Project-Team

3. Research Program

3.1. Introduction

To tackle challenges brought by the processing of huge amount of genomic data, the main strategy of GenScale is to merge the following computer science expertise:

- Data structure;
- Combinatorial optimization;
- Parallelism.

3.2. Data structure

To face the genomic data tsunami, the design of efficient algorithms involves the optimization of memory footprints. A key point is the design of innovative data structures to represent large genomic datasets into computer memories. Today’s limitations come from their size, their construction time, or their centralized (sequential) access. Random accesses to large data structures poorly exploit the sophisticated processor cache memory system. New data structures including compression techniques, probabilistic filters, approximate string matching, or techniques to improve spatial/temporal memory access are developed [3].

3.3. Combinatorial optimization

For wide genome analysis, Next Generation Sequencing (NGS) data processing or protein structure applications, the main issue concerns the exploration of sets of data by time-consuming algorithms, with the aim of identifying solutions that are optimal in a predefined sense. In this context, speeding up such algorithms requires acting on many directions: (1) optimizing the search with efficient heuristics and advanced combinatorial optimization techniques [2], [5] or (2) targeting biological sub-problems to reduce the search space [7], [9]. Designing algorithms with adapted heuristics, and able to scale from protein (a few hundreds of amino acids) to full genome (millions to billions of nucleotides) is one of the competitive challenges addressed in the GenScale project.

3.4. Parallelism

The traditional parallelization approach, which consists in moving from a sequential to a parallel code, must be transformed into a direct design and implementation of high performance parallel software. All levels of parallelism (vector instructions, multi-cores, many-cores, clusters, grid, clouds) need to be exploited in order to extract the maximum computing power from current hardware resources [6], [8], [1]. An important specificity of GenScale is to systematically adopt a design approach where all levels of parallelism are potentially considered.
HYBRID Project-Team

3. Research Program

3.1. Research Program

The scientific objective of Hybrid team is to improve 3D interaction of one or multiple users with virtual environments, by making full use of physical engagement of the body, and by incorporating the mental states by means of brain-computer interfaces. We intend to improve each component of this framework individually, but we also want to improve the subsequent combinations of these components.

Figure 1. 3D hybrid interaction loop between one or multiple users and a virtual reality system. Top (in blue) three steps of 3D interaction with a virtual environment: (1) interaction technique, (2) simulation of the virtual environment, (3) sensory feedbacks. Bottom (in red) different cases of interaction: (1) body-based, (2) mind-based, (3) hybrid, and (4) collaborative 3D interaction.

The "hybrid" 3D interaction loop between one or multiple users and a virtual environment is depicted on Figure 1. Different kinds of 3D interaction situations are distinguished (red arrows, bottom): 1) body-based interaction, 2) mind-based interaction, 3) hybrid and/or 4) collaborative interaction (with at least two users). In each case, three scientific challenges arise which correspond to the three successive steps of the 3D interaction loop (blue squares, top): 1) the 3D interaction technique, 2) the modeling and simulation of the 3D scenario, and 3) the design of appropriate sensory feedback.

The 3D interaction loop involves various possible inputs from the user(s) and different kinds of output (or sensory feedback) from the simulated environment. Each user can involve his/her body and mind by means of corporal and/or brain-computer interfaces. A hybrid 3D interaction technique (1) mixes mental and motor inputs and translates them into a command for the virtual environment. The real-time simulation (2) of the virtual environment is taking into account these commands to change and update the state of the virtual world.
and virtual objects. The state changes are sent back to the user and perceived by means of different sensory feedbacks (e.g., visual, haptic and/or auditory) (3). The sensory feedbacks are closing the 3D interaction loop. Other users can also interact with the virtual environment using the same procedure, and can eventually “collaborate” by means of “collaborative interactive techniques” (4).

This description is stressing three major challenges which correspond to three mandatory steps when designing 3D interaction with virtual environments:

- **3D interaction techniques**: This first step consists in translating the actions or intentions of the user (inputs) into an explicit command for the virtual environment. In virtual reality, the classical tasks that require such kinds of user command were early categorized in four [57]: navigating the virtual world, selecting a virtual object, manipulating it, or controlling the application (entering text, activating options, etc). The addition of a third dimension, the use of stereoscopic rendering and the use of advanced VR interfaces make however inappropriate many techniques that proved efficient in 2D, and make it necessary to design specific interaction techniques and adapted tools. This challenge is here renewed by the various kinds of 3D interaction which are targeted. In our case, we consider various cases, with motor and/or cerebral inputs, and potentially multiple users.

- **Modeling and simulation of complex 3D scenarios**: This second step corresponds to the update of the state of the virtual environment, in real-time, in response to all the potential commands or actions sent by the user. The complexity of the data and phenomena involved in 3D scenarios is constantly increasing. It corresponds for instance to the multiple states of the entities present in the simulation (rigid, articulated, deformable, fluids, which can constitute both the user’s virtual body and the different manipulated objects), and the multiple physical phenomena implied by natural human interactions (squeezing, breaking, melting, etc). The challenge consists here in modeling and simulating these complex 3D scenarios and meeting, at the same time, two strong constraints of virtual reality systems: performance (real-time and interactivity) and genericity (e.g., multi-resolution, multi-modal, multi-platform, etc).

- **Immersive sensory feedbacks**: This third step corresponds to the display of the multiple sensory feedbacks (output) coming from the various VR interfaces. These feedbacks enable the user to perceive the changes occurring in the virtual environment. They are closing the 3D interaction loop, making the user immersed, and potentially generating a subsequent feeling of presence. Among the various VR interfaces which have been developed so far we can stress two kinds of sensory feedback: visual feedback (3D stereoscopic images using projection-based systems such as CAVE systems or Head Mounted Displays); and haptic feedback (related to the sense of touch and to tactile or force-feedback devices). The Hybrid team has a strong expertise in haptic feedback, and in the design of haptic and “pseudo-haptic” rendering [58]. Note that a major trend in the community, which is strongly supported by the Hybrid team, relates to a “perception-based” approach, which aims at designing sensory feedbacks which are well in line with human perceptual capacities.

These three scientific challenges are addressed differently according to the context and the user inputs involved. We propose to consider three different contexts, which correspond to the three different research axes of the Hybrid research team, namely: 1) body-based interaction (motor input only), 2) mind-based interaction (cerebral input only), and then 3) hybrid and collaborative interaction (i.e., the mixing of body and brain inputs from one or multiple users).

3.2. Research Axes

The scientific activity of Hybrid team follows three main axes of research:

- **Body-based interaction in virtual reality**: Our first research axis concerns the design of immersive and effective “body-based” 3D interactions, i.e., relying on a physical engagement of the user’s body. This trend is probably the most popular one in VR research at the moment. Most VR setups make use of tracking systems which measure specific positions or actions of the user in order to interact with a virtual environment. However, in recent years, novel options have emerged for measuring “full-body” movements or other, even less conventional, inputs (e.g. body equilibrium). In this first
research axis we are thus concerned by the emergence of new kinds of “body-based interaction” with virtual environments. This implies the design of novel 3D user interfaces and novel 3D interactive techniques, novel simulation models and techniques, and novel sensory feedbacks for body-based interaction with virtual worlds. It involves real-time physical simulation of complex interactive phenomena, and the design of corresponding haptic and pseudo-haptic feedback.

- **Mind-based interaction in virtual reality.** Our second research axis concerns the design of immersive and effective “mind-based” 3D interactions in Virtual Reality. Mind-based interaction with virtual environments is making use of Brain-Computer Interface technology. This technology corresponds to the direct use of brain signals to send “mental commands” to an automated system such as a robot, a prosthesis, or a virtual environment. BCI is a rapidly growing area of research and several impressive prototypes are already available. However, the emergence of such a novel user input is also calling for novel and dedicated 3D user interfaces. This implies to study the extension of the mental vocabulary available for 3D interaction with VE, then the design of specific 3D interaction techniques “driven by the mind” and, last, the design of immersive sensory feedbacks that could help improving the learning of brain control in VR.

- **Hybrid and collaborative 3D interaction.** Our third research axis intends to study the combination of motor and mental inputs in VR, for one or multiple users. This concerns the design of mixed systems, with potentially collaborative scenarios involving multiple users, and thus, multiple bodies and multiple brains sharing the same VE. This research axis therefore involves two interdependent topics: 1) collaborative virtual environments, and 2) hybrid interaction. It should end up with collaborative virtual environments with multiple users, and shared systems with body and mind inputs.
3. Research Program

3.1. Introduction

Hycomes has been created as a new team of the Rennes - Bretagne Atlantique Inria research center in July 2013. The team builds upon the most promising results of the S4\(^2\) team-project and of the SYNCHRONICS\(^3\) large scale initiative. Two topics in embedded system design are covered: Hybrid modeling and contract-based design.

3.2. Hybrid Systems Modeling

Systems industries today make extensive use of mathematical modeling tools to design computer controlled physical systems. This class of tools addresses the modeling of physical systems with models that are simpler than usual scientific computing problems by using only Ordinary Differential Equations (ODE) and Difference Equations but not Partial Differential Equations (PDE). This family of tools first emerged in the 1980’s with SystemBuild by MatrixX (now distributed by National Instruments) followed soon by Simulink by Mathworks, with an impressive subsequent development.

In the early 90’s control scientists from the University of Lund (Sweden) realized that the above approach did not support component based modeling of physical systems with reuse \(^4\). For instance, it was not easy to draw an electrical or hydraulic circuit by assembling component models of the various devices. The development of the Omola language by Hilding Elmqvist was a first attempt to bridge this gap by supporting some form of Differential Algebraic Equations (DAE) in the models. Modelica quickly emerged from this first attempt and became in the 2000’s a major international concerted effort with the Modelica Consortium \(^5\). A wider set of tools, both industrial and academic, now exists in this segment \(^6\). In the EDA sector, VHDL-AMS was developed as a standard \(^12\).

Despite these tools are now widely used by a number of engineers, they raise a number of technical difficulties. The meaning of some programs, their mathematical semantics, can be tainted with uncertainty. A main source of difficulty lies in the failure to properly handle the discrete and the continuous parts of systems, and their interaction. How the propagation of mode changes and resets should be handled? How to avoid artifacts due to the use of a global ODE solver causing unwanted coupling between seemingly non interacting subsystems? Also, the mixed use of an equational style for the continuous dynamics with an imperative style for the mode changes and resets is a source of difficulty when handling parallel composition. It is therefore not uncommon that tools return complex warnings for programs with many different suggested hints for fixing them. Yet, these “pathological” programs can still be executed, if wanted so, giving surprising results — See for instance the Simulink examples in [6], [9], [15].

Indeed this area suffers from the same difficulties that led to the development of the theory of synchronous languages as an effort to fix obscure compilation schemes for discrete time equation based languages in the 1980’s. Our vision is that hybrid systems modeling tools deserve similar efforts in theory as synchronous languages did for the programming of embedded systems.

\(^2\)http://www.inria.fr/equipes/s4
\(^3\)http://synchronics.wiki.irisa.fr/
\(^4\)http://www.lccc.lth.se/media/LCCC2012/WorkshopSeptember/slides/Astrom.pdf
\(^5\)https://www.modelica.org/
\(^6\)SimScape by Mathworks, Amesim by LMS International, now Siemens PLM, and more.
3.3. Contract-Based Design, Interfaces Theories, and Requirements Engineering

System companies such as automotive and aeronautic companies are facing significant difficulties due to the exponentially raising complexity of their products coupled with increasingly tight demands on functionality, correctness, and time-to-market. The cost of being late to market or of imperfections in the products is staggering as witnessed by the recent recalls and delivery delays that many major car and airplane manufacturers had to bear in the recent years. The specific root causes of these design problems are complex and relate to a number of issues ranging from design processes and relationships with different departments of the same company and with suppliers, to incomplete requirement specification and testing.

We believe the most promising means to address the challenges in systems engineering is to employ structured and formal design methodologies that seamlessly and coherently combine the various viewpoints of the design space (behavior, space, time, energy, reliability, ...), that provide the appropriate abstractions to manage the inherent complexity, and that can provide correct-by-construction implementations. The following technology issues must be addressed when developing new approaches to the design of complex systems:

- The overall design flows for heterogeneous systems and the associated use of models across traditional boundaries are not well developed and understood. Relationships between different teams inside a same company, or between different stake-holders in the supplier chain, are not well supported by solid technical descriptions for the mutual obligations.

- System requirements capture and analysis is in large part a heuristic process, where the informal text and natural language-based techniques in use today are facing significant challenges. Formal requirements engineering is in its infancy: mathematical models, formal analysis techniques and links to system implementation must be developed.

- Dealing with variability, uncertainty, and life-cycle issues, such as extensibility of a product family, are not well-addressed using available systems engineering methodologies and tools.

The challenge is to address the entire process and not to consider only local solutions of methodology, tools, and models that ease part of the design.

Contract-based design has been proposed as a new approach to the system design problem that is rigorous and effective in dealing with the problems and challenges described before, and that, at the same time, does not require a radical change in the way industrial designers carry out their task as it cuts across design flows of different type. Indeed, contracts can be used almost everywhere and at nearly all stages of system design, from early requirements capture, to embedded computing infrastructure and detailed design involving circuits and other hardware. Contracts explicitly handle pairs of properties, respectively representing the assumptions on the environment and the guarantees of the system under these assumptions. Intuitively, a contract is a pair $C = (A, G)$ of assumptions and guarantees characterizing in a formal way 1) under which context the design is assumed to operate, and 2) what its obligations are. Assume/Guarantee reasoning has been known for a long time, and has been used mostly as verification mean for the design of software [44]. However, contract based design with explicit assumptions is a philosophy that should be followed all along the design, with all kinds of models, whenever necessary. Here, specifications are not limited to profiles, types, or taxonomy of data, but also describe the functions, performances of various kinds (time and energy), and reliability. This amounts to enrich a component's interface with, on one hand, formal specifications of the behavior of the environment in which the component may be instantiated and, on the other hand, of the expected behavior of the component itself. The consideration of rich interfaces is still in its infancy. So far, academic researchers have addressed the mathematics and algorithmics of interfaces theories and contract-based reasoning. To make them a technique of choice for system engineers, we must develop:

- Mathematical foundations for interfaces and requirements engineering that enable the design of frameworks and tools;

- A system engineering framework and associated methodologies and tool sets that focus on system requirements modeling, contract specification, and verification at multiple abstraction layers.
A detailed bibliography on contract and interface theories for embedded system design can be found in [4]. In a nutshell, contract and interface theories fall into two main categories:

Assume/guarantee contracts. By explicitly relying on the notions of assumptions and guarantees, A/G-contracts are intuitive, which makes them appealing for the engineer. In A/G-contracts, assumptions and guarantees are just properties regarding the behavior of a component and of its environment. The typical case is when these properties are formal languages or sets of traces, which includes the class of safety properties [37], [28], [43], [14], [29]. Contract theories were initially developed as specification formalisms able to refuse some inputs from the environment [35]. A/G-contracts were advocated by the SPEEDS project [16]. They were further experimented in the framework of the CESAR project [30], with the additional consideration of weak and strong assumptions. This is still a very active research topic, with several recent contributions dealing with the timed [20] and probabilistic [24], [25] viewpoints in system design, and even mixed-analog circuit design [45].

Automata theoretic interfaces. Interfaces combine assumptions and guarantees in a single, automata theoretic specification. Most interface theories are based on Lynch Input/Output Automata [42], [41]. Interface Automata [49], [48], [50], [26] focus primarily on parallel composition and compatibility: Two interfaces can be composed and are compatible if there is at least one environment where they can work together. The idea is that the resulting composition exposes as an interface the needed information to ensure that incompatible pairs of states cannot be reached. This can be achieved by using the possibility, for an Interface Automaton, to refuse selected inputs from the environment in a given state, which amounts to the implicit assumption that the environment will never produce any of the refused inputs, when the interface is in this state. Modal Interfaces [5] inherit from both Interface Automata and the originally unrelated notion of Modal Transition System [39], [13], [23], [38]. Modal Interfaces are strictly more expressive than Interface Automata by decoupling the I/O orientation of an event and its deontic modalities (mandatory, allowed or forbidden). Informally, a must transition is available in every component that realizes the modal interface, while a may transition needs not be. Research on interface theories is still very active. For instance, timed [51], [17], [19], [32], [31], [18], probabilistic [24], [33] and energy-aware [27] interface theories have been proposed recently.

Requirements Engineering is one of the major concerns in large systems industries today, particularly so in sectors where certification prevails [47]. DOORS files collecting requirements are poorly structured and cannot be considered a formal modeling framework today. They are nothing more than an informal documentation enriched with hyperlinks. As examples, medium size sub-systems may have a few thousands requirements and the Rafale fighter aircraft has above 250,000 of them. For the Boeing 787, requirements were not stable while subcontractors performed the development of the fly-by-wire subsystem.

We see Contract-Based Design and Interfaces Theories as innovative tools in support of Requirements Engineering. The Software Engineering community has extensively covered several aspects of Requirements Engineering, in particular:

- the development and use of large and rich ontologies; and
- the use of Model Driven Engineering technology for the structural aspects of requirements and resulting hyperlinks (to tests, documentation, PLM, architecture, and so on).

Behavioral models and properties, however, are not properly encompassed by the above approaches. This is the cause of a remaining gap between this phase of systems design and later phases where formal model based methods involving behavior have become prevalent—see the success of Matlab/Simulink/Scade technologies. We believe that our work on contract based design and interface theories is best suited to bridge this gap.

3.4. Background on non-standard analysis

Non-Standard analysis plays a central role in our research on hybrid systems modeling [3], [9], [10], [6]. The following text provides a brief summary of this theory and gives some hints on its usefulness in the context of hybrid systems modeling. This presentation is based on our paper [3], a chapter of Simon Bliudze’s PhD
3.4.1 Motivation and intuitive introduction

Non-standard numbers allowed us to reconsider the semantics of hybrid systems and propose a radical alternative to the super-dense time semantics developed by Edward Lee and his team as part of the Ptolemy II project, where cascades of successive instants can occur in zero time by using \(\mathbb{R}_+ \times \mathbb{N} \) as a time index. In the non-standard semantics, the time index is defined as a set \(\mathbb{T} = \{ n\partial \mid n \in {}^\star \mathbb{N} \} \), where \(\partial \) is an infinitesimal and \({}^\star \mathbb{N} \) is the set of non-standard integers is such that \(1/\mathbb{T} \) is dense in \(\mathbb{R}_+ \), making it “continuous”, and 2/ every \(t \in \mathbb{T} \) has a predecessor in \(\mathbb{T} \) and a successor in \(\mathbb{T} \), making it “discrete”. Although it is not effective from a computability point of view, the non-standard semantics provides a framework that is familiar to the computer scientist and at the same time efficient as a symbolic abstraction. This makes it an excellent candidate for the development of provably correct compilation schemes and type systems for hybrid systems modeling languages.

Non-standard analysis was proposed by Abraham Robinson in the 1960s to allow the explicit manipulation of “infinitesimals” in analysis [46], [34], [11]. Robinson’s approach is axiomatic; he proposes adding three new axioms to the basic Zermelo-Fraenkel (ZFC) framework. There has been much debate in the mathematical community as to whether it is worth considering non-standard analysis instead of staying with the traditional one. We do not enter this debate. The important thing for us is that non-standard analysis allows the use of the non-standard discretization of continuous dynamics “as if” it was operational.

Not surprisingly, such an idea is quite ancient. Iwasaki et al. [36] first proposed using non-standard analysis to discuss the nature of time in hybrid systems. Bliudze and Krob [22], [21] have also used non-standard analysis as a mathematical support for defining a system theory for hybrid systems. They discuss in detail the notion of “system” and investigate computability issues. The formalization they propose closely follows that of Turing machines, with a memory tape and a control mechanism.

The introduction to non-standard analysis in [21] is very pleasant and we take the liberty to borrow it. This presentation was originally due to Lindstrøm, see [40]. Its interest is that it does not require any fancy axiomatic material but only makes use of the axiom of choice — actually a weaker form of it. The proposed construction bears some resemblance to the construction of \(\mathbb{R} \) as the set of equivalence classes of Cauchy sequences in \(\mathbb{Q} \) modulo the equivalence relation \((u_n) \equiv (v_n) \) iff \(\lim_{n \to \infty} (u_n - v_n) = 0 \).

3.4.1 Motivation and intuitive introduction

We begin with an intuitive introduction to the construction of the non-standard reals. The goal is to augment \(\mathbb{R} \cup \{ \pm \infty \} \) by adding, to each \(x \) in the set, a set of elements that are “infinitesimally close” to it. We will call the resulting set \({}^*\mathbb{R} \). Another requirement is that all operations and relations defined on \(\mathbb{R} \) should extend to \({}^*\mathbb{R} \).

A first idea is to represent such additional numbers as convergent sequences of reals. For example, elements infinitesimally close to the real number zero are the sequences \(u_n = 1/n \), \(v_n = 1/\sqrt{n} \) and \(w_n = 1/n^2 \). Observe that the above three sequences can be ordered: \(v_n > u_n > w_n > 0 \) where 0 denotes the constant zero sequence. Of course, infinitely large elements (close to \(+\infty \)) can also be considered, e.g., sequences \(x_u = n, y_n = \sqrt{n} \), and \(z_n = n^2 \).

Unfortunately, this way of defining \({}^*\mathbb{R} \) does not yield a total order since two sequences converging to zero cannot always be compared: if \(u_n \) and \(u'_n \) are two such sequences, the three sets \(\{ n \mid u_n > u'_n \} \), \(\{ n \mid u_n = u'_n \} \), and \(\{ n \mid u_n < u'_n \} \) may even all be infinitely large. The beautiful idea of Lindstrøm is to enforce that exactly one of the above sets is important and the other two can be neglected. This is achieved by fixing once and for all a finitely additive positive measure \(\mu \) over the set \(\mathbb{N} \) of integers with the following properties:

1. \(\mu : 2^\mathbb{N} \rightarrow \{ 0, 1 \} \);
2. \(\mu(X) = 0 \) whenever \(X \) is finite;
3. \(\mu(\mathbb{N}) = 1 \).

The existence of such a measure is non trivial and is explained later.

thesis [21], and a recent presentation of non-standard analysis, not axiomatic in style, due to the mathematician Lindstrøm [40].
Now, once μ is fixed, one can compare any two sequences: for the above case, exactly one of the three sets must have μ-measure 1 and the others must have μ-measure 0. Thus, say that $u > u'$, $u = u'$, or $u < u'$, if $\mu(\{ n \mid u_n > u'_n \}) = 1$, $\mu(\{ n \mid u_n = u'_n \}) = 1$, or $\mu(\{ n \mid u_n < u'_n \}) = 1$, respectively. Indeed, the same trick works for many other relations and operations on non-standard real numbers, as we shall see. We now proceed with a more formal presentation.

3.4.2. Construction of non-standard domains

For I an arbitrary set, a filter \mathcal{F} over I is a family of subsets of I such that:

1. the empty set does not belong to \mathcal{F},
2. $P, Q \in \mathcal{F}$ implies $P \cap Q \in \mathcal{F}$, and
3. $P \in \mathcal{F}$ and $P \subseteq Q \subseteq I$ implies $Q \in \mathcal{F}$.

Consequently, \mathcal{F} cannot contain both a set P and its complement P^c. A filter that contains one of the two for any subset $P \subseteq I$ is called an *ultra-filter*. At this point we recall Zorn’s lemma, known to be equivalent to the axiom of choice:

Lemma 1 (Zorn’s lemma) Any partially ordered set (X, \leq) such that any chain in X possesses an upper bound has a maximal element.

A filter \mathcal{F} over I is an ultra-filter if and only if it is maximal with respect to set inclusion. By Zorn’s lemma, any filter \mathcal{F} over I can be extended to an ultra-filter over I. Now, if I is infinite, the family of sets $\mathcal{F} = \{ P \subseteq I \mid P^c$ is finite $\}$ is a free filter, meaning it contains no finite set. It can thus be extended to a free ultra-filter over I:

Lemma 2 Any infinite set has a free ultra-filter.

Every free ultra-filter \mathcal{F} over I uniquely defines, by setting $\mu(P) = 1$ if $P \in \mathcal{F}$ and otherwise 0, a finitely additive measure $^8\mu : 2^I \rightarrow \{0, 1\}$, which satisfies

$$\mu(I) = 1 \text{ and, if } P \text{ is finite, then } \mu(P) = 0.$$

Now, fix an infinite set I and a finitely additive measure μ over I as above. Let \mathbb{X} be a set and consider the Cartesian product $\mathbb{X}^I = (x_i)_{i \in I}$. Define $(x_i) \approx (x'_i)$ iff $\mu(\{ i \in I \mid x_i \neq x'_i \}) = 0$. Relation \approx is an equivalence relation whose equivalence classes are denoted by $[x_i]$ and we define

$$^*\mathbb{X} = \mathbb{X}^I / \approx \quad (1)$$

\mathbb{X} is naturally embedded into $^*\mathbb{X}$ by mapping every $x \in \mathbb{X}$ to the constant tuple such that $x_i = x$ for every $i \in I$. Any algebraic structure over \mathbb{X} (group, ring, field) carries over to $^*\mathbb{X}$ by almost point-wise extension. In particular, if $[x_i] \neq 0$, meaning that $\mu(\{ i \mid x_i = 0 \}) = 0$ we can define its inverse $[x_i]^{-1}$ by taking $y_i = x_i^{-1}$ if $x_i \neq 0$ and $y_i = 0$ otherwise. This construction yields $\mu(\{ i \mid y_i x_i = 1 \}) = 1$, whence $[y_i] [x_i] = 1$ in $^*\mathbb{X}$. The existence of an inverse for any non-zero element of a ring is indeed stated by the formula: $\forall x (x = 0 \lor \exists y (xy = 1))$. More generally:

Lemma 3 (Transfer Principle) Every first order formula is true over $^*\mathbb{X}$ iff it is true over \mathbb{X}.

Observe that, as a consequence, μ cannot be sigma-additive (in contrast to probability measures or Radon measures) in that it is not true that $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$ holds for an infinite denumerable sequence A_n of pairwise disjoint subsets of \mathbb{N}.
3.4.3. Non-standard reals and integers

The above general construction can simply be applied to \(\mathbb{X} = \mathbb{R} \) and \(I = \mathbb{N} \). The result is denoted \(\ast \mathbb{R} \); it is a field according to the transfer principle. By the same principle, \(\ast \mathbb{R} \) is totally ordered by \([u_n] \leq [v_n]\) iff \(\mu\{n \mid u_n > v_n\} = 0 \). We claim that, for any finite \([x_n] \in \ast \mathbb{R} \), there exists a unique \(st([x_n]) \), call it the standard part of \([x_n] \), such that

\[
st([x_n]) \in \mathbb{R} \quad \text{and} \quad st([x_n]) \approx [x_n].
\]

(2)

To prove this, let \(x = \sup\{u \in \mathbb{R} \mid [u] \leq [x_n]\} \), where \([u]\) denotes the constant sequence equal to \(u \). Since \([x_n]\) is finite, \(x \) exists and we only need to show that \([x_n] - x\) is infinitesimal. If not, then there exists \(y \in \mathbb{R}, \ y > 0 \) such that \(y < [x - [x_n]] \), that is, either \(x < [x_n] - [y] \) or \(x > [x_n] + [y] \), which both contradict the definition of \(x \). The uniqueness of \(x \) is clear, thus we can define \(st([x_n]) = x \). Infinite non-standard reals have no standard part in \(\mathbb{R} \).

It is also of interest to apply the general construction (1) to \(\mathbb{X} = I = \mathbb{N} \), which results in the set \(\ast \mathbb{N} \) of non-standard natural numbers. The non-standard set \(\ast \mathbb{N} \) differs from \(\mathbb{N} \) by the addition of infinite natural numbers, which are equivalence classes of sequences of integers whose essential limit is \(+\infty \).

3.4.4. Integrals and differential equations: the standardization principle

Any sequence \((g_n)\) of functions \(g_n : \mathbb{R} \rightarrow \mathbb{R} \) point-wise defines a function \([g_n] : \ast \mathbb{R} \rightarrow \ast \mathbb{R} \) by setting

\[
[g_n]([x_n]) = [g_n(x_n)]
\]

(3)

A function \(\ast \mathbb{R} \rightarrow \ast \mathbb{R} \) so obtained is called internal. Properties of and operations on ordinary functions extend point-wise to internal functions of \(\ast \mathbb{R} \rightarrow \ast \mathbb{R} \). The non-standard version of \(g : \mathbb{R} \rightarrow \mathbb{R} \) is the internal function \(\ast g = \{g, g, g, \cdots\} \). The same notions apply to sets. An internal set \(A = [A_n] \) is called hyperfinite if \(\mu\{n \mid A_n \ \text{finite}\} = 1 \); the cardinal\(|A|\) of \(A \) is defined as \(|[A_n]|\).

Now, consider an infinite number \(N \in \ast \mathbb{N} \) and the set

\[
T = \left\{ 0, \frac{1}{N}, \frac{2}{N}, \frac{3}{N}, \cdots, \frac{N-1}{N}, 1 \right\}
\]

(4)

By definition, if \(N = [N_n] \), then \(T = [T_n] \) with

\[
T_n = \left\{ 0, \frac{1}{N_n}, \frac{2}{N_n}, \frac{3}{N_n}, \cdots, \frac{N_n-1}{N_n}, 1 \right\}
\]

hence \(|T| = |[T_n]| = [N_n + 1] = N + 1 \). Now, consider an internal function \(g = [g_n] \) and a hyperfinite set \(A = [A_n] \). The sum of \(g \) over \(A \) can be defined:

\[
\sum_{a \in A} g(a) = \text{def} \left[\sum_{a \in A_n} g_n(a) \right]
\]

If \(t \) is as above, and \(f : \mathbb{R} \rightarrow \mathbb{R} \) is a standard function, we obtain

\[
\sum_{t \in T} \frac{1}{N} f(t) = \left[\sum_{t \in T_n} \frac{1}{N_n} f(t_n) \right]
\]

(5)
Now, f continuous implies \(\sum_{t \in T_n} \frac{1}{N} f(t_n) \to \int_0^1 f(t) \, dt \), so,

\[
\int_0^1 f(t) \, dt = st \left(\sum_{t \in T_n} \frac{1}{N} f(t) \right)
\]

(6)

Under the same assumptions, for any $t \in [0, 1]$,

\[
\int_0^t f(u) \, du = st \left(\sum_{u \in T, u \leq t} \frac{1}{N} f(t) \right)
\]

(7)

Now, consider the following ODE:

\[
\dot{x} = f(x, t), \quad x(0) = x_0
\]

(8)

Assume (8) possesses a solution $[0, 1] \ni t \mapsto x(t)$ such that the function $t \mapsto f(x(t), t)$ is continuous. Rewriting (8) in its equivalent integral form $x(t) = x_0 + \int_0^t f(x(u), u) \, du$ and using (7) yields

\[
x(t) = st \left(x_0 + \sum_{u \in T, u \leq t} \frac{1}{N} f(x(u), u) \right)
\]

(9)

The substitution in (9) of $\partial = 1/N$, which is positive and infinitesimal, yields $T = \{t_n = n\partial \mid n = 0, \cdots, N\}$. The expression in parentheses on the right hand side of (9) is the piecewise-constant right-continuous function $^*x(t), t \in [0, 1]$ such that, for $n = 1, \cdots, N$:

\[
^*x(t_n) = ^*x(t_{n-1}) + \partial \times ^*f(^*x(t_{n-1}), t_{n-1})
\]

\[
^*x(t_0) = x_0
\]

(10)

By (9), the solutions x, of ODE (8), and *x, as defined by recurrence (10), are related by $x = st(^*x)$. Formula (10) can be seen as a non-standard operational semantics for ODE (8); one which depends on the choice of infinitesimal step parameter ∂. Property (9), though, expresses the idea that all these non-standard semantics are equivalent from the standard viewpoint regardless of the choice made for ∂. This fact is referred to as the standardization principle.
3. Research Program

3.1. Introduction

In this section, the main features for the key monitoring issues, namely identification, detection, and diagnostics, are provided, and a particular instantiation relevant for vibration monitoring is described.

It should be stressed that the foundations for identification, detection, and diagnostics, are fairly general, if not generic. Handling high order linear dynamical systems, in connection with finite elements models, which call for using subspace-based methods, is specific to vibration-based SHM. Actually, one particular feature of model-based sensor information data processing as exercised in I4S, is the combined use of black-box or semi-physical models together with physical ones. Black-box and semi-physical models are, for example, eigenstructure parameterizations of linear MIMO systems, of interest for modal analysis and vibration-based SHM. Such models are intended to be identifiable. However, due to the large model orders that need to be considered, the issue of model order selection is really a challenge. Traditional advanced techniques from statistics such as the various forms of Akaike criteria (AIC, BIC, MDL, ...) do not work at all. This gives rise to new research activities specific to handling high order models.

Our approach to monitoring assumes that a model of the monitored system is available. This is a reasonable assumption, especially within the SHM areas. The main feature of our monitoring method is its intrinsic ability to the early warning of small deviations of a system with respect to a reference (safe) behavior under usual operating conditions, namely without any artificial excitation or other external action. Such a normal behavior is summarized in a reference parameter vector θ_0, for example a collection of modes and mode-shapes.

3.2. Identification

The behavior of the monitored continuous system is assumed to be described by a parametric model $\{P_\theta, \theta \in \Theta\}$, where the distribution of the observations $(Z_0, ..., Z_N)$ is characterized by the parameter vector $\theta \in \Theta$. An estimating function, for example of the form:

$$K_N(\theta) = 1/N \sum_{k=0}^{N} K(\theta, Z_k)$$

is such that $E_{\theta}[K_N(\theta)] = 0$ for all $\theta \in \Theta$. In many situations, K is the gradient of a function to be minimized: squared prediction error, log-likelihood (up to a sign), ... For performing model identification on the basis of observations $(Z_0, ..., Z_N)$, an estimate of the unknown parameter is then $[31]:$

$$\hat{\theta}_N = \arg \{ \theta \in \Theta : K_N(\theta) = 0 \}$$

In many applications, such an approach must be improved in the following directions:

- **Recursive estimation**: the ability to compute $\hat{\theta}_{N+1}$ simply from $\hat{\theta}_N$;
- **Adaptive estimation**: the ability to track the true parameter θ^* when it is time-varying.

3.3. Detection

Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which we have extended and adapted [5], [4], [2]. It is worth noticing that these investigations of ours have been initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite to many monitoring approaches, our method does not require repeated identification for each newly collected data sample.
For achieving the early detection of small deviations with respect to the normal behavior, our approach generates, on the basis of the reference parameter vector θ_0 and a new data record, indicators which automatically perform:

- The early detection of a slight mismatch between the model and the data;
- A preliminary diagnostics and localization of the deviation(s);
- The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the estimation error in the reference model and the measurement noise level.

These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some applications, such as flutter monitoring.

As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero under normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity to small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our approach is to:

- Design the residual basically as a parameter estimating function,
- Evaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptotically Gaussian and reflects the presence of a deviation in the parameter vector through a change in its own mean vector, which switches from zero in the reference situation to a non-zero value.

This is actually a strong result, which transforms any detection problem concerning a parameterized stochastic process into the problem of monitoring the mean of a Gaussian vector.

The behavior of the monitored system is again assumed to be described by a parametric model $\{P_\theta, \theta \in \Theta\}$, and the safe behavior of the process is assumed to correspond to the parameter value θ_0. This parameter often results from a preliminary identification based on reference data, as in module 3.2.

Given a new N-size sample of sensors data, the following question is addressed: Does the new sample still correspond to the nominal model P_{θ_0}? One manner to address this generally difficult question is the following. The asymptotic local approach consists in deciding between the nominal hypothesis and a close alternative hypothesis, namely:

$$(\text{Safe}) \ H_0 : \theta = \theta_0 \quad \text{and} \quad (\text{Damaged}) \ H_1 : \theta = \theta_0 + \eta/\sqrt{N} \quad (11)$$

where η is an unknown but fixed change vector. A residual is generated under the form:

$$\zeta_N = 1/\sqrt{N} \sum_{k=0}^N K(\theta_0, Z_k) = \sqrt{N} \mathcal{K}_N(\theta_0) \quad (12)$$

If the matrix $\mathcal{J}_N = -E_{\theta_0}[\mathcal{K}_N'(\theta_0)]$ converges towards a limit \mathcal{J}, then the central limit theorem shows [30] that the residual is asymptotically Gaussian:

$$\zeta_N \xrightarrow{\mathcal{N}} \mathcal{N}(0, \Sigma) \text{ under } P_{\theta_0}, \quad \mathcal{N}(\mathcal{J}_\eta, \Sigma) \text{ under } P_{\theta_0 + \eta/\sqrt{N}}, \quad (13)$$

where the asymptotic covariance matrix Σ can be estimated, and manifests the deviation in the parameter vector by a change in its own mean value. Then, deciding between $\eta = 0$ and $\eta \neq 0$ amounts to compute the following χ^2-test, provided that \mathcal{J} is full rank and Σ is invertible:

$$\chi^2 = \zeta^T F^{-1} \zeta \succeq \lambda \quad (14)$$
where
\[
\zeta \triangleq \bar{\vartheta}^T \Sigma^{-1} \zeta_N \quad \text{and} \quad F \triangleq \bar{\vartheta}^T \Sigma^{-1} \bar{\vartheta}
\] (15)

With this approach, it is possible to decide, with a quantifiable error level, if a residual value is significantly different from zero, for assessing whether a fault/damage has occurred. It should be stressed that the residual and the sensitivity and covariance matrices $\bar{\vartheta}$ and Σ can be evaluated (or estimated) for the nominal model. In particular, it is not necessary to re-identify the model, and the sensitivity and covariance matrices can be pre-computed off-line.

3.4. Diagnostics

A further monitoring step, often called fault isolation, consists in determining which (subsets of) components of the parameter vector θ have been affected by the change. Solutions for that are now described. How this relates to diagnostics is addressed afterwards.

The question: which (subsets of) components of θ have changed ?, can be addressed using either nuisance parameters elimination methods or a multiple hypotheses testing approach [29].

In most SHM applications, a complex physical system, characterized by a generally non identifiable parameter vector Φ has to be monitored using a simple (black-box) model characterized by an identifiable parameter vector θ. A typical example is the vibration monitoring problem for which complex finite elements models are often available but not identifiable, whereas the small number of existing sensors calls for identifying only simplified input-output (black-box) representations. In such a situation, two different diagnosis problems may arise, namely diagnosis in terms of the black-box parameter θ and diagnosis in terms of the parameter vector Φ of the underlying physical model.

The isolation methods sketched above are possible solutions to the former. Our approach to the latter diagnosis problem is basically a detection approach again, and not a (generally ill-posed) inverse problem estimation approach [3]. The basic idea is to note that the physical sensitivity matrix writes $\bar{\vartheta} \Phi \theta$, where $\bar{\vartheta} \Phi \theta$ is the Jacobian matrix at Φ_0 of the application $\Phi \mapsto \theta(\Phi)$, and to use the sensitivity test for the components of the parameter vector Φ. Typically this results in the following type of directional test:

\[
\chi^2_\Phi = \zeta^T \Sigma^{-1} \bar{\vartheta} \Phi \theta (\bar{\vartheta}^T \Phi \theta \Sigma^{-1} \bar{\vartheta} \Phi \theta)^{-1} \bar{\vartheta}^T \Phi \theta \Sigma^{-1} \zeta \gtrless \lambda .
\] (16)

It should be clear that the selection of a particular parameterization Φ for the physical model may have a non negligible influence on such type of tests, according to the numerical conditioning of the Jacobian matrices $\bar{\vartheta} \Phi \theta$.

As a summary, the machinery in modules 3.2, 3.3 and 3.4 provides us with a generic framework for designing monitoring algorithms for continuous structures, machines and processes. This approach assumes that a model of the monitored system is available. This is a reasonable assumption within the field of applications since most mechanical processes rely on physical principles which write in terms of equations, providing us with models. These important modeling and parameterization issues are among the questions we intend to investigate within our research program.

The key issue to be addressed within each parametric model class is the residual generation, or equivalently the choice of the parameter estimating function.

3.5. Subspace-based identification and detection
For reasons closely related to the vibrations monitoring applications, we have been investigating subspace-based methods, for both the identification and the monitoring of the eigenstructure \((\lambda, \phi_\lambda)\) of the state transition matrix \(F\) of a linear dynamical state-space system:

\[
\begin{align*}
X_{k+1} &= F X_k + V_{k+1}, \\
Y_k &= H X_k,
\end{align*}
\] (17)

namely the \((\lambda, \varphi_\lambda)\) defined by:

\[
\det (F - \lambda I) = 0, \quad (F - \lambda I) \varphi_\lambda = 0, \quad \varphi_\lambda \Delta H \varphi_\lambda
\] (18)

The (canonical) parameter vector in that case is:

\[
\theta \Delta \begin{pmatrix}
\Lambda \\
\text{vec} \Phi
\end{pmatrix}
\] (19)

where \(\Lambda\) is the vector whose elements are the eigenvalues \(\lambda\), \(\Phi\) is the matrix whose columns are the \(\varphi_\lambda\)'s, and \(\text{vec}\) is the column stacking operator.

Subspace-based methods is the generic name for linear systems identification algorithms based on either time domain measurements or output covariance matrices, in which different subspaces of Gaussian random vectors play a key role [32]. A contribution of ours, minor but extremely fruitful, has been to write the output-only covariance-driven subspace identification method under a form that involves a parameter estimating function, from which we define a residual adapted to vibration monitoring [1]. This is explained next.

3.5.1. Covariance-driven subspace identification.

Let \(R_i \Delta E (Y_k Y_{k-i}^T)\) and:

\[
\mathcal{H}_{p+1,q} \Delta \begin{pmatrix}
R_0 & R_1 & \cdots & R_{q-1} \\
R_1 & R_2 & \cdots & R_q \\
\vdots & \vdots & \ddots & \vdots \\
R_p & R_{p+1} & \cdots & R_{p+q-1}
\end{pmatrix} \Delta \text{Hank} (R_i)
\] (20)

be the output covariance and Hankel matrices, respectively; and: \(G \Delta E (X_k Y_k^T)\). Direct computations of the \(R_i\)'s from the equations (10) lead to the well known key factorizations:

\[
R_i = H F^i G
\]

\[
\mathcal{H}_{p+1,q} = \mathcal{O}_{p+1}(H, F) \mathcal{C}_q(F, G)
\] (21)

where:

\[
\mathcal{O}_{p+1}(H, F) \Delta \begin{pmatrix}
H \\
HF \\
\vdots \\
HF^p
\end{pmatrix}
\]

and \(\mathcal{C}_q(F, G) \Delta (G F G \cdots F^{q-1} G)\)
are the observability and controllability matrices, respectively. The observation matrix \(H \) is then found in the first block-row of the observability matrix \(O \). The state-transition matrix \(F \) is obtained from the shift invariance property of \(O \). The eigenstructure \((\lambda, \phi_\lambda)\) then results from (11).

Since the actual model order is generally not known, this procedure is run with increasing model orders.

3.5.2. Model parameter characterization.

Choosing the eigenvectors of matrix \(F \) as a basis for the state space of model (10) yields the following representation of the observability matrix:

\[
O_{p+1}(\theta) = \begin{pmatrix}
\Phi \\
\Phi \Delta \\
\vdots \\
\Phi \Delta^p
\end{pmatrix}
\]

(23)

where \(\Delta \triangleq \text{diag}(\Lambda) \), and \(\Lambda \) and \(\Phi \) are as in (12). Whether a nominal parameter \(\theta_0 \) fits a given output covariance sequence \((R_j)_j\) is characterized by [1]:

\[
O_{p+1}(\theta_0) \quad \text{and} \quad \mathcal{H}_{p+1,q} \quad \text{have the same left kernel space}. \quad (24)
\]

This property can be checked as follows. From the nominal \(\theta_0 \), compute \(O_{p+1}(\theta_0) \) using (16), and perform e.g. a singular value decomposition (SVD) of \(O_{p+1}(\theta_0) \) for extracting a matrix \(U \) such that:

\[
U^T U = I_s \quad \text{and} \quad U^T O_{p+1}(\theta_0) = 0 \quad (25)
\]

Matrix \(U \) is not unique (two such matrices relate through a post-multiplication with an orthonormal matrix), but can be regarded as a function of \(\theta_0 \). Then the characterization writes:

\[
U(\theta_0)^T \mathcal{H}_{p+1,q} = 0 \quad (26)
\]

3.5.3. Residual associated with subspace identification.

Assume now that a reference \(\theta_0 \) and a new sample \(Y_1, \cdots, Y_N \) are available. For checking whether the data agree with \(\theta_0 \), the idea is to compute the empirical Hankel matrix \(\mathcal{H}_{p+1,q} \):

\[
\mathcal{H}_{p+1,q} \triangleq \text{Hank} \left(\tilde{R}_i \right) , \quad \tilde{R}_i \triangleq \frac{1}{N-i} \sum_{k=i+1}^{N} Y_k Y_k^T
\]

(27)

and to define the residual vector:

\[
\zeta_N(\theta_0) \triangleq \sqrt{N} \text{ vec} \left(U(\theta_0)^T \mathcal{H}_{p+1,q} \right)
\]

(28)

Let \(\theta \) be the actual parameter value for the system which generated the new data sample, and \(E_\theta \) be the expectation when the actual system parameter is \(\theta \). From (19), we know that \(\zeta_N(\theta_0) \) has zero mean when no change occurs in \(\theta \), and nonzero mean if a change occurs. Thus \(\zeta_N(\theta_0) \) plays the role of a residual.

It is our experience that this residual has highly interesting properties, both for damage detection [1] and localization [3], and for flutter monitoring [8].
3.5.4. Other uses of the key factorizations.

Factorization (3.5.1) is the key for a characterization of the canonical parameter vector \(\theta \) in (12), and for deriving the residual. Factorization (14) is also the key for:

- Proving consistency and robustness results [6];
- Designing an extension of covariance-driven subspace identification algorithm adapted to the presence and fusion of non-simultaneously recorded multiple sensors setups [7];
- Proving the consistency and robustness of this extension [9];
- Designing various forms of input-output covariance-driven subspace identification algorithms adapted to the presence of both known inputs and unknown excitations [10].

3.5.5. Research program

The research will first focus on the extension and implementation of current techniques as developed in I4S and IFSTTAR. Before doing any temperature rejection on large scale structures as planned, we need to develop good and accurate models of thermal fields. We also need to develop robust and efficient versions of our algorithms, mainly the subspace algorithms before envisioning linking them with physical models. Briefly, we need to mature our statistical toolset as well as our physical modeling before mixing them together later on.

3.5.5.1. Direct vibration modeling under temperature changes

This task builds upon what has been achieved in the CONSTRUCTIF project, where a simple formulation of the temperature effect has been exhibited, based on relatively simple assumptions. The next step is to generalize this modeling to a realistic large structure under complex thermal changes. Practically, temperature and resulting structural prestress and pre strains of thermal origin are not uniform and civil structures are complex. This leads to a fully 3D temperature field, not just a single value. Inertia effects also forbid a trivial prediction of the temperature based on current sensor outputs while ignoring past data. On the other side, the temperature is seen as a nuisance. That implies that any damage detection procedure has first to correct the temperature effect prior to any detection.

Modeling vibrations of structures under thermal prestress does and will play an important role in the static correction of kinematic measurements, in health monitoring methods based on vibration analysis as well as in durability and in the active or semi-active control of civil structures that by nature are operated under changing environmental conditions. As a matter of fact, using temperature and dynamic models the project aims at correcting the current vibration state from induced temperature effects, such that damage detection algorithms rely on a comparison of this thermally corrected current vibration state with a reference state computed or measured at a reference temperature. This approach is expected to cure damage detection algorithms from the environmental variations.

I4S will explore various ways of implementing this concept, notably within the FUI SIPRIS project.

3.5.5.2. Damage localization algorithms (in the case of localized damages such as cracks)

During the CONSTRUCTIF project, both feasibility and efficiency of some damage detection and localization algorithms were proved. Those methods are based on the tight coupling of statistical algorithms with finite element models. It has been shown that effective localization of some damaged elements was possible, and this was validated on a numerical simulated bridge deck model. Still, this approach has to be validated on real structures.

On the other side, new localization algorithms are currently investigated such as the one developed conjointly with University of Boston and tested within the framework of FP7 ISMS project. These algorithms will be implemented and tested on the PEGASE platform as well as all our toolset.

When possible, link with temperature rejection will be done along the lines of what has been achieved in the CONSTRUCTIF project.
3.5.5.3. Uncertainty quantification for system identification algorithms

Some emphasis will be put on expressing confidence intervals for system identification. It is a primary goal to take into account the uncertainty within the identification procedure, using either identification algorithms derivations or damage detection principles. Such algorithms are critical for both civil and aeronautical structures monitoring. It has been shown that confidence intervals for estimation parameters can theoretically be related to the damage detection techniques and should be computed as a function of the Fisher information matrix associated to the damage detection test. Based on those assumptions, it should be possible to obtain confidence intervals for a large class of estimates, from damping to finite elements models. Uncertainty considerations are also deeply investigated in collaboration with Dassault Aviation in Mellinger PhD thesis or with Northeastern University, Boston, within Gallegos PhD thesis.
3. Research Program

3.1. Structure-preserving numerical schemes for solving ordinary differential equations

Participants: François Castella, Philippe Chartier, Erwan Faou, Vilmart Gilles.

In many physical situations, the time-evolution of certain quantities may be written as a Cauchy problem for a differential equation of the form

\[
y'(t) = f(y(t)), \quad y(0) = y_0.
\]

(29)

For a given \(y_0\), the solution \(y(t)\) at time \(t\) is denoted \(\varphi_t(y_0)\). For fixed \(t\), \(\varphi_t\) becomes a function of \(y_0\) called the flow of (1). From this point of view, a numerical scheme with step size \(h\) for solving (1) may be regarded as an approximation \(\Phi_h\) of \(\varphi_h\). One of the main questions of geometric integration is whether intrinsic properties of \(\varphi_t\) may be passed on to \(\Phi_h\).

This question can be more specifically addressed in the following situations:

3.1.1. Reversible ODEs

The system (1) is said to be \(\rho\)-reversible if there exists an involutive linear map \(\rho\) such that

\[
\rho \circ \varphi_t = \varphi_t^{-1} \circ \rho = \varphi_{-t} \circ \rho. \tag{30}
\]

It is then natural to require that \(\Phi_h\) satisfies the same relation. If this is so, \(\Phi_h\) is said to be symmetric. Symmetric methods for reversible systems of ODEs are just as much important as symplectic methods for Hamiltonian systems and offer an interesting alternative to symplectic methods.

3.1.2. ODEs with an invariant manifold

The system (1) is said to have an invariant manifold \(g\) whenever

\[
M = \{ y \in \mathbb{R}^n; g(y) = 0 \}\tag{31}
\]

is kept globally invariant by \(\varphi_t\). In terms of derivatives and for sufficiently differentiable functions \(f\) and \(g\), this means that

\[
\forall y \in M, \ g'(y)f(y) = 0.
\]

As an example, we mention Lie-group equations, for which the manifold has an additional group structure. This could possibly be exploited for the space-discretisation. Numerical methods amenable to this sort of problems have been reviewed in a recent paper [62] and divided into two classes, according to whether they use \(g\) explicitly or through a projection step. In both cases, the numerical solution is forced to live on the manifold at the expense of some Newton’s iterations.
3.1.3. Hamiltonian systems

Hamiltonian problems are ordinary differential equations of the form:

\[
\begin{align*}
\dot{p}(t) &= -\nabla_q H(p(t), q(t)) \in \mathbb{R}^d \\
\dot{q}(t) &= \nabla_p H(p(t), q(t)) \in \mathbb{R}^d
\end{align*}
\] \hfill (32)

with some prescribed initial values \((p(0), q(0)) = (p_0, q_0)\) and for some scalar function \(H\), called the Hamiltonian. In this situation, \(H\) is an invariant of the problem. The evolution equation (4) can thus be regarded as a differential equation on the manifold

\[
\mathcal{M} = \{(p, q) \in \mathbb{R}^d \times \mathbb{R}^d; H(p, q) = H(p_0, q_0)\}.
\]

Besides the Hamiltonian function, there might exist other invariants for such systems: when there exist \(d\) invariants in involution, the system (4) is said to be integrable. Consider now the parallelogram \(P\) originating from the point \((p, q) \in \mathbb{R}^{2d}\) and spanned by the two vectors \(\xi \in \mathbb{R}^{2d}\) and \(\eta \in \mathbb{R}^{2d}\), and let \(\omega(\xi, \eta)\) be the sum of the oriented areas of the projections over the planes \((p_i, q_i)\) of \(P\),

\[
\omega(\xi, \eta) = \xi^T J \eta,
\]

where \(J\) is the canonical symplectic matrix

\[
J = \begin{bmatrix}
 0 & I_d \\
 -I_d & 0
\end{bmatrix}.
\]

A continuously differentiable map \(g\) from \(\mathbb{R}^{2d}\) to itself is called symplectic if it preserves \(\omega\), i.e. if

\[
\omega(g'(p, q)\xi, g'(p, q)\eta) = \omega(\xi, \eta).
\]

A fundamental property of Hamiltonian systems is that their exact flow is symplectic. Integrable Hamiltonian systems behave in a very remarkable way: as a matter of fact, their invariants persist under small perturbations, as shown in the celebrated theory of Kolmogorov, Arnold and Moser. This behavior motivates the introduction of symplectic numerical flows that share most of the properties of the exact flow. For practical simulations of Hamiltonian systems, symplectic methods possess an important advantage: the error-growth as a function of time is indeed linear, whereas it would typically be quadratic for non-symplectic methods.

3.1.4. Differential-algebraic equations

Whenever the number of differential equations is insufficient to determine the solution of the system, it may become necessary to solve the differential part and the constraint part altogether. Systems of this sort are called differential-algebraic systems. They can be classified according to their index, yet for the purpose of this expository section, it is enough to present the so-called index-2 systems

\[
\begin{align*}
\dot{y}(t) &= f(y(t), z(t)), \\
0 &= g(y(t)),
\end{align*}
\] \hfill (33)

where initial values \((y(0), z(0)) = (y_0, z_0)\) are given and assumed to be consistent with the constraint manifold. By constraint manifold, we imply the intersection of the manifold

\[
\mathcal{M}_1 = \{y \in \mathbb{R}^n, g(y) = 0\}
\]
and of the so-called hidden manifold

\[M_2 = \{(y, z) \in \mathbb{R}^n \times \mathbb{R}^m : \frac{\partial g}{\partial y}(y)f(y, z) = 0\}. \]

This manifold \(M = M_1 \cap M_2 \) is the manifold on which the exact solution \((y(t), z(t))\) of (5) lives.

There exists a whole set of schemes which provide a numerical approximation lying on \(M_1 \). Furthermore, this solution can be projected on the manifold \(M \) by standard projection techniques. However, it it worth mentioning that a projection destroys the symmetry of the underlying scheme, so that the construction of a symmetric numerical scheme preserving \(M \) requires a more sophisticated approach.

3.2. Highly-oscillatory systems

Participants: François Castella, Philippe Chartier, Nicolas Crouseilles, Erwan Faou, Florian Méhats, Mohammed Lemou, Gilles Vilmart.

second-order ODEs, oscillatory solutions, Schrödinger and wave equations, step size restrictions.

In applications to molecular dynamics or quantum dynamics for instance, the right-hand side of (1) involves fast forces (short-range interactions) and slow forces (long-range interactions). Since fast forces are much cheaper to evaluate than slow forces, it seems highly desirable to design numerical methods for which the number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

A typical model of highly-oscillatory systems is the second-order differential equations

\[\ddot{q} = -\nabla V(q) \tag{34} \]

where the potential \(V(q) \) is a sum of potentials \(V = W + U \) acting on different time-scales, with \(\nabla^2 W \) positive definite and \(\|\nabla^2 W\| >> \|\nabla^2 U\| \). In order to get a bounded error propagation in the linearized equations for an explicit numerical method, the step size must be restricted according to

\[h\omega < C, \]

where \(C \) is a constant depending on the numerical method and where \(\omega \) is the highest frequency of the problem, i.e. in this situation the square root of the largest eigenvalue of \(\nabla^2 W \). In applications to molecular dynamics for instance, fast forces deriving from \(W \) (short-range interactions) are much cheaper to evaluate than slow forces deriving from \(U \) (long-range interactions). In this case, it thus seems highly desirable to design numerical methods for which the number of evaluations of slow forces is not (at least not too much) affected by the presence of fast forces.

Another prominent example of highly-oscillatory systems is encountered in quantum dynamics where the Schrödinger equation is the model to be used. Assuming that the Laplacian has been discretized in space, one indeed gets the time-dependent Schrödinger equation:

\[i\dot{\psi}(t) = \frac{1}{\varepsilon} H(t)\psi(t), \tag{35} \]

where \(H(t) \) is finite-dimensional matrix and where \(\varepsilon \) typically is the square-root of a mass-ratio (say electron/ion for instance) and is small (\(\varepsilon \approx 10^{-2} \) or smaller). Through the coupling with classical mechanics (\(H(t) \) is obtained by solving some equations from classical mechanics), we are faced once again with two different time-scales, 1 and \(\varepsilon \). In this situation also, it is thus desirable to devise a numerical method able to advance the solution by a time-step \(h > \varepsilon \).
3.3. Geometric schemes for the Schrödinger equation

Participants: François Castella, Philippe Chartier, Erwan Faou, Florian Méhats, Gilles Vilmart.

Schrödinger equation, variational splitting, energy conservation.

Given the Hamiltonian structure of the Schrödinger equation, we are led to consider the question of energy preservation for time-discretization schemes.

At a higher level, the Schrödinger equation is a partial differential equation which may exhibit Hamiltonian structures. This is the case of the time-dependent Schrödinger equation, which we may write as

$$i\varepsilon \frac{\partial \psi}{\partial t} = H\psi,$$

(36)

where $\psi = \psi(x, t)$ is the wave function depending on the spatial variables $x = (x_1, \ldots, x_N)$ with $x_k \in \mathbb{R}^d$ (e.g., with $d = 1$ or 3 in the partition) and the time $t \in \mathbb{R}$. Here, ε is a (small) positive number representing the scaled Planck constant and i is the complex imaginary unit. The Hamiltonian operator H is written

$$H = T + V$$

with the kinetic and potential energy operators

$$T = -\sum_{k=1}^{N} \frac{\varepsilon^2}{2m_k} \Delta x_k \quad \text{and} \quad V = V(x),$$

where $m_k > 0$ is a particle mass and Δx_k the Laplacian in the variable $x_k \in \mathbb{R}^d$, and where the real-valued potential V acts as a multiplication operator on ψ.

The multiplication by i in (8) plays the role of the multiplication by J in classical mechanics, and the energy $\langle \psi | H | \psi \rangle$ is conserved along the solution of (8), using the physicists’ notations $\langle u | A | u \rangle = \langle u, Au \rangle$ where \langle , \rangle denotes the Hermitian L^2-product over the phase space. In quantum mechanics, the number N of particles is very large making the direct approximation of (8) very difficult.

The numerical approximation of (8) can be obtained using projections onto submanifolds of the phase space, leading to various PDEs or ODEs: see [66], [65] for reviews. However the long-time behavior of these approximated solutions is well understood only in this latter case, where the dynamics turns out to be finite dimensional. In the general case, it is very difficult to prove the preservation of qualitative properties of (8) such as energy conservation or growth in time of Sobolev norms. The reason for this is that backward error analysis is not directly applicable for PDEs. Overwhelming these difficulties is thus a very interesting challenge.

A particularly interesting case of study is given by symmetric splitting methods, such as the Strang splitting:

$$\psi_1 = \exp \left(-i(\delta t)V/2 \right) \exp \left(i(\delta t)\Delta \right) \exp \left(-i(\delta t)V/2 \right) \psi_0$$

(37)

where δt is the time increment (we have set all the parameters to 1 in the equation). As the Laplace operator is unbounded, we cannot apply the standard methods used in ODEs to derive long-time properties of these schemes. However, its projection onto finite dimensional submanifolds (such as Gaussian wave packets space or FEM finite dimensional space of functions in x) may exhibit Hamiltonian or Poisson structure, whose long-time properties turn out to be more tractable.

3.4. High-frequency limit of the Helmholtz equation

Participant: François Castella.
waves, Helmholtz equation, high oscillations.

The Helmholtz equation models the propagation of waves in a medium with variable refraction index. It is a simplified version of the Maxwell system for electromagnetic waves.

The high-frequency regime is characterized by the fact that the typical wavelength of the signals under consideration is much smaller than the typical distance of observation of those signals. Hence, in the high-frequency regime, the Helmholtz equation at once involves highly oscillatory phenomena that are to be described in some asymptotic way. Quantitatively, the Helmholtz equation reads

\[i\alpha_\varepsilon u_{\varepsilon}(x) + \varepsilon^2 \Delta_x u_{\varepsilon} + n^2(x) u_{\varepsilon} = f_{\varepsilon}(x). \]

(38)

Here, \(\varepsilon \) is the small adimensional parameter that measures the typical wavelength of the signal, \(n(x) \) is the space-dependent refraction index, and \(f_{\varepsilon}(x) \) is a given (possibly dependent on \(\varepsilon \)) source term. The unknown is \(u_{\varepsilon}(x) \). One may think of an antenna emitting waves in the whole space (this is the \(f_{\varepsilon}(x) \)), thus creating at any point \(x \) the signal \(u_{\varepsilon}(x) \) along the propagation. The small \(\alpha_{\varepsilon} > 0 \) term takes into account damping of the waves as they propagate.

One important scientific objective typically is to describe the high-frequency regime in terms of rays propagating in the medium, that are possibly refracted at interfaces, or bounce on boundaries, etc. Ultimately, one would like to replace the true numerical resolution of the Helmholtz equation by that of a simpler, asymptotic model, formulated in terms of rays.

In some sense, and in comparison with, say, the wave equation, the specificity of the Helmholtz equation is the following. While the wave equation typically describes the evolution of waves between some initial time and some given observation time, the Helmholtz equation takes into account at once the propagation of waves over infinitely long time intervals. Qualitatively, in order to have a good understanding of the signal observed in some bounded region of space, one readily needs to be able to describe the propagative phenomena in the whole space, up to infinity. In other words, the “rays” we refer to above need to be understood from the initial time up to infinity. This is a central difficulty in the analysis of the high-frequency behaviour of the Helmholtz equation.

3.5. From the Schrödinger equation to Boltzmann-like equations

Participant: François Castella.

Schrödinger equation, asymptotic model, Boltzmann equation.

The Schrödinger equation is the appropriate way to describe transport phenomena at the scale of electrons. However, for real devices, it is important to derive models valid at a larger scale.

In semi-conductors, the Schrödinger equation is the ultimate model that allows to obtain quantitative information about electronic transport in crystals. It reads, in convenient adimensional units,

\[i\partial_t \psi(t, x) = -\frac{1}{2} \Delta_x \psi + V(x)\psi, \]

(39)

where \(V(x) \) is the potential and \(\psi(t, x) \) is the time- and space-dependent wave function. However, the size of real devices makes it important to derive simplified models that are valid at a larger scale. Typically, one wishes to have kinetic transport equations. As is well-known, this requirement needs one to be able to describe “collisions” between electrons in these devices, a concept that makes sense at the macroscopic level, while it does not at the microscopic (electronic) level. Quantitatively, the question is the following: can one obtain the Boltzmann equation (an equation that describes collisional phenomena) as an asymptotic model for the Schrödinger equation, along the physically relevant micro-macro asymptotics? From the point of view of modelling, one wishes here to understand what are the “good objects”, or, in more technical words, what are the relevant “cross-sections”, that describe the elementary collisional phenomena. Quantitatively, the Boltzmann equation reads, in a simplified, linearized, form:
\[\partial_t f(t, x, v) = \int_{\mathbb{R}^3} \sigma(v, v') \left[f(t, x, v') - f(t, x, v) \right] dv'. \] (40)

Here, the unknown is \(f(x, v, t) \), the probability that a particle sits at position \(x \), with a velocity \(v \), at time \(t \). Also, \(\sigma(v, v') \) is called the cross-section, and it describes the probability that a particle “jumps” from velocity \(v \) to velocity \(v' \) (or the converse) after a collision process.
KERDATA Project-Team

3. Research Program

3.1. Our goals and methodology

Data-intensive applications demonstrate common requirements with respect to the need for data storage and I/O processing. These requirements lead to several core challenges discussed below.

Challenges related to cloud storage. In the area of cloud data management, a significant milestone is the emergence of the Map-Reduce [34] parallel programming paradigm, currently used on most cloud platforms, following the trend set up by Amazon [30]. At the core of Map-Reduce frameworks lies a key component, which must meet a series of specific requirements that have not fully been met yet by existing solutions: the ability to provide efficient fine-grain access to the files, while sustaining a high throughput in spite of heavy access concurrency. Additionally, as thousands of clients simultaneously access shared data, it is critical to preserve fault-tolerance and security requirements.

Challenges related to data-intensive HPC applications. The requirements exhibited by climate simulations specifically highlight a major, more general research topic. They have been clearly identified by international panels of experts like IESP [32] and EESI [31], in the context of HPC simulations running on post-Petascale supercomputers. A jump of one order of magnitude in the size of numerical simulations is required to address some of the fundamental questions in several communities such as climate modeling, solid earth sciences or astrophysics. In this context, the lack of data-intensive infrastructures and methodologies to analyze huge simulations is a growing limiting factor. The challenge is to find new ways to store and analyze massive outputs of data during and after the simulation without impacting the overall performance.

The overall goal of the KerData project-team is to bring a substantial contribution to the effort of the research community to address the above challenges. KerData aims to design and implement distributed algorithms for scalable data storage and input/output management for efficient large-scale data processing. We target two main execution infrastructures: cloud platforms and post-Petascale HPC supercomputers. We are also looking at other kinds of infrastructures (that we are considering as secondary), e.g. hybrid platforms combining enterprise desktop grids extended to cloud platforms. Our collaboration portfolio includes international teams that are active in this area both in Academia (e.g., Argonne National Lab, University of Illinois at Urbana-Champaign, University of Tsukuba) and Industry (Microsoft, IBM).

The highly experimental nature of our research validation methodology should be stressed. Our approach relies on building prototypes and on their large-scale experimental validation on real testbeds and experimental platforms. We strongly rely on the ALADDIN-Grid’5000 platform. Moreover, thanks to our projects and partnerships, we have access to reference software and physical infrastructures in the cloud area (Microsoft Azure, Amazon clouds, Nimbus clouds); in the post-Petascale HPC area we have access to the Jaguar and Kraken supercomputers (ranked 3rd and 11th respectively in the Top 500 supercomputer list) and to the Blue Waters supercomputer. This provides us with excellent opportunities to validate our results on realistic platforms.

Moreover, the consortiums of our current projects include application partners in the areas of Bio-Chemistry, Neurology and Genetics, and Climate Simulations. This is an additional asset, it enables us to take into account application requirements in the early design phase of our solutions, and to validate those solutions with real applications. We intend to continue increasing our collaborations with application communities, as we believe that this a key to perform effective research with a high potential impact.
3.2. Our research agenda

Three typical application scenarios are described in Section 4.1:
- Joint genetic and neuroimaging data analysis on Azure clouds;
- Structural protein analysis on Nimbus clouds;
- I/O intensive climate simulations for the Blue Waters post-Petascale machine.

They illustrate the above challenges in some specific ways. They all exhibit a common scheme: massively concurrent processes which access massive data at a fine granularity, where data is shared and distributed at a large scale. To efficiently address the aforementioned challenges we have started to work out an approach called BlobSeer, which stands today at the center of our research efforts. This approach relies on the design and implementation of scalable distributed algorithms for data storage and access. They combine advanced techniques for decentralized metadata and data management, with versioning-based concurrency control to optimize the performance of applications under heavy access concurrency.

Preliminary experiments with our BlobSeer BLOB management system within today’s cloud software infrastructures proved very promising. Recently, we used the BlobSeer approach as a starting point to address more in depth two usage scenarios, which led to two more specific approaches: 1) Pyramid (which borrows many concepts from BlobSeer), with a specific focus on array-oriented storage; and 2) Damaris (totally independent of BlobSeer), which exploits multicore parallelism in post-Petascale supercomputers. All these directions are described below.

Our short- and medium-term research plan is devoted to storage challenges in two main contexts: clouds and post-Petascale HPC architectures. Consequently, our research plan is split in two main themes, which correspond to their respective challenges. For each of those themes, we have initiated several actions through collaborative projects coordinated by KerData, which define our agenda for the next 4 years.

Based on very promising results demonstrated by BlobSeer in preliminary experiments [36], we have initiated several collaborative projects in the area of cloud data management, e.g., the MapReduce ANR project, the A-Brain Microsoft-Inria project, the Z-CloudFlow Microsoft-Inria project. Such frameworks are for us concrete and efficient means to work in close connection with strong partners already well positioned in the area of cloud computing research. Thanks to these projects, we have already started to enjoy a visible scientific positioning at the international level.

The particularly active Data@ExaScale Associate Team creates the framework for an enlarged research activity involving a large number of young researchers and students. It serves as a basis for extended research activities based on our approaches, carried out beyond the frontiers of our team. In the HPC area, our presence in the research activities of the Joint UIUC-Inria Lab for Petascale Computing at Urbana-Champaign is a very exciting opportunity that we have started to leverage. It facilitates high-quality collaborations and access to some of the most powerful supercomputers, an important asset which already helped us produce and transfer some results, as described in Section 6.4.
3. Research Program

3.1. Visual servoing

Basically, visual servoing techniques consist in using the data provided by one or several cameras in order to control the motions of a dynamic system [1]. Such systems are usually robot arms, or mobile robots, but can also be virtual robots, or even a virtual camera. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the desired degrees of freedom. A control law has also to be designed so that these visual features $s(t)$ reach a desired value s^*, defining a correct realization of the task. A desired planned trajectory $s^*(t)$ can also be tracked. The control principle is thus to regulate to zero the error vector $s(t) - s^*(t)$. With a vision sensor providing 2D measurements, potential visual features are numerous, since 2D data (coordinates of feature points in the image, moments, ...) as well as 3D data provided by a localization algorithm exploiting the extracted 2D features can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks.

More precisely, a set s of k visual features can be taken into account in a visual servoing scheme if it can be written:

$$s = s(x(p(t)), a)$$

where $p(t)$ describes the pose at the instant t between the camera frame and the target frame, x the image measurements, and a a set of parameters encoding a potential additional knowledge, if available (such as for instance a coarse approximation of the camera calibration parameters, or the 3D model of the target in some cases).

The time variation of s can be linked to the relative instantaneous velocity v between the camera and the scene:

$$\dot{s} = \frac{\partial s}{\partial p} \dot{p} = L_a v$$

where L_a is the interaction matrix related to s. This interaction matrix plays an essential role. Indeed, if we consider for instance an eye-in-hand system and the camera velocity as input of the robot controller, we obtain when the control law is designed to try to obtain an exponential decoupled decrease of the error:

$$v_c = -\lambda \hat{L}_a^+ (s - s^*) - \hat{L}_a^+ \frac{\partial s}{\partial t}$$

where λ is a proportional gain that has to be tuned to minimize the time-to-convergence, \hat{L}_a^+ is the pseudo-inverse of a model or an approximation of the interaction matrix, and $\frac{\partial s}{\partial t}$ an estimation of the features velocity due to a possible own object motion.
From the selected visual features and the corresponding interaction matrix, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. Usually, the interaction matrix is composed of highly non linear terms and does not present any decoupling properties. This is generally the case when \(s \) is directly chosen as \(x \). In some cases, it may lead to inadequate robot trajectories or even motions impossible to realize, local minimum, tasks singularities, etc. It is thus extremely important to design adequate visual features for each robot task or application, the ideal case (very difficult to obtain) being when the corresponding interaction matrix is constant, leading to a simple linear control system. To conclude in few words, visual servoing is basically a non linear control problem. Our Holy Grail quest is to transform it into a linear control problem.

Furthermore, embedding visual servoing in the task function approach allows solving efficiently the redundancy problems that appear when the visual task does not constrain all the degrees of freedom of the system. It is then possible to realize simultaneously the visual task and secondary tasks such as visual inspection, or joint limits or singularities avoidance. This formalism can also be used for tasks sequencing purposes in order to deal with high level complex applications.

3.2. Visual tracking

Elaboration of object tracking algorithms in image sequences is an important issue for researches and applications related to visual servoing and more generally for robot vision. A robust extraction and real time spatio-temporal tracking process of visual cues is indeed one of the keys to success of a visual servoing task. If fiducial markers may still be useful to validate theoretical aspects in modeling and control, natural scenes with non cooperative objects and subject to various illumination conditions have to be considered for addressing large scale realistic applications.

Most of the available tracking methods can be divided into two main classes: feature-based and model-based. The former approach focuses on tracking 2D features such as geometrical primitives (points, segments, circles,...), object contours, regions of interest...The latter explicitly uses a model of the tracked objects. This can be either a 3D model or a 2D template of the object. This second class of methods usually provides a more robust solution. Indeed, the main advantage of the model-based methods is that the knowledge about the scene allows improving tracking robustness and performance, by being able to predict hidden movements of the object, detect partial occlusions and acts to reduce the effects of outliers. The challenge is to build algorithms that are fast and robust enough to meet our applications requirements. Therefore, even if we still consider 2D features tracking in some cases, our researches mainly focus on real-time 3D model-based tracking, since these approaches are very accurate, robust, and well adapted to any class of visual servoing schemes. Furthermore, they also meet the requirements of other classes of application, such as augmented reality.

3.3. Slam

Most of the applications involving mobile robotic systems (ground vehicles, aerial robots, automated submarines,...) require a reliable localization of the robot in its environment. A challenging problem is when neither the robot localization nor the map is known. Localization and mapping must then be considered concurrently. This problem is known as Simultaneous Localization And Mapping (Slam). In this case, the robot moves from an unknown location in an unknown environment and proceeds to incrementally build up a navigation map of the environment, while simultaneously using this map to update its estimated position.

Nevertheless, solving the Slam problem is not sufficient for guaranteeing an autonomous and safe navigation. The choice of the representation of the map is, of course, essential. The representation has to support the different levels of the navigation process: motion planning, motion execution and collision avoidance and, at the global level, the definition of an optimal strategy of displacement. The original formulation of the Slam problem is purely metric (since it basically consists in estimating the Cartesian situations of the robot and a set of landmarks), and it does not involve complex representations of the environment. However, it is now well recognized that several complementary representations are needed to perform exploration, navigation, mapping, and control tasks successfully. We propose to use composite models of the environment that
mix topological, metric, and grid-based representations. Each type of representation is well adapted to a particular aspect of autonomous navigation: the metric model allows one to locate the robot precisely and plan Cartesian paths, the topological model captures the accessibility of different sites in the environment and allows a coarse localization, and finally the grid representation is useful to characterize the free space and design potential functions used for reactive obstacle avoidance. However, ensuring the consistency of these various representations during the robot exploration, and merging observations acquired from different viewpoints by several cooperative robots, are difficult problems. This is particularly true when different sensing modalities are involved. New studies to derive efficient algorithms for manipulating the hybrid representations (merging, updating, filtering...) while preserving their consistency are needed.
3. Research Program

3.1. Biomechanics and Motion Control

Human motion control is a very complex phenomenon that involves several layered systems, as shown in Figure 3. Each layer of this controller is responsible for dealing with perceptual stimuli in order to decide the actions that should be applied to the human body and his environment. Due to the intrinsic complexity of the information (internal representation of the body and mental state, external representation of the environment) used to perform this task, it is almost impossible to model all the possible states of the system. Even for simple problems, there generally exist infinity of solutions. For example, from the biomechanical point of view, there are much more actuators (i.e. muscles) than degrees of freedom leading to infinity of muscle activation patterns for a unique joint rotation. From the reactive point of view there exist infinity of paths to avoid a given obstacle in navigation tasks. At each layer, the key problem is to understand how people select one solution among these infinite state spaces. Several scientific domains have addressed this problem with specific points of view, such as physiology, biomechanics, neurosciences and psychology.
In biomechanics and physiology, researchers have proposed hypotheses based on accurate joint modeling (to identify the real anatomical rotational axes), energy minimization, force and torques minimization, comfort maximization (i.e. avoiding joint limits), and physiological limitations in muscle force production. All these constraints have been used in optimal controllers to simulate natural motions. The main problem is thus to define how these constraints are composed altogether such as searching the weights used to linearly combine these criteria in order to generate a natural motion. Musculoskeletal models are stereotyped examples for which there exist infinity of muscle activation patterns, especially when dealing with antagonist muscles. An unresolved problem is to define how using the above criteria to retrieve the actual activation patterns while optimization approaches still lead to unrealistic ones. It is still an open problem that will require multidisciplinary skills including computer simulation, constraint solving, biomechanics, optimal control, physiology and neurosciences.

In neuroscience, researchers have proposed other theories, such as coordination patterns between joints driven by simplifications of the variables used to control the motion. The key idea is to assume that instead of controlling all the degrees of freedom, people control higher level variables which correspond to combination of joint angles. In walking, data reduction techniques such as Principal Component Analysis have shown that lower-limb joint angles are generally projected on a unique plan whose angle in the state space is associated with energy expenditure. Although there exist knowledge on specific motion, such as locomotion or grasping, this type of approach is still difficult to generalize. The key problem is that many variables are coupled and it is very difficult to objectively study the behavior of a unique variable in various motor tasks. Computer simulation is a promising method to evaluate such type of assumptions as it enables to accurately control all the variables and to check if it leads to natural movements.

Neurosciences also address the problem of coupling perception and action by providing control laws based on visual cues (or any other senses), such as determining how the optical flow is used to control direction in navigation tasks, while dealing with collision avoidance or interception. Coupling of the control variables is enhanced in this case as the state of the body is enriched by the big amount of external information that the subject can use. Virtual environments inhabited with autonomous characters whose behavior is driven by motion control assumptions is a promising approach to solve this problem. For example, an interesting problem in this field is navigation in an environment inhabited with other people. Typically, avoiding static obstacles together with other people displacing into the environment is a combinatorial problem that strongly relies on the coupling between perception and action.

One of the main objectives of MimeTIC is to enhance knowledge on human motion control by developing innovative experiments based on computer simulation and immersive environments. To this end, designing experimental protocols is a key point and some of the researchers in MimeTIC have developed this skill in biomechanics and perception-action coupling. Associating these researchers to experts in virtual human simulation, computational geometry and constraints solving enable us to contribute to enhance fundamental knowledge in human motion control.

3.2. Experiments in Virtual Reality

Understanding interaction between humans is very challenging because it addresses many complex phenomena including perception, decision-making, cognition and social behaviors. Moreover, all these phenomena are difficult to isolate in real situations, it is thus very complex to understand the influence of each of them on the interaction. It is then necessary to find an alternative solution that can standardize the experiments and that allows the modification of only one parameter at a time. Video was first used since the displayed experiment is perfectly repeatable and cut-offs (stop the video at a specific time before its end) allow having temporal information. Nevertheless, the absence of adapted viewpoint and stereoscopic vision does not provide depth information that are very meaningful. Moreover, during video recording session, the real human is acting in front of a camera and not an opponent. The interaction is then not a real interaction between humans.

Virtual Reality (VR) systems allow full standardization of the experimental situations and the complete control of the virtual environment. It is then possible to modify only one parameter at a time and observe its influence on the perception of the immersed subject. VR can then be used to understand what information are picked
up to make a decision. Moreover, cut-offs can also be used to obtain temporal information about when these information are picked up. When the subject can moreover react as in real situation, his movement (captured in real time) provides information about his reactions to the modified parameter. Not only is the perception studied, but the complete perception-action loop. Perception and action are indeed coupled and influence each other as suggested by Gibson in 1979.

Finally, VR allows the validation of the virtual human models. Some models are indeed based on the interaction between the virtual character and the other humans, such as a walking model. In that case, there are two ways to validate it. First, they can be compared to real data (e.g. real trajectories of pedestrians). But such data are not always available and are difficult to get. The alternative solution is then to use VR. The validation of the realism of the model is then done by immersing a real subject in a virtual environment in which a virtual character is controlled by the model. Its evaluation is then deduced from how the immersed subject reacts when interacting with the model and how realistic he feels the virtual character is.

3.3. Computational Geometry

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. It aims at studying algorithms for combinatorial, topological and metric problems concerning sets of points in Euclidian spaces. Combinatorial computational geometry focuses on three main problem classes: static problems, geometric query problems and dynamic problems.

In static problems, some input is given and the corresponding output needs to be constructed or found. Such problems include linear programming, Delaunay triangulations, and Euclidian shortest paths for instance. In geometric query problems, commonly known as geometric search problems, the input consists of two parts: the search space part and the query part, which varies over the problem instances. The search space typically needs to be preprocessed, in a way that multiple queries can be answered efficiently. Some typical problems are range searching, point location in a portioned space, nearest neighbor queries for instance. In dynamic problems, the goal is to find an efficient algorithm for finding a solution repeatedly after each incremental modification of the input data (addition, deletion or motion of input geometric elements). Algorithms for problems of this type typically involve dynamic data structures. Both of previous problem types can be converted into a dynamic problem, for instance, maintaining a Delaunay triangulation between moving points.

The Mimetic team works on problems such as crowd simulation, spatial analysis, path and motion planning in static and dynamic environments, camera planning with visibility constraints for instance. The core of those problems, by nature, relies on problems and techniques belonging to computational geometry. Proposed models pay attention to algorithms complexity to be compatible with performance constraints imposed by interactive applications.
3. Research Program

3.1. Introduction

Research activity within the MYRIADS team encompasses several areas: distributed systems, middleware and programming models. We have chosen to provide a brief presentation of some of the scientific foundations associated with them: autonomic computing, future internet and SOA, distributed operating systems, and unconventional/nature-inspired programming.

3.2. Autonomic Computing

During the past years the development of raw computing power coupled with the proliferation of computer devices has grown at exponential rates. This phenomenal growth along with the advent of the Internet have led to a new age of accessibility - to other people, other applications and others systems. It is not just a matter of numbers. This boom has also led to unprecedented levels of complexity for the design and the implementation of these applications and systems, and of the way they work together. The increasing system scale is reaching a level beyond human ability to master its complexity.

This points towards an inevitable need to automate many of the functions associated with computing today. Indeed we want to interact with applications and systems intuitively, and we want to be far less involved in running them. Ideally, we would like computing systems to entirely manage themselves.

IBM [58] has named its vision for the future of computing "autonomic computing." According to IBM this new computer paradigm means the design and implementation of computer systems, software, storage and support that must exhibit the following basic fundamentals:

- **Flexibility.** An autonomic computing system must configure and reconfigure itself under varying, even unpredictable, conditions.
- **Accessibility.** The nature of the autonomic system is that it is always on.
- **Transparency.** The system will perform its tasks and adapt to a user's needs without dragging the user into the intricacies of its workings.

In the Myriads team we will act to satisfy these fundamentals.

3.3. Future Internet and SOA

Traditional information systems were built by integrating applications into a communication framework, such as CORBA or with an Enterprise Application Integration system (EAI). Today, companies need to be able to reconfigure themselves; they need to be able to include other companies’ business, split or externalize some of their works very quickly. In order to do this, the information systems should react and adapt very efficiently. EAI's approaches did not provide the necessary agility because they were too tightly coupled and a large part of business processes were "hard wired" into company applications.

Web services and Service Oriented Architectures (SOA) partly provide agility because in SOA business processes are completely separated from applications which can only be viewed as providing services through an interface. With SOA technologies it is easily possible to modify business processes, change, add or remove services.

However, SOA and Web services technologies are mainly market-driven and sometimes far from the state-of-the-art of distributed systems. Achieving dependability or being able to guarantee Service Level Agreement (SLA) needs much more agility of software elements. Dynamic adaptability features are necessary at many different levels (business processes, service composition, service discovery and execution) and should be coordinated. When addressing very large scale systems, autonomic behaviour of services and other parts of service oriented architectures is necessary.
SOAs will be part of the "Future Internet". The "Future Internet" will encompass traditional Web servers and browsers to support companies and people interactions (Internet of services), media interactions, search systems, etc. It will include many appliances (Internet of things). The key research domains in this area are network research, cloud computing, Internet of services and advanced software engineering.

The Myriads team will address adaptability and autonomy of SOAs in the context of Grids, Clouds and at large scale.

3.4. Distributed Operating Systems

An operating system provides abstractions such as files, processes, sockets to applications so that programmers can design their applications independently of the computer hardware. At execution time, the operating system is in charge of finding and managing the hardware resources necessary to implement these abstractions in a secure way. It also manages hardware and abstract resource sharing between different users and programs.

A distributed operating system makes a network of computer appear as a single machine. The structure of the network and the heterogeneity of the computation nodes are hidden to users. Members of the Myriads team members have a long experience in the design and implementation of distributed operating systems, for instance in Kerrighed, Vigne and XtreemOS projects.

Clouds can be defined as platforms for on-demand resource provisioning over the Internet. These platforms rely on networked computers. Three flavours of cloud platforms have emerged corresponding to different kinds of service delivery:

- **IaaS** (Infrastructure as a Service) refers to clouds for on-demand provisioning of elastic and customizable execution platforms (from physical to virtualized hardware).
- **PaaS** (Platform as a Service) refers to clouds providing an integrated environment to develop, build, deploy, host and maintain scalable and adaptable applications.
- **SaaS** (Software as a Service) refers to clouds providing customers access to ready-to-use applications.

The cloud computing model [48], [45] introduces new challenges in the organization of the information infrastructure: security, identity management, adaptation to the environment (costs). The organization of large organization IT infrastructures is also impacted as their internal data-centers, sometimes called private clouds, need to cooperate with resources and services provisioned from the cloud in order to cope with workload variations. The advent of cloud and green computing introduces new challenges in the domain of distributed operating systems: resources can be provisioned and released dynamically, the distribution of the computations on the resources must be reevaluated periodically in order to reduce power consumption and resource usage costs. Distributed cloud operating system must adapt to these new challenges in order to reduce cost and energy, for instance, through the redistribution of the applications and services on a smaller set of resources.

The Myriads team works on the design and implementation of system services at IaaS and PaaS levels to autonomously manage cloud and cloud federations resources and support collaboration between cloud users.

3.5. Unconventional/Nature-inspired Programming

Facing the complexity of the emerging ICT landscape in which highly heterogeneous digital services evolve and interact in numerous different ways in an autonomous fashion, there is a strong need for rethinking programming models. The question is "what programming paradigm can efficiently and naturally express this great number of interactions arising concurrently on the platform?".

It has been suggested [46] that observing nature could be of great interest to tackle the problem of modeling and programming complex computing platforms, and overcome the limits of traditional programming models. Innovating unconventional programming paradigms are requested to provide a high-level view of these interactions, then allowing to clearly separate what is a matter of expression from what is a question of implementation. Towards this, nature is of high inspiration, providing examples of self-organising, fully decentralized coordination of complex and large scale systems.
As an example, chemical computing [49] has been proposed more than twenty years ago for a natural way to program parallelism. Even after significant spread of this approach, it appears today that chemical computing exposes a lot of good properties (implicit autonomy, decentralization, and parallelism) to be leveraged for programming service infrastructures.

The Myriads team will investigate nature-inspired programming such as chemical computing for autonomous service computing.
3. Research Program

3.1. Axis 1: sparse models and representations

3.1.1. Efficient sparse models and dictionary design for large-scale data

Sparse models are at the core of many research domains where the large amount and high-dimensionality of digital data requires concise data descriptions for efficient information processing. Recent breakthroughs have demonstrated the ability of these models to provide concise descriptions of complex data collections, together with algorithms of provable performance and bounded complexity.

A crucial prerequisite for the success of today’s methods is the knowledge of a “dictionary” characterizing how to concisely describe the data of interest. Choosing a dictionary is currently something of an “art”, relying on expert knowledge and heuristics.

Pre-chosen dictionaries such as wavelets, curvelets or Gabor dictionaries, are based upon stylized signal models and benefit from fast transform algorithms, but they fail to fully describe the content of natural signals and their variability. They do not address the huge diversity underlying modern data much beyond time series and images: data defined on graphs (social networks, internet routing, brain connectivity), vector valued data (diffusion tensor imaging of the brain), multichannel or multi-stream data (audiovisual streams, surveillance networks, multimodal biomedical monitoring).

The alternative to a pre-chosen dictionary is a trained dictionary learned from signal instances. While such representations exhibit good performance on small-scale problems, they are currently limited to low dimensional signal processing due to the necessary training data, memory requirements and computational complexity. Whether designed or learned from a training corpus, dictionary-based sparse models and the associated methodology fail to scale up to the volume and resolution of modern digital data, for they intrinsically involve difficult linear inverse problems. To overcome this bottleneck, a new generation of efficient sparse models is needed, beyond dictionaries, which will encompass the ability to provide sparse and structured data representations as well as computational efficiency. For example, while dictionaries describe low-dimensional signal models in terms of their “synthesis” using few elementary building blocks called atoms, in “analysis” alternatives the low-dimensional structure of the signal is rather “carved out” by a set of equations satisfied by the signal. Linear as well as nonlinear models can be envisioned.

3.1.2. Compressive Learning

A flagship emerging application of sparsity is the paradigm of compressive sensing, which exploits sparse models at the analog and digital levels for the acquisition, compression and transmission of data using limited resources (fewer/less expensive sensors, limited energy consumption and transmission bandwidth, etc.). Besides sparsity, a key pillar of compressive sensing is the use of random low-dimensional projections. Through compressive sensing, random projections have shown their potential to allow drastic dimension reduction with controlled information loss, provided that the projected signal vector admits a sparse representation in some transformed domain. A related scientific domain, where sparsity has been recognized as a key enabling factor, is Machine Learning, where the overall goal is to design statistically founded principles and efficient algorithms in order to infer general properties of large data collections through the observation of a limited number of representative examples. Marrying sparsity and random low-dimensional projections with machine learning shall allow the development of techniques able to efficiently capture and process the information content of large data collections. The expected outcome is a dramatic increase of the impact of sparse models in machine learning, as well as an integrated framework from the signal level (signals and their acquisition) to the semantic level (information and its manipulation), and applications to data sizes and volumes of collections that cannot be handled by current technologies.
3.2. Axis 2: robust acoustic scene analysis

3.2.1. Compressive acquisition and processing of acoustic scenes

Acoustic imaging and scene analysis involve acquiring the information content from acoustic fields with a limited number of acoustic sensors. A full 3D+t field at CD quality and Nyquist spatial sampling represents roughly 10^6 microphones/m3. Dealing with such high-dimensional data requires to drastically reduce the data flow by positioning appropriate sensors, and selecting from all spatial locations the few spots where acoustic sources are active. The main goal is to develop a theoretical and practical understanding of the conditions under which compressive acoustic sensing is both feasible and robust to inaccurate modeling, noisy measures, and partially failing or uncalibrated sensing devices, in various acoustic sensing scenarios. This requires the development of adequate algorithmic tools, numerical simulations, and experimental data in simple settings where hardware prototypes can be implemented.

3.2.2. Robust audio source separation

Audio signal separation consists in extracting the individual sound of different instruments or speakers that were mixed on a recording. It is now successfully addressed in the academic setting of linear instantaneous mixtures. Yet, real-life recordings, generally associated to reverberant environments, remain an unsolved difficult challenge, especially with many sources and few audio channels. Much of the difficulty comes from the combination of (i) complex source characteristics, (ii) sophisticated underlying mixing model and (iii) adverse recording environments. Moreover, as opposed to the “academic” blind source separation task, most applicative contexts and new interaction paradigms offer a variety of situations in which prior knowledge and adequate interfaces enable the design and the use of informed and/or manually assisted source separation methods.

The former METISS team has developed a generic and flexible probabilistic audio source separation framework that has the ability to combine various acoustic models such as spatial and spectral source models. A first objective is to instantiate and validate specific instances of this framework targeted to real-world industrial applications, such as 5.1 movie re-mastering, interactive music soloist control and outdoor speech enhancement. Extensions of the framework are needed to achieve real-time online processing, and advanced constraints or probabilistic priors for the sources at hand will be designed, while paying attention to computational scalability issues.

In parallel to these efforts, expected progress in sparse modeling for inverse problems shall bring new approaches to source separation and modeling, as well as to source localization, which is often an important first step in a source separation workflow. In particular, a research avenue consists in investigating physically motivated, lower-level source models, notably through sparse analysis of sound waves. This should be complementary with the modeling of non-point sources and sensors, and a widening of the notion of “source localization” to the case of extended sources (i.e., considering problems such as the identification of the directivity of the source as well as its spatial position), with a focus on boundary conditions identification. A general perspective is to investigate the relations between the physical structure of the source and the particular structures that can be discovered or enforced in the representations and models used for characterization, localization and separation.

3.3. Axis 3: large-scale audio content processing and self-organization

3.3.1. Motif discovery in audio data

Facing the ever-growing quantity of multimedia content, the topic of motif discovery and mining has become an emerging trend in multimedia data processing with the ultimate goal of developing weakly supervised paradigms for content-based analysis and indexing. In this context, speech, audio and music content, offers a particularly relevant information stream from which meaningful information can be extracted to create some form of “audio icons” (key-sounds, jingles, recurrent locutions, musical choruses, etc ...) without resorting to comprehensive inventories of expected patterns.
This challenge raises several fundamental questions that will be among our core preoccupations over the next few years. The first question is the deployment of motif discovery on a large scale, a task that requires extending audio motif discovery approaches to incorporate efficient time series pattern matching methods (fingerprinting, similarity search indexing algorithms, stochastic modeling, etc.). The second question is that of the use and interpretation of the motifs discovered. Linking motif discovery and symbolic learning techniques, exploiting motif discovery in machine learning are key research directions to enable the interpretation of recurring motifs.

On the application side, several use cases can be envisioned which will benefit from motif discovery deployed on a large scale. For example, in spoken content, word-like repeating fragments can be used for several spoken document-processing tasks such as language-independent topic segmentation or summarization. Recurring motifs can also be used for audio summarization of audio content. More fundamentally, motif discovery paves the way for a shift from supervised learning approaches for content description to unsupervised paradigms where concepts emerge from the data.

3.3.2. Structure modeling and inference in audio and musical contents

Structuring information is a key step for the efficient description and learning of all types of contents, and in particular audio and musical contents. Indeed, structure modeling and inference can be understood as the task of detecting dependencies (and thus establishing relationships) between different fragments, parts or sections of information content.

A stake of structure modeling is to enable more robust descriptions of the properties of the content and better model generalization abilities that can be inferred from a particular content, for instance via cache models, trigger models or more general graphical models designed to render the information gained from structural inference. Moreover, the structure itself can become a robust descriptor of the content, which is likely to be more resistant than surface information to a number of operations such as transmission, transduction, copyright infringement or illegal use.

In this context, information theory concepts will be investigated to provide criteria and paradigms for detecting and modeling structural properties of audio contents, covering potentially a wide range of application domains in speech content mining, music modeling or audio scene monitoring.
3. Research Program

3.1. Introduction

The research work of the team is built on top of solid foundations, mainly, algebraic, combinatorial or logical theories of transition systems. These theories cover several sorts of systems which have been studied during the last thirty years: sequential, concurrent, synchronous or asynchronous. They aim at modeling the behavior of finite or infinite systems (usually by abstracting computations on data), with a particular focus on the control flow which rules state changes in these systems. Systems can be autonomous or reactive, that is, embedded in an environment with which the system interacts, both receiving an input flow, and emitting an output flow of events and data. System specifications can be explicit (for instance, when the system is specified by an automaton, extensively defined by a set of states and a set of transitions), or implicit (symbolic transition rules, usually parameterized by state or control variables; partially-synchronized products of finite transition systems; Petri nets; systems of equations constraining the transitions of synchronous reactive systems, according to their input flows; etc.). Specifications can be non-ambiguous, meaning that they fully define at most one system (this holds in the previous cases), or they can be ambiguous, in which case more than one system is conforming to the specification (for instance, when the system is described by logical formulas in the modal mu-calculus, or when the system is described by a set of scenario diagrams, such as Sequence Diagrams or Message Sequence Charts).

Systems can be described in two ways: either the state structure is described, or only the behavior is described. Both descriptions are often possible (this is the case for formal languages, automata, products of automata, or Petri nets), and moving from one representation to the other is achieved by folding/unfolding operations.

Another taxonomy criteria is the concurrency these models can encompass. Automata usually describe sequential systems.Concurrency in synchronous systems is usually not considered. In contrast, Petri nets or partially-synchronized products of automata are concurrent. When these models are transformed, concurrency can be either preserved, reflected or even, infused. An interesting case is whenever the target architecture requires distributing events among several processes. There, communication-efficient implementations require that concurrency is preserved as far as possible and that, at the same time, causality relations are also preserved. These notions of causality and independence are best studied in models such as concurrent automata, Petri nets or Mazurkiewicz trace languages.

Here are our sources of inspiration regarding formal mathematical tools:

Our research exploits decidability or undecidability results on these models (for instance, inclusion of regular languages, bisimilarity on automata, reachability on Petri nets, validity of a formula in the mu-calculus, etc.) and also, representation theorems which provide effective translations from one model to another. For instance, Zielonka’s theorem yields an algorithm which maps regular trace languages to partially-synchronized products of finite automata. Another example is the theory of regions, which provides methods for mapping finite or infinite automata, languages, or even High-Level Message Sequence Charts to Petri nets. A further example concerns the mu-calculus, in which algorithms computing winning strategies for parity games can be used to synthesize supervisory control of discrete event systems.
Our research aims at providing effective representation theorems, with a particular emphasis on algorithms and tools which, given an instance of one model, synthesize an instance of another model. In particular we have contributed a theory, several algorithms and a tool for synthesizing Petri nets from finite or infinite automata, regular languages, or languages of High-Level Message Sequence Charts. This also applies to our work on supervisory control of discrete event systems. In this framework, the problem is to compute a system (the controller) such that its partially-synchronized product with a given system (the plant) satisfies a given behavioral property (control objective, such as a regular language or satisfaction of a mu-calculus formula).

Software engineers often face problems similar to service adaptation or component interfacing, which in turn, often reduce to particular instances of system synthesis or supervisory control problems.

3.2. LaTeX Test Page

Exemples d’équations :

- Equation en mode “mathématique” :
 \[y = x^2 \]

- Equation en environnement “equation” :
 \[P \left(\begin{array}{c} \theta_1 \\ \vdots \\ \theta_r \end{array} \right) = Q + R, \tag{44} \]

- Equation en environnement “displaymath” :
 \[\sum_{0}^{\infty} y = x^4 \]

- Autre exemple :
 \[\forall f \in C^\infty \left(\left[-\frac{T}{2}; \frac{T}{2} \right] \right), \forall t \in \left[-\frac{T}{2}; \frac{T}{2} \right], f(\tau) = \sum_{k=-\infty}^{+\infty} e^{2i\pi \frac{k}{T} t} \times \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-2i\pi \frac{k}{T} t} dt \]

Exemple de caractères spéciaux :
- math pi : \(\pi \)
- lettres : æ Å â À Â âé Ė È ë Ê ëî Ò û Ù Û ë Ù Ù y ç p

Exemples d’images :
- Image en jpeg : voir image 1
- Image en eps : voir figure 2
- Image en pdf : voir image 3
Figure 1. An example of a jpeg image

Figure 2. An example of an eps file

Figure 3. An example of a pdf file
3. Research Program

3.1. Numerical algorithms and high performance computing

Linear algebra is at the kernel of most scientific applications, in particular in physical or chemical engineering. For example, steady-state flow simulations in porous media are discretized in space and lead to a large sparse linear system. The target size is 10^7 in 2D and 10^{10} in 3D. For transient models such as diffusion, the objective is to solve about 10^4 linear systems for each simulation. Memory requirements are of the order of Giga-bytes in 2D and Tera-bytes in 3D. CPU times are of the order of several hours to several days. Several methods and solvers exist for large sparse linear systems. They can be divided into three classes: direct, iterative or semi-iterative. Direct methods are highly efficient but require a large memory space and a rapidly increasing computational time. Iterative methods of Krylov type require less memory but need a scalable preconditioner to remain competitive. Iterative methods of multigrid type are efficient and scalable, used by themselves or as preconditioners, with a linear complexity for elliptic or parabolic problems but they are not so efficient for hyperbolic problems. Semi-iterative methods such as subdomain methods are hybrid direct/iterative methods which can be good tradeoffs. The convergence of iterative and semi-iterative methods and the accuracy of the results depend on the condition number which can blow up at large scale. The objectives are to analyze the complexity of these different methods, to accelerate convergence of iterative methods, to measure and improve the efficiency on parallel architectures, to define criteria of choice.

In geophysics, a main concern is to solve inverse problems in order to fit the measured data with the model. Generally, this amounts to solve a linear or nonlinear least-squares problem. Complex models are in general coupled multi-physics models. For example, reactive transport couples advection-diffusion with chemistry. Here, the mathematical model is a set of nonlinear Partial Differential Algebraic Equations. At each timestep of an implicit scheme, a large nonlinear system of equations arise. The challenge is to solve efficiently and accurately these large nonlinear systems.

Approximation in Krylov subspace is in the core of the team activity since it provides efficient iterative solvers for linear systems and eigenvalue problems as well. The later are encountered in many fields and they include the singular value problem which is especially useful when solving ill posed inverse problems.

3.2. Numerical models applied to hydrogeology and physics

The team Sage is strongly involved in numerical models for hydrogeology and physics. There are many scientific challenges in the area of groundwater simulations. This interdisciplinary research is very fruitful with cross-fertilizing subjects. For example, high performance simulations were very helpful for finding out the asymptotic behaviour of the plume of solute transported by advection-dispersion. Numerical models are necessary to understand flow transfer in fractured media.

The team develops stochastic models for groundware simulations. Numerical models must then include Uncertainty Quantification methods, spatial and time discretization. Then, the discrete problems must be solved with efficient algorithms. The team develops parallel algorithms for complex numerical simulations and conducts performance analysis. Another challenge is to run multiparametric simulations. They can be multiple samples of a non intrusive Uncertainty Quantification method, or multiple samples of a stochastic method for inverse problems, or multiple samples for studying the sensitivity to a given model parameter. Thus these simulations are more or less independent and are well-suited to grid computing but each simulation requires powerful CPU and memory resources.

A strong commitment of the team is to develop the scientific software platform H2OLab for numerical simulations in heterogeneous hydrogeology.
SERPICO Project-Team

3. Research Program

3.1. Statistics and algorithms for computational microscopy

Many live-cell fluorescence imaging experiments are limited in time to prevent phototoxicity and photobleaching. The amount of light and time required to observe entire cell divisions can generate biological artifacts. In order to produce images compatible with the dynamic processes in living cells as seen in video-microscopy, we study the potential of denoising, superresolution, tracking, and motion analysis methods in the Bayesian and the robust statistics framework to extract information and to improve image resolution while preserving cell integrity.

In this area, we have already demonstrated that image denoising allows images to be taken more frequently or over a longer period of time, while preserving image quality [5]. The major advantage of the ND-SAFIR software is to acquire images at very low SNR while recovering denoised 2D+T(ime) and 3D+T(ime) images [6], [2], [7], [4]. This approach has been successfully applied to wide-field, spinning-disk confocal microscopy [1], TIRF [29], fast live imaging and 3D-PALM using the OMX system in collaboration with J. Sedat and M. Gustafsson at UCSF [5]. The ND-SAFIR software (see Section 5.1) has been licensed to a large set of laboratories over the world (see Figure 3). New information restoration and image denoising methods are currently investigated to make SIM imaging compatible with the imaging of molecular dynamics in live cells. Unlike other optical sub-diffraction limited techniques (e.g. STED [41], PALM [30]) SIM has the strong advantage of versatility when considering the photo-physical properties of the fluorescent probes [38]. Such developments are also required to be compatible with “high-throughput microscopy” since several hundreds of cells are observed at the same time and the exposure times are typically reduced.

3.2. From image data to descriptors: dynamic analysis and trajectory computation

3.2.1. Motion analysis and tracking

The main challenge is to detect and track xFP tags with high precision in movies representing several Giga-Bytes of image data. The data are most often collected and processed automatically to generate information on partial or complete trajectories. Accordingly, we address both the methodological and computational issues involved in object detection and multiple objects tracking in order to better quantify motion in cell biology. Classical tracking methods have limitations as the number of objects and clutter increase. It is necessary to correctly associate measurements with tracked objects, i.e. to solve the difficult data association problem [51]. Data association even combined with sophisticated particle filtering techniques [57] or matching techniques [53] is problematic when tracking several hundreds of similar objects with variable velocities. Developing new optical flow and robust tracking methods and models in this area is then very stimulating since the problems we have to solve are really challenging and new for applied mathematics. In motion analysis, the goal is to formulate the problem of optical flow estimations in ways that take physical causes of brightness constancy violations into account [34], [39]. The interpretation of computed flow fields enables to provide spatio-temporal signatures of particular dynamic processes (e.g. Brownian and directed motion) and could help to complete the traffic modelling.

3.2.2. Event detection and motion classification

Protein complexes in living cells undergo multiple states of local concentration or dissociation, sometimes associated with diffusion processes. These events can be observed at the plasma membrane with TIRF microscopy. The difficulty arises when it becomes necessary to distinguish continuous motions due to trafficking from sudden events due to molecule concentrations or their dissociations. Typically, plasma membrane vesicle docking, membrane coat constitution or vesicle endocytosis are related to these issues.
Several approaches can be considered for the automatic detection of appearing and vanishing particles (or spots) in wide-field and TIRF microscopy images (see Fig. 2). Ideally this could be performed by tracking all the vesicles contained in the cell \[57\], \[37\]. Among the methods proposed to detect particles in microscopy images \[60\], \[56\], none is dedicated to the detection of a small number of particles appearing or disappearing suddenly between two time steps. Our way of handling small blob appearances/disappearances originates from the observation that two successive images are redundant and that occlusions correspond to blobs in one image which cannot be reconstructed from the other image \[1\] (see also \[31\]). Furthermore, recognizing dynamic protein behaviors in live cell fluorescence microscopy is of paramount importance to understand cell mechanisms. In our studies, it is challenging to classify intermingled dynamics of vesicular movements, docking/tethering, and ultimately, plasma membrane fusion of vesicles that leads to membrane diffusion or exocytosis of cargo proteins. Our aim is then to model, detect, estimate and classify subcellular dynamic events in TIRF microscopy image sequences. We investigate methods that exploits space-time information extracted from a couple of successive images to classify several types of motion (directed, diffusive (or Brownian) and confined motion) or compound motion.

3.3. From models to image data: simulation and modelling of membrane transport

Mathematical biology is a field in expansion, which has evolved into various branches and paradigms to address problems at various scales ranging from ecology to molecular structures. Nowadays, system biology \[43\], \[62\] aims at modelling systems as a whole in an integrative perspective instead of focusing on independent biophysical processes. One of the goals of these approaches is the cell in silico as investigated at Harvard Medical School (http://vcp.med.harvard.edu/) or the VCell of the University of Connecticut Health Center (http://www.nrcam.uchc.edu/). Previous simulation-based methods have been investigated to explain the spatial organization of microtubules \[46\] but the method is not integrative and a single scale is used to describe the visual patterns. In this line of work, we propose several contributions to combine imaging, traffic and membrane transport modelling in cell biology.

In this area, we focus on the analysis of transport intermediates (vesicles) that deliver cellular components to appropriate places within cells. We have already investigated the concept of Network Tomography (NT) \[61\] mainly developed for internet traffic estimation. The idea is to determine mean traffic intensities based on statistics accumulated over a period of time. The measurements are usually the number of vesicles detected at each destination region receiver. The NT concept has been investigated also for simulation \[3\] since it can be used to statistically mimic the contents of real traffic image sequences. In the future, we plan to incorporate more prior knowledge on dynamics to improve representation. An important challenge is to correlate stochastic, dynamical, one-dimensional in silico models studied at the nano-scale in biophysics, to 3D images acquired in vivo at the scale of few hundred nanometers. A difficulty is related to the scale change and statistical aggregation problems (in time and space) have to be handled.
3. Research Program

3.1. Introduction

The research activities on analysis, compression and communication of visual data mostly rely on tools and formalisms from the areas of statistical image modelling, of signal processing, of coding and information theory. However, the objective of better exploiting the Human Visual System (HVS) properties in the above goals also pertains to the areas of perceptual modelling and cognitive science. Some of the proposed research axes are also based on scientific foundations of computer vision (e.g. multi-view modelling and coding). We have limited this section to some tools which are central to the proposed research axes, but the design of complete compression and communication solutions obviously rely on a large number of other results in the areas of motion analysis, transform design, entropy code design, etc which cannot be all described here.

3.2. Parameter estimation and inference

Bayesian estimation, Expectation-Maximization, stochastic modelling

Parameter estimation is at the core of the processing tools studied and developed in the team. Applications range from the prediction of missing data or future data, to extracting some information about the data in order to perform efficient compression. More precisely, the data are assumed to be generated by a given stochastic data model, which is partially known. The set of possible models translates the a priori knowledge we have on the data and the best model has to be selected in this set. When the set of models or equivalently the set of probability laws is indexed by a parameter (scalar or vectorial), the model is said parametric and the model selection resorts to estimating the parameter. Estimation algorithms are therefore widely used at the encoder in order to analyze the data. In order to achieve high compression rates, the parameters are usually not sent and the decoder has to jointly select the model (i.e. estimate the parameters) and extract the information of interest.

3.3. Data Dimensionality Reduction

Manifolds, locally linear embedding, non-negative matrix factorization, principal component analysis

A fundamental problem in many data processing tasks (compression, classification, indexing) is to find a suitable representation of the data. It often aims at reducing the dimensionality of the input data so that tractable processing methods can then be applied. Well-known methods for data dimensionality reduction include the principal component analysis (PCA) and independent component analysis (ICA). The methodologies which will be central to several proposed research problems will instead be based on sparse representations, on locally linear embedding (LLE) and on the “non negative matrix factorization” (NMF) framework.

The objective of sparse representations is to find a sparse approximation of a given input data. In theory, given $A \in \mathbb{R}^{m \times n}$, $m < n$, and $b \in \mathbb{R}^m$ with $m << n$ and A is of full rank, one seeks the solution of $\min\{||x||_0 : Ax = b\}$, where $||x||_0$ denotes the L_0 norm of x, i.e. the number of non-zero components in x. There exist many solutions x to $Ax = b$. The problem is to find the sparsest, the one for which x has the fewest non zero components. In practice, one actually seeks an approximate and thus even sparser solution which satisfies $\min\{||x||_0 : ||Ax - b||_p \leq \rho\}$, for some $\rho \geq 0$, characterizing an admissible reconstruction error. The norm p is usually 2, but could be 1 or ∞ as well. Except for the exhaustive combinatorial approach, there is no known method to find the exact solution under general conditions on the dictionary A. Searching for this sparsest representation is hence unfeasible and both problems are computationally intractable. Pursuit algorithms have been introduced as heuristic methods which aim at finding approximate solutions to the above problem with tractable complexity.
Non negative matrix factorization (NMF) is a non-negative approximate data representation. NMF aims at finding an approximate factorization of a non-negative input data matrix V into non-negative matrices W and H, where the columns of W can be seen as *basis vectors* and those of H as coefficients of the linear approximation of the input data. Unlike other linear representations like principal component analysis (PCA) and independent component analysis (ICA), the non-negativity constraint makes the representation purely additive. Classical data representation methods like PCA or Vector Quantization (VQ) can be placed in an NMF framework, the differences arising from different constraints being placed on the W and H matrices. In VQ, each column of H is constrained to be unary with only one non-zero coefficient which is equal to 1. In PCA, the columns of W are constrained to be orthonormal and the rows of H to be orthogonal to each other. These methods of data-dependent dimensionality reduction will be at the core of our visual data analysis and compression activities.

3.4. Perceptual Modelling

Saliency, visual attention, cognition

The human visual system (HVS) is not able to process all visual information of our visual field at once. To cope with this problem, our visual system must filter out irrelevant information and reduce redundant information. This feature of our visual system is driven by a selective sensing and analysis process. For instance, it is well known that the greatest visual acuity is provided by the fovea (center of the retina). Beyond this area, the acuity drops down with the eccentricity. Another example concerns the light that impinges on our retina. Only the visible light spectrum lying between 380 nm (violet) and 760 nm (red) is processed. To conclude on the selective sensing, it is important to mention that our sensitivity depends on a number of factors such as the spatial frequency, the orientation or the depth. These properties are modeled by a sensitivity function such as the Contrast Sensitivity Function (CSF).

Our capacity of analysis is also related to our visual attention. Visual attention which is closely linked to eye movement (note that this attention is called overt while the covert attention does not involve eye movement) allows us to focus our biological resources on a particular area. It can be controlled by both top-down (i.e. goal-directed, intention) and bottom-up (stimulus-driven, data-dependent) sources of information. This detection is also influenced by prior knowledge about the environment of the scene. Implicit assumptions related to prior knowledge or beliefs form play an important role in our perception (see the example concerning the assumption that light comes from above-left). Our perception results from the combination of prior beliefs with data we gather from the environment. A Bayesian framework is an elegant solution to model these interactions. We define a vector \vec{v}_l of local measurements (contrast of color, orientation, etc.) and vector \vec{v}_c of global and contextual features (global features, prior locations, type of the scene, etc.). The salient locations S for a spatial position \vec{x} are then given by:

$$S(\vec{x}) = \frac{1}{p(\vec{v}_l | \vec{v}_c)} \times p(s, \vec{x} | \vec{v}_c)$$ (45)

The first term represents the bottom-up salience. It is based on a kind of contrast detection, following the assumption that rare image features are more salient than frequent ones. Most of existing computational models of visual attention rely on this term. However, different approaches exist to extract the local visual features as well as the global ones. The second term is the contextual priors. For instance, given a scene, it indicates which parts of the scene are likely the most salient.

3.5. Coding theory

OPTA limit (Optimum Performance Theoretically Attainable), Rate allocation, Rate-Distortion optimization, lossy coding, joint source-channel coding multiple description coding, channel modelization, oversampled frame expansions, error correcting codes

Source coding and channel coding theory is central to our compression and communication activities, in particular to the design of entropy codes and of error correcting codes. Another field in coding theory which has emerged in the context of sensor networks is Distributed Source Coding (DSC). It refers to the compression of correlated signals captured by different sensors which do not communicate between themselves. All the signals captured are compressed independently and transmitted to a central base station which has the capability to decode them jointly. DSC finds its foundation in the seminal Slepian-Wolf (SW) and Wyner-Ziv (WZ) theorems. Let us consider two binary correlated sources X and Y. If the two coders communicate, it is well known from Shannon’s theory that the minimum lossless rate for X and Y is given by the joint entropy $H(X,Y)$. Slepian and Wolf have established in 1973 that this lossless compression rate bound can be approached with a vanishing error probability for long sequences, even if the two sources are coded separately, provided that they are decoded jointly and that their correlation is known to both the encoder and the decoder. In 1976, Wyner and Ziv considered the problem of coding of two correlated sources X and Y, with respect to a fidelity criterion. They have established the rate-distortion function $R_{X|Y}^*(D)$ for the case where the side information Y is perfectly known to the decoder only. For a given target distortion D, $R_{X|Y}^*(D)$ in general verifies $R_{X|Y}(D) \leq R_{X|Y}^*(D) \leq R_X(D)$, where $R_{X|Y}(D)$ is the rate required to encode X if Y is available to both the encoder and the decoder, and R_X is the minimal rate for encoding X without SI. These results give achievable rate bounds, however the design of codes and practical solutions for compression and communication applications remain a widely open issue.

3. Research Program

3.1. Model expressivity and quantitative verification

The overall objective of this axis is to combine the quantitative aspects of models with a distributed/modular setting, while maintaining the tractability of verification and management objectives.

There is first an issue of modeling, to nicely weave time, costs and probabilities with concurrency and/or asynchronism. Several approaches are quite natural, as time(d) Petri nets, networks of timed automata, communicating synchronously or through FIFO, etc. But numerous bottlenecks remain. For example, so far, no probabilistic model nicely fits the notion of concurrency: there is no clean way to express that two components are stochastically independent between two rendez-vous.

Second, the models we want to manipulate should allow for quantitative verification. This covers two aspects: either the verification question is itself quantitative (compute an optimal scheduling policy) or boolean (decide whether the probability is greater than a threshold). Our goal is to explore the frontier between decidable and undecidable problems, or more pragmatically tractable and untractable problems. Of course, there is a tradeoff between the expressivity and the tractability of a model. Models that incorporate distributed aspects, probabilities, time, etc, are typically untractable. In such a case, abstraction or approximation techniques are a work around that we will explore.

In more details, our research program on this axis covers questions like:
- the verification of distributed timed systems,
- the verification of large scale probabilistic (dynamic) systems, with a focus on approximation techniques for such systems,
- the evaluation of the opacity/diagnosability degree of stochastic systems,
- the design of modular testing methods for large scale modular systems.

3.2. Management of large distributed systems

The generic terms of “supervision” or “management” of distributed systems cover problems like control (and controller synthesis), diagnosis, sensor placement, planning, optimization, (state) estimation, parameter identification, testing, etc. These questions have both an offline and an online facet. The literature is abundant for discrete event systems (DES), even in the distributed case, and for some quantitative aspects of DES in the centralized case (for example partially observed Markov decision processes (POMDP), probabilistic diagnosis/diagnosers, (max,+) approaches to timed automata). And there is a strong trend driving formal methods approaches towards quantitative models and questions like the most likely diagnosis, control for best average reward or for best QoS, optimal sensor placement, computing the probability of failure (un)detected, estimating the average impact of some failure or of a decision, etc. This second research axis focuses on these issues, and aims at developing new concepts and tools to master some already existing large scale systems, as telecommunication networks, cloud infrastructures, web-services, etc. (see the Application Domains section).

The objective being to address large systems, our work will be driven by two considerations: how to take advantage of the modularity of systems, and how to best approximate/abstract too complex systems by more tractable ones. We mention below several objectives that we consider as more important.

- Approximate management methods: this consists in exploring the relevance of ideas developed for large scale stochastic systems, as turbo-algorithms for example, in the setting of modular dynamic systems.
• Self-modeling: consists in managing large scale systems that are known by their building rules, but which specific managed instance is only discovered at runtime, and on the fly. The model of the managed system is built on-line, following the needs of the management algorithms.

• Distributed control: explores issues related to asynchronous communications between local controllers, and abstraction techniques to address large systems.

• Test and enforcement: considers coverage issues for the test of large systems, and the test and enforcement of properties for timed models, or for systems handling data.

3.3. Data driven systems

The term data-driven systems refers to systems the behavior of which depends both on explicit workflows (scheduling and durations of tasks, calls to possibly distant services,...) and on the data processed by the system (stored data, parameters of a request, results of a request,...). This family of systems covers workflows that convey data (business processes or information systems), transactional systems (web stores), large databases managed with rules (banking systems), collaborative environments (health systems), etc. These systems are distributed, modular, and open: they integrate components and sub-services distributed over the web and accept requests from clients. Our objective is to provide validation and supervision tools for such systems. To achieve this goal, we have to solve several challenging tasks:

• provide realistic models, and sound automated abstraction techniques, to reason on models that are reasonable abstractions of real implemented systems designed in low-level languages (for instance BPEL). These models should be able to encompass modularity, distribution, in a context where workflows and data aspects are tightly connected.

• provide tractable solutions for validation of models. Important questions that are frequently addressed (for instance safety properties or coverability) should remain decidable on our models, but also with a decent complexity.

• address design of data driven systems in a declarative way: declarative models are another way to handle data-driven systems. Rather than defining the explicit workflows and their effects on data, rule-based models state how actions are enacted in terms of the shape (pattern matching) or value of the current data. Such declarative models are well accepted in business processes (Companies such as IBM use their own model of business rules [60] to interact with their clients). Our approach, initiated in [21], is to design collaborative activities in terms of distributed structured documents, that can be seen as communicating rewriting systems. This modeling paradigm also includes models such as distributed Active XML [57], [59]. We think that distributed rewriting rules or attributed grammars can provide a practical but yet formal framework for maintenance documents.

• address QoS management in large reconfigurable systems:

Data driven distributed systems such as web services often have constraints in terms of QoS. This calls for an analysis of quantitative features that appear mostly with QoS properties, and for reconfiguration techniques to meet QoS contracts, building from the experience in our team on QoS contracts composition [61] and planning [56], [58] to propose optimization and reconfiguration schemes.
3. Research Program

3.1. Overview

Basic research is guided by the challenges raised before: to classify and enrich the models, to automate reformulation and resolution, to dissociate declarative and procedural knowledge, to come up with theories and tools that can handle problems involving both continuous and discrete variables, to develop modelling tools and to come up with solving tools that scale well. On the one hand, classification aspects of this research are integrated within a knowledge base about combinatorial problem solving: the global constraint catalog (see http://www.emn.fr/x-info/sdemasse/gccat/index.html). On the other hand, solving aspects are capitalized within the constraint solving system CHOCO. Lastly, within the framework of its activities of valorisation, teaching and of partnership research, the team uses constraint programming for solving various concrete problems. The challenge is, on one side to increase the visibility of the constraints in the others disciplines of computer science, and on the other side to contribute to a broader diffusion of the constraint programming in the industry.

3.2. Fundamental Research Topics

This part presents the research topics investigated by the project:

- Global Constraints Classification, Reformulation and Filtering,
- Convergence between Discrete and Continuous,
- Dynamic, Interactive and over Constrained Problems,
- Solvers.

These research topics are in fact not independent. The work of the team thus frequently relates transverse aspects such as explained global constraints, Benders decomposition and explanations, flexible and dynamic constraints, linear models and relaxations of constraints.

3.2.1. Constraints Classification, Reformulation and Filtering

In this context our research is focused (a) first on identifying recurring combinatorial structures that can be used for modelling a large variety of optimization problems, and (b) exploit these combinatorial structures in order to come up with efficient algorithms in the different fields of optimization technology. The key idea for achieving point (b) is that many filtering algorithms both in the context of Constraint Programming, Mathematical Programming and Local Search can be interpreted as the maintenance of invariants on specific domains (e.g., graph, geometry). The systematic classification of global constraints and of their relaxation brings a synthetic view of the field. It establishes links between the properties of the concepts used to describe constraints and the properties of the constraints themselves. Together with SICS, the team develops and maintains a catalog of global constraints, which describes the semantics of more than 350 constraints, and proposes a unified mathematical model for expressing them. This model is based on graphs, automata and logic formulae and allows to derive filtering methods and automatic reformulation for each constraint in a unified way (see http://www.emn.fr/x-info/sdemasse/gccat/index.html). We consider hybrid methods (i.e., methods that involve more than one optimization technology such as constraint programming, mathematical programming or local search), to draw benefit from the respective advantages of the combined approaches. More fundamentally, the study of hybrid methods makes it possible to compare and connect strategies of resolution specific to each approach for then conceiving new strategies. Beside the works on classical, complete resolution techniques, we also investigate local search techniques from a mathematical point of view. These partly random algorithms have been proven very efficient in practice, although we have little theoretical knowledge on their behaviour, which often makes them problem-specific. Our research in that area is focused on a probabilistic model of
local search techniques, from which we want to derive quantified information on their behaviour, in order to use this information directly when designing the algorithms and exploit their performances better. We also consider algorithms that maintain local and global consistencies, for more specific models. Having in mind the trade off between genericity and effectiveness, the effort is put on the efficiency of the algorithms with guarantee on the produced levels of filtering. This effort results in adapting existing techniques of resolution such as graph algorithms. For this purpose we identify necessary conditions of feasibility that can be evaluated by efficient incremental algorithms. Genericity is not neglected in these approaches: on the one hand the constraints we focus on are applicable in many contexts (for example, graph partitioning constraints can be used both in logistics and in phylogeny); on the other hand, this work led to study the portability of such constraints and their independence with specific solvers. This research orientation gathers various work such as strong local consistencies, graph partitioning constraints, geometrical constraints, and optimization and soft constraints. Within the perspective to deal with complex industrial problems, we currently develop meta constraints (e.g. \texttt{geost}) handling all together the issues of large-scale problems, dynamic constraints, combination of spatial and temporal dimensions, expression of business rules described with first order logic.

3.2.2. Convergence between Discrete and Continuous

Many industrial problems mix continuous and discrete aspects that respectively correspond to physical (e.g., the position, the speed of an object) and logical (e.g., the identifier, the nature of an object) elements. Typical examples of problems are for instance:

- **Geometrical placement problems** where one has to place in space a set of objects subject to various geometrical constraints (i.e., non-overlapping, distance). In this context, even if the positions of the objects are continuous, the structure of optimal configurations has a discrete nature.

- **Trajectory and mission planning problems** where one has to plan and synchronize the moves of several teams in order to achieve some common goal (i.e., fire fighting, coordination of search in the context of rescue missions, surveillance missions of restricted or large areas).

- **Localization problems in mobile robotic** where a robot has to plan alone (only with its own sensors) its trajectory. This kind of problematic occurs in situations where the GPS cannot be used (e.g., under water or Mars exploration) or when it is not precise enough (e.g., indoor surveillance, observation of contaminated sites).

Beside numerical constraints that mix continuous and integer variables we also have global constraints that involve both type of variables. They typically correspond to graph problems (i.e., graph colouring, domination in a graph) where a graph is dynamically constructed with respect to geometrical and-or temporal constraints. In this context, the key challenge is avoiding decomposing the problem in a discrete and continuous parts as it is traditionally the case. As an illustrative example consider the wireless network deployment problem. On the one hand, the continuous part consists of finding out where to place a set of antenna subject to various geometrical constraints. On the other hand, by building an interference graph from the positions of the antenna, the discrete part consists of allocating frequencies to antenna in order to avoid interference. In the context of convergence between discrete and continuous variables, our goals are:

- First to identify and compare typical class of techniques that are used in the context of continuous and discrete solvers.

- To see how one can unify and/or generalize these techniques in order to handle in an integrated way continuous and discrete constraints within the same framework.

3.2.3. Dynamic, Interactive and over Constrained Problems

Some industrial applications are defined by a set of constraints which may change over time, for instance due to an interaction with the user. Many other industrial applications are over-constrained, that is, they are defined by set of constraints which are more or less important and cannot be all satisfied at the same time. Generic, dedicated and explanation-based techniques can be used to deal efficiently with such applications. Especially, these applications rely on the notion of soft constraints that are allowed to be (partially) violated. The generic concept that captures a wide variety of soft constraints is the violation measure, which is coupled with specific resolution techniques. Lastly, soft constraints allow to combine the expressive power of global constraints with local search frameworks.
3.2.4. Solvers

Our theoretical work is systematically validated by concrete experimentations. We have in particular for that purpose the CHOCO constraint platform. The team develops and maintains CHOCO initially with the assistance of the laboratory e-lab of Bouygues (G. Rochart), the company Amadeus (F. Laburthe), and others researchers such as H. Cambazard (4C, INP Grenoble). Since 2008 the main developments are done by C. Prud’Homme and X. Lorca. The functionalities of CHOCO are gradually extended with the outcomes of our works: design of constraints, analysis and visualization of explanations, etc. The open source CHOCO library is downloaded on average 450 times each month since 2006. CHOCO is developed in line with the research direction of the team, in an open-minded scientific spirit. Contrarily to other solvers where the efficiency often relies on problem-specific algorithms, CHOCO aims at providing the users both with reusable techniques (based on an up-to-date implementation of the global constraint catalogue) and with a variety of tools to ease the use of these techniques (clear separation between model and resolution, event-based solver, management of the over-constrained problems, explanations, etc.). Since 2009 year, due to the hiring of G. Chabert, the team is also involved in the development of the continuous constraint solver IBEX. These developments led us to new research topics, suitable for the implementation of discrete and continuous constraint solving systems: portability of the constraints, management of explanations, incrementality and recalculation. They partially use aspect programming (in collaboration with the InriaASCOLA team). This work around the design and the development of solvers thus forms the fourth direction of basic research of the project.
3. Research Program

3.1. Image description

In most contexts where images are to be compared, a direct comparison is impossible. Images are compressed in different formats, most formats are error-prone, images are re-sized, cropped, etc. The solution consists in computing descriptors, which are invariant to these transformations.

The first description methods associate a unique global descriptor with each image, e.g., a color histogram or correlogram, a texture descriptor. Such descriptors are easy to compute and use, but they usually fail to handle cropping and cannot be used for object recognition. The most successful approach to address a large class of transformations relies on the use of local descriptors, extracted on regions of interest detected by a detector, for instance the Harris detector [87] or the Difference of Gaussian method proposed by David Lowe [89].

The detectors select a square, circular or elliptic region that is described in turn by a patch descriptor, usually referred to as a local descriptor. The most established description method, namely the SIFT descriptor [89], was shown robust to geometric and photometric transforms. Each local SIFT descriptor captures the information provided by the gradient directions and intensities in the region of interest in each region of a 4×4 grid, thereby taking into account the spatial organization of the gradient in a region. As a matter of fact, the SIFT descriptor has become a standard for image and video description.

Local descriptors can be used in many applications: image comparison for object recognition, image copy detection, detection of repeats in television streams, etc. While they are very reliable, local descriptors are not without problems. As many descriptors can be computed for a single image, a collection of one million images generates in the order of a billion descriptors. That is why specific indexing techniques are required.

The problem of taking full advantage of these strong descriptors on a large scale is still an open and active problem. Most of the recent techniques consist in computing a global descriptor from local ones, such as proposed in the so-called bag-of-visual-word approach [96]. Recently, global description computed from local descriptors has been shown successful in breaking the complexity problem. We are active in designing methods that aggregate local descriptors into a single vector representation without losing too much of the discriminative power of the descriptors.

3.2. Corpus-based text description and machine learning

Our work on textual material (textual documents, transcriptions of speech documents, captions in images or videos, etc.) is characterized by a chiefly corpus-based approach, as opposed to an introspective one. A corpus is for us a huge collection of textual documents, gathered or used for a precise objective. We thus exploit specialized (abstracts of biomedical articles, computer science texts, etc.) or non specialized (newspapers, broadcast news, etc.) collections for our various studies. In TEXMEX, according to our applications, different kinds of knowledge can be extracted from the textual material. For example, we automatically extract terms characteristic of each successive topic in a corpus with no a priori knowledge; we produce representations for documents in an indexing perspective [95]; we acquire lexical resources from the collections (morphological families, semantic relations, translation equivalences, etc.) in order to better grasp relations between segments of texts in which a same idea is expressed with different terms or in different languages...

In the domain of the corpus-based text processing, many researches have been undergone in the last decade. While most of them are essentially based on statistical methods, symbolic approaches also present a growing interest [82]. For our various problems involving language processing, we use both approaches, making the most of existing machine learning techniques or proposing new ones. Relying on advantages of both methods, we aim at developing machine learning solutions that are automatic and generic enough to make it possible to extract, from a corpus, the kind of elements required by a given task.
3.3. Stochastic models for multimodal analysis

Describing multimedia documents, i.e., documents that contain several modalities (e.g., text, images, sound) requires taking into account all modalities, since they contain complementary pieces of information. The problem is that the various modalities are only weakly synchronized, they do not have the same rate and combining the information that can be extracted from them is not obvious. Of course, we would like to find generic ways to combine these pieces of information. Stochastic models appear as a well-dedicated tool for such combinations, especially for image and sound information.

Markov models are composed of a set of states, of transition probabilities between these states and of emission probabilities that provide the probability to emit a given symbol at a given state. Such models allow generating sequences. Starting from an initial state, they iteratively emit a symbol and then switch in a subsequent state according to the respective probability distributions. These models can be used in an indirect way. Given a sequence of symbols (called observations), hidden Markov models (HMMs) [93] aim at finding the best sequence of states that can explain this sequence. The Viterbi algorithm provides an optimal solution to this problem.

For HMMs, the structure and probability distributions need to be determined. They can be fixed manually (this is the case for the structure: number of states and their topology), or estimated from example data (this is often the case for the probability distributions). Given a document, such an HMM can be used to retrieve its structure from the features that can be extracted. As a matter of fact, these models allow an audiovisual analysis of the videos, the symbols being composed of a video and an audio component.

Two of the main drawbacks of the HMMs is that they can only emit a unique symbol per state, and that they imply that the duration in a given state follows an exponential distribution. Such drawbacks can be circumvented by segment models [91]. These models are an extension of HMMs were each state can emit several symbols and contains a duration model that governs the number of symbols emitted (or observed) for this state. Such a scheme allows us to process features at different rates.

Bayesian networks are an even more general model family. Static Bayesian networks [85] are composed of a set of random variables linked by edges indicating their conditional dependency. Such models allow us to learn from example data the distributions and links between the variables. A key point is that both the network structure and the distributions of the variables can be learned. As such, these networks are difficult to use in the case of temporal phenomena. Dynamic Bayesian networks [90] are a generalization of the previous models. Such networks are composed of an elementary network that is replicated at each time stamp. Duration variable can be added in order to provide some flexibility on the time processing, like it was the case with segment models. While HMMs and segment models are well suited for dense segmentation of video streams, Bayesian networks offer better capabilities for sparse event detection. Defining a trash state that corresponds to non event segments is a well known problem is speech recognition: computing the observation probabilities in such a state is very difficult.

3.4. Multidimensional indexing techniques

Techniques for indexing multimedia data are needed to preserve the efficiency of search processes as soon as the data to search in becomes large in volume and/or in dimension. These techniques aim at reducing the number of I/Os and CPU cycles needed to perform a search. Multi-dimensional indexing methods either perform exact nearest neighbor (NN) searches or approximate NN-search schemes. Often, approximate techniques are faster as speed is traded off against accuracy.

Traditional multidimensional indexing techniques typically group high dimensional features vectors into cells. At querying time, few such cells are selected for searching, which, in turn, provides performance as each cell contains a limited number of vectors [84]. Cell construction strategies can be classified in two broad categories: data partitioning indexing methods that divide the data space according to the distribution of data, and space partitioning indexing methods that divide the data space along predefined lines and store each descriptor in the appropriate cell.
Unfortunately, the “curse of dimensionality” problem strongly impacts the performance of many techniques. Some approaches address this problem by simply relying on dimensionality reduction techniques. Other approaches abort the search process early, after having accessed an arbitrary and predetermined number of cells. Some other approaches improve their performance by considering approximations of cells (with respect to their true geometry for example).

Recently, several approaches make use of quantization operations. This, somehow, transforms costly nearest neighbor searches in multidimensional space into efficient uni-dimensional accesses. One seminal approach, the LSH technique [86], uses a structured scalar quantizer made of projections on segmented random lines, acting as spatial locality sensitive hash-functions. In this approach, several hash functions are used such that co-located vectors are likely to collide in buckets. Other approaches use unstructured quantization schemes, sometimes together with a vector aggregation mechanism [96] to boost performance.

3.5. Data mining methods

Data Mining (DM) is the core of knowledge discovery in databases whatever the contents of the databases are. Here, we focus on some aspects of DM we use to describe documents and to retrieve information. There are two major goals to DM: description and prediction. The descriptive part includes unsupervised and visualization aspects while prediction is often referred to as supervised mining.

The description step very often includes feature extraction and dimensional reduction. As we deal mainly with contingency tables crossing "documents and words", we intensively use factorial correspondence analysis. "Documents" in this context can be a text as well as an image.

Correspondence analysis is a descriptive/exploratory technique designed to analyze simple two-way and multi-way tables containing some measure of correspondence between the rows and columns. The results provide information, which is similar in nature to those produced by factor analysis techniques, and they allow one to explore the structure of categorical variables included in the table. The most common kind of table of this type is the two-way frequency cross-tabulation table. There are several parallels in interpretation between correspondence analysis and factor analysis: suppose one could find a lower-dimensional space, in which to position the row points in a manner that retains all, or almost all, of the information about the differences between the rows. One could then present all information about the similarities between the rows in a simple 1, 2, or 3-dimensional graph. The presentation and interpretation of very large tables could greatly benefit from the simplification that can be achieved via correspondence analysis (CA).

One of the most important concepts in CA is inertia, i.e., the dispersion of either row points or column points around their gravity center. The inertia is linked to the total Pearson χ^2 for the two-way table. Some rows and/or some columns will be more important due to their quality in a reduced dimensional space and their relative inertia. The quality of a point represents the proportion of the contribution of that point to the overall inertia that can be accounted for by the chosen number of dimensions. However, it does not indicate whether or not, and to what extent, the respective point does in fact contribute to the overall inertia (χ^2 value). The relative inertia represents the proportion of the total inertia accounted for by the respective point, and it is independent of the number of dimensions chosen by the user. We use the relative inertia and quality of points to characterize clusters of documents. The outputs of CA are generally very large. At this step, we use different visualization methods to focus on the most important results of the analysis.

In the supervised classification task, a lot of algorithms can be used; the most popular ones are the decision trees and more recently the Support Vector Machines (SVM). SVMs provide very good results in supervised classification but they are used as "black boxes" (their results are difficult to explain). We use graphical methods to help the user understanding the SVM results, based on the data distribution according to the distance to the separating boundary computed by the SVM and another visualization method (like scatter matrices or parallel coordinates) to try to explain this boundary. Other drawbacks of SVM algorithms are their computational cost and large memory requirement to deal with very large datasets. We have developed a set of incremental and parallel SVM algorithms to classify very large datasets on standard computers.
3. Research Program

3.1. Model Driven Engineering for Distributed Software

Objects, design patterns, software components, contracts, aspects, models, UML, product lines

3.1.1. Software Product Lines

It is seldom the case nowadays that we can any longer deliver software systems with the assumption that one-size-fits-all. We have to handle many variants accounting not only for differences in product functionalities (range of products to be marketed at different prices), but also for differences in hardware (e.g.; graphic cards, display capacities, input devices), operating systems, localization, user preferences for GUI (“skins”). Obviously, we do not want to develop from scratch and independently all of the variants the marketing department wants. Furthermore, all of these variant may have many successive versions, leading to a two-dimensional vision of product-lines.

3.1.2. Object-Oriented Software Engineering

The object-oriented approach is now widespread for the analysis, the design, and the implementation of software systems. Rooted in the idea of modeling (through its origin in Simula), object-oriented analysis, design and implementation takes into account the incremental, iterative and evolutive nature of software development [80], [78]: large software system are seldom developed from scratch, and maintenance activities represent a large share of the overall development effort.

In the object-oriented standard approach, objects are instances of classes. A class encapsulates a single abstraction in a modular way. A class is both closed, in the sense that it can be readily instanciated and used by clients objects, and open, that is subject to extensions through inheritance [82].

3.1.3. Design Pattern

Since by definition objects are simple to design and understand, complexity in an object-oriented system is well known to be in the collaboration between objects, and large systems cannot be understood at the level of classes and objects. Still these complex collaborations are made of recurring patterns, called design patterns. The idea of systematically identifying and documenting design patterns as autonomous entities was born in the late 80’s. It was brought into the mainstream by such people as Beck, Ward, Coplien, Booch, Kerth, Johnson, etc. (known as the Hillside Group). However the main event in this emerging field was the publication, in 1995, of the book Design Patterns: Elements of Reusable Object Oriented Software by the so-called Gang of Four (GoF), that is E. Gamma, R. Helm, R. Johnson and J. Vlissides [79]. Today, design patterns are widely accepted as useful tools for guiding and documenting the design of object-oriented software systems. Design patterns play many roles in the development process. They provide a common vocabulary for design, they reduce system complexity by naming and defining abstractions, they constitute a base of experience for building reusable software, and they act as building blocks from which more complex designs can be built. Design patterns can be considered reusable micro-architectures that contribute to an overall system architecture. Ideally, they capture the intent behind a design by identifying the component objects, their collaborations, and the distribution of responsibilities. One of the challenges addressed in the Triskell project is to develop concepts and tools to allow their formal description and their automatic application.

3.1.4. Component

The object concept also provides the basis for software components, for which Szyperski’s definition [88] is now generally accepted, at least in the industry:
A software component is a unit of composition with contractually specified interfaces and explicit context dependencies only. A software component can be deployed independently and is subject to composition by third party.

Component based software relies on assemblies of components. Such assemblies rely in turn on fundamental mechanisms such as precise definitions of the mutual responsibility of partner components, interaction means between components and their non-component environment and runtime support (e.g. .Net, EJB, Corba Component Model CCM, OSGi or Fractal).

Components help reducing costs by allowing reuse of application frameworks and components instead of redeveloping applications from scratch (product line approach). But more important, components offer the possibility to radically change the behaviors and services offered by an application by substitution or addition of new components, even a long time after deployment. This has a major impact of software lifecycle, which should now handle activities such as the design of component frameworks, the design of reusable components as deployment units, the validation of component compositions coming from various origins and the component life-cycle management.

Empirical methods without real component composition models have appeared during the emergence of a real component industry (at least in the Windows world). These methods are now clearly the cause of untractable validation and of integration problems that can not be transposed to more critical systems (see for example the accidental destruction of Ariane 501 [81]).

Providing solutions for formal component composition models and for verifiable quality (notion of trusted components) are especially relevant challenges. Also the methodological impact of component-based development (for example within the maturity model defined by the SEI) is also worth attention.

3.1.5. Contracts

Central to this trusted component notion is the idea of contract. A software contract captures mutual requirements and benefits among stake-holder components, for example between the client of a service and its suppliers (including subcomponents). Contracts strengthen and deepen interface specifications. Along the lines of abstract data type theory, a common way of specifying software contracts is to use boolean assertions called pre- and post-conditions for each service offered, as well as class invariants for defining general consistency properties. Then the contract reads as follows: The client should only ask a supplier for a service in a state where the class invariant and the precondition of the service are respected. In return, the supplier promises that the work specified in the post-condition will be done, and the class invariant is still respected. In this way rights and obligations of both client and supplier are clearly delineated, along with their responsibilities. This idea was first implemented in the Eiffel language [83] under the name Design by Contract, and is now available with a range of expressive power into several other programming languages (such as Java) and even in the Unified Modeling Language (UML) with the Object Constraint Language (OCL) [89]. However, the classical predicate based contracts are not enough to describe the requirements of modern applications. Those applications are distributed, interactive and they rely on resources with random quality of service. We have shown that classical contracts can be extended to take care of synchronization and extrafunctional properties of services (such as throughput, delays, etc) [77].

3.1.6. Models and Aspects

As in other sciences, we are increasingly resorting to modelling to master the complexity of modern software development. According to Jeff Rothenberg,

> Modeling, in the broadest sense, is the cost-effective use of something in place of something else for some cognitive purpose. It allows us to use something that is simpler, safer or cheaper than reality instead of reality for some purpose. A model represents reality for the given purpose; the model is an abstraction of reality in the sense that it cannot represent all aspects of reality. This allows us to deal with the world in a simplified manner, avoiding the complexity, danger and irreversibility of reality.

So modeling is not just about expressing a solution at a higher abstraction level than code. This has been useful in the past (assembly languages abstracting away from machine code, 3GL abstracting over assembly languages, etc.) and it is still useful today to get a holistic view on a large C++ program. But modeling goes well beyond that.

Modeling is indeed one of the touchstone of any scientific activity (along with validating models with respect to experiments carried out in the real world). Note by the way that the specificity of engineering is that engineers build models of artefacts that usually do not exist yet (with the ultimate goal of building them).

In engineering, one wants to break down a complex system into as many models as needed in order to address all the relevant concerns in such a way that they become understandable enough. These models may be expressed with a general purpose modeling language such as the Unified Modeling Language (UML), or with Domain Specific Languages when it is more appropriate.

Each of these models can be seen as the abstraction of an aspect of reality for handling a given concern. The provision of effective means for handling such concerns makes it possible to establish critical trade-offs early on in the software life cycle, and to effectively manage variation points in the case of product-lines.

Note that in the Aspect Oriented Programming community, the notion of aspect is defined in a slightly more restricted way as the modularization of a cross-cutting concern. If we indeed have an already existing “main” decomposition paradigm (such as object orientation), there are many classes of concerns for which clear allocation into modules is not possible (hence the name “cross-cutting”). Examples include both allocating responsibility for providing certain kinds of functionality (such as login) in a cohesive, loosely coupled fashion, as well as handling many non-functional requirements that are inherently cross-cutting e.g.; security, mobility, availability, distribution, resource management and real-time constraints.

However now that aspects become also popular outside of the mere programming world [87], there is a growing acceptance for a wider definition where an aspect is a concern that can be modularized. The motivation of these efforts is the systematic identification, modularization, representation, and composition of these concerns, with the ultimate goal of improving our ability to reason about the problem domain and the corresponding solution, reducing the size of software model and application code, development costs and maintenance time.

3.1.7. Design and Aspect Weaving

So really modeling is the activity of separating concerns in the problem domain, an activity also called analysis. If solutions to these concerns can be described as aspects, the design process can then be characterized as a weaving of these aspects into a detailed design model (also called the solution space). This is not new: this is actually what designers have been effectively doing forever. Most often however, the various aspects are not explicit, or when there are, it is in the form of informal descriptions. So the task of the designer is to do the weaving in her head more or less at once, and then produce the resulting detailed design as a big tangled program (even if one decomposition paradigm, such as functional or object-oriented, is used). While it works pretty well for small problems, it can become a major headache for bigger ones.

Note that the real challenge here is not on how to design the system to take a particular aspect into account: there is a huge design know-how in industry for that, often captured in the form of Design Patterns (see above). Taking into account more than one aspect at the same time is a little bit more tricky, but many large scale successful projects in industry are there to show us that engineers do ultimately manage to sort it out.

The real challenge in a product-line context is that the engineer wants to be able to change her mind on which version of which variant of any particular aspect she wants in the system. And she wants to do it cheaply, quickly and safely. For that, redoing by hand the tedious weaving of every aspect is not an option.

3.1.8. Model Driven Engineering

Usually in science, a model has a different nature that the thing it models (“do not take the map for the reality” as Sun Tse put it many centuries ago). Only in software and in linguistics a model has the same nature as the thing it models. In software at least, this opens the possibility to automatically derive software from its
model. This property is well known from any compiler writer (and others), but it was recently made quite popular with an OMG initiative called the Model Driven Architecture (MDA). This requires that models are no longer informal, and that the weaving process is itself described as a program (which is as a matter of facts an executable meta-model) manipulating these models to produce a detailed design that can ultimately be transformed to code or at least test suites.

The OMG has built a meta-data management framework to support the MDA. It is mainly based on a unique M3 “meta-meta-model” called the Meta-Object Facility (MOF) and a library of M2 meta-models, such as the UML (or SPEM for software process engineering), in which the user can base his M1 model.

The MDA core idea is that it should be possible to capitalize on platform-independent models (PIM), and more or less automatically derive platform-specific models (PSM) –and ultimately code– from PIM through model transformations. But in some business areas involving fault-tolerant, distributed real-time computations, there is a growing concern that the added value of a company not only lies in its know-how of the business domain (the PIM) but also in the design know-how needed to make these systems work in the field (the transformation to go from PIM to PSM). Reasons making it complex to go from a simple and stable business model to a complex implementation include:

- Various modeling languages used beyond UML,
- As many points of views as stakeholders,
- Deliver software for (many) variants of a platform,
- Heterogeneity is the rule,
- Reuse technical solutions across large product lines (e.g. fault tolerance, security, etc.),
- Customize generic transformations,
- Compose reusable transformations,
- Evolve and maintain transformations for 15+ years.

This wider context is now known as Model Driven Engineering.
3. Research Program

3.1. Research Program

The scientific foundations of our team concern the development of new processing algorithms in the field of medical image computing: image fusion (registration and visualization), image segmentation and analysis, management of image related information. Since this is a very large domain, which can endorse numerous types of application; for seek of efficiency, the purpose of our methodological work primarily focuses on clinical aspects and for the most part on head and neck related diseases. In addition, we emphasize our research efforts on the neuroimaging domain. Concerning the scientific foundations, we have pushed our research efforts:

- In the field of image fusion and image registration (rigid and deformable transformations) with a special emphasis on new challenging registration issues, especially when statistical approaches based on joint histogram cannot be used or when the registration stage has to cope with loss or appearance of material (like in surgery or in tumour imaging for instance).
- In the field of image analysis and statistical modelling with a new focus on image feature and group analysis problems. A special attention was also to develop advanced frameworks for the construction of atlases and for automatic and supervised labelling of brain structures.
- In the field of image segmentation and structure recognition, with a special emphasis on the difficult problems of i) image restoration for new imaging sequences (new Magnetic Resonance Imaging protocols, 3D ultrasound sequences...), and ii) structure segmentation and labelling based on shape, multimodal and statistical information.
- Following the Neurobase national project where we had a leading role, we wanted to enhance the development of distributed and heterogeneous medical image processing systems.

As shown in figure 1, research activities of the VISAGES U746 team are tightly coupling observations and models through integration of clinical and multi-scale data, phenotypes (cellular, molecular or structural patterns). We work on personalized models of central nervous system organs and pathologies, and intend to confront these models to clinical investigation studies for quantitative diagnosis, prevention of diseases, therapy planning and validation. This approaches developed in a translational framework where the data integration process to build the models inherits from specific clinical studies, and where the models are assessed on prospective clinical trials for diagnosis and therapy planning. All of this research activity is conducted in tight links with the Neurinfo imaging platform environments and the engineering staff of the platform. In this context, some of our major challenges in this domain concern:

- The elaboration of new descriptors to study the brain structure and function (e.g. variation of brain perfusion with and without contrast agent, evolution in shape and size of an anatomical structure in relation with normal, pathological or functional patterns, computation of asymmetries from shapes and volumes).
- The integration of additional spatio-temporal imaging sequences covering a larger range of observation, from the molecular level to the organ through the cell (Arterial Spin Labeling, diffusion MRI, MR relaxometry, MR cell labeling imaging, PET molecular imaging, . . .). This includes the elaboration of new image descriptors coming from spatio-temporal quantitative or contrast-enhanced MRI.
- The creation of computational models through data fusion of molecular, cellular, structural and functional image descriptors from group studies of normal and/or pathological subjects.
- The evaluation of these models on acute pathologies especially for the study of degenerative, psychiatric or developmental brain diseases (e.g. Multiple Sclerosis, Epilepsy, Parkinson, Dementia, Strokes, Depression, Schizophrenia, . . .) in a translational framework.
Figure 1. The major overall scientific foundation of the team concerns the integration of data from the Imaging source to the patient at different scales: from the cellular or molecular level describing the structure and function, to the functional and structural level of brain structures and regions, to the population level for the modelling of group patterns and the learning of group or individual imaging markers.
In terms of methodological developments, we are particularly working on statistical methods for multidimensional image analysis, and feature selection and discovery, which includes:

- The development of specific shape and appearance models, construction of atlases better adapted to a patient or a group of patients in order to better characterize the pathology;
- The development of advanced segmentation and modeling methods dealing with longitudinal and multidimensional data (vector or tensor fields), especially with the integration of new prior models to control the integration of multiscale data and aggregation of models;
- The development of new models and probabilistic methods to create water diffusion maps from MRI;
- The integration of machine learning procedures for classification and labeling of multidimensional features (from scalar to tensor fields and/or geometric features): pattern and rule inference and knowledge extraction are key techniques to help in the elaboration of knowledge in the complex domains we address;
- The development of new dimensionality reduction techniques for problems with massive data, which includes dictionary learning for sparse model discovery. Efficient techniques have still to be developed to properly extract from a raw mass of images derived data that are easier to analyze.