Activity Report 2013

Section Application Domains
1. AXIS Project-Team ... 5
2. GALAAD Project-Team .. 8

ALGORITHMS, PROGRAMMING, SOFTWARE AND ARCHITECTURE
3. AOSTE Project-Team ... 9
4. GEOMETRICA Project-Team .. 11
5. INDES Project-Team .. 12
6. MARELLE Project-Team .. 13

APPLIED MATHEMATICS, COMPUTATION AND SIMULATION
7. APICS Project-Team ... 14
8. MCTAO Project-Team .. 19
9. NACHOS Project-Team .. 22
10. OPALE Project-Team .. 28
11. SCIPORT Team ... 30
12. TOSCA Project-Team .. 33

DIGITAL HEALTH, BIOLOGY AND EARTH
13. ABS Project-Team .. 35
14. ASCLEPIOS Project-Team (section vide) 36
15. ATHENA Project-Team .. 37
16. BIOCORE Project-Team .. 39
17. CASTOR Team ... 41
18. COFFEE Project-Team .. 42
19. DEMAR Project-Team .. 44
20. MODEMIC Project-Team .. 45
21. MORPHEME Project-Team (section vide) 46
22. NEUROMATHCOMP Project-Team (section vide) 47
23. VIRTUAL PLANTS Project-Team (section vide) 48

NETWORKS, SYSTEMS AND SERVICES, DISTRIBUTED COMPUTING
24. COATI Project-Team .. 49
25. DIANA Team ... 50
26. FOCUS Project-Team .. 53
27. LOGNET Team ... 54
28. MAESTRO Project-Team ... 55
29. OASIS Project-Team .. 56

PERCEPTION, COGNITION AND INTERACTION
30. AYIN Team ... 57
31. GRAPHIK Project-Team ... 58
32. LAGADIC Project-Team ... 59
33. REVES Project-Team (section vide) 60
34. STARS Project-Team ... 61
35. TITANE Team ... 63
36. WIMMICS Project-Team .. 64
37. ZENITH Project-Team .. 66

PERCEPTION, COGNITION, INTERACTION

38. COPRIN Project-Team .. 68
4. Application Domains

4.1. Panorama: Living Labs, Smart Cities

AxIS addresses any applicative field which has the following features:

a) requiring usage/data storage, preprocessing and analysis tools
 • for designing, evaluating and improving huge evolving hypermedia information systems (mainly Web-based ISs), for which end-users are of primary concern,
 • for a better understanding of the usage of a service/product via data mining techniques and knowledge management,
 • for social network analysis (for example in Web 2.0 applications, Business Intelligence, Sustainable Development, etc.).

b) requiring user-driven innovation methods.

Even if our know-how, methods and algorithms have a cross domain applicability, our team chooses to focus on Living Lab projects (and mainly related to Sustainable Development for Smart Cities) [13], [12] which imply user involvement for the generation of future services/products. Indeed, following the Rio Conference (1992) and the Agenda for the 21st Century, local territories are now directly concerned with the set up of actions for a sustainable development. In this frame, ICT tools are supposed to be very efficient to re-engage people in the democratic process and to make decision-making more transparent, inclusive and accessible. So, sustainable development is closely associated with citizen participation. The emerging research field of e-democracy (so called Digital Democracy or eParticipation), concerned with the use of communications technologies such as the Internet to enhance the democratic processes is now a very active field. Though still in its infancy, a lot of literature is already available (see for instance: http://itc.napier.ac.uk/ITC/publications.asp for a global view of work in Europe) and numerous different topics are addressed in the field.

Our experience particularly stressed on the following applicative domains:

• Transportation systems & Mobility (cf. Section 4.2),
• Tourism (cf. Section 4.3),
• User Involvement in Silver Economy, Environment, Energy and e-government (cf. Section 4.4).

4.2. Transportation Systems & Mobility

Major recent evolutions in Intelligent Transportation Systems (ITS) are linked to rapid changes in communication technologies, such as ubiquitous computing, semantic web, contextual design. A strong emphasis is now put on mobility improvements. In addition to development of sustainable transportation systems (better ecological vehicles’ performance, reduction of impacts on town planning etc.) these improvements concern also mobility management, that is specific measures to encourage people to adopt new mobility behaviour such as public transportation services rather than their personal car. These prompting measures concern for instance the quality of traveller’s information systems for trip planning, the ability to provide real time recommendations for changing transportation means according to traffic information, and the quality of embedded services in vehicles to provide enhanced navigation aids with contextualised and personalised information.
Since 2004, AxIS has been concerned with mobility projects:

- **PREDIT (2004-2007):** The MobiVIP project has been an opportunity to collaborate with local Institutions ("Communauté d’Agglomération de Sophia Antipolis - CASA") and SMEs (VU Log) and to apply AxIS’ know-how in data and web mining to the field of transportation systems.

- Traveller’s information systems and recommender systems have been studied with the evaluation of two CASA web sites: the “Envibus” web site which provides information about a bus network and the “Otto&co” web site support car-sharing.

- Advanced transportation systems has been studied in PREDIT TIC TAC (2010-2012): this project aimed at optimizing travel time by providing in an area with weak transportation services, a just in time on demand shuttle based on real time information. It was for AxIS the opportunity to experiment user implication in the design of a new travel information system called MOBILTIC.

- User Experience: in the ELLIOT project (2011-2013), the Mobility scenario is addressed in relation to information on air quality and noise and the use of Internet of Things (IoT).

4.3. Tourism

As tourism is a highly competitive domain, local tourism authorities have developed Web sites in order to offer services to tourists. Unfortunately, the way information is organised does not necessarily meet Internet users expectations and numerous improvements are necessary to enhance their understanding of visited sites. Thus, even if only for economical reasons, the quality and the diversity of tourism packages have to be improved, for example by highlighting cultural heritage.

Again to illustrate our role in such a domain, Let us cite some past projects where AxIS is involved related mainly to **Semantic Web Mining**. In our case, a) we exploit ontologies and semantic data for improving usage analysis, personalised services, the quality of results of search engines and for checking the content of an IS and also b) we exploit usage data for updating ontologies.) and Information Retrieval.

- Research has been carried out using log files from the city of Metz. This city was chosen because its Web site is in constant development and has been awarded several times, notably in 2003, 2004 and 2005 in the context of the Internet City label. The objective was to extract information about tourists behaviours from this site log files and to identify possible benefits in designing or updating a tourism ontology.

- Providing Tourism Information linked to Transportation information: AxIS has already studied recommender systems in order to provide users with personalised transportation information while looking for tourism information such as cultural information, leisure etc. (cf. our recommender Be-TRIP (2006) based on CBR*Tools).

- In the context of HOTEL-REF-PACA project, we aimed to better refer the web sites of hotels/campings from the region of TOURVAL in PACA (mainly Vésubie territory), with an approach based on a better understanding of usage from the internauts. To address this, we proposed and adopted a multidisciplinary approach combining various AxIS know-how: knowledge engineering (ontology in tourism), data mining (analysis of Google logs, hotel web site logs and user queries, visual behaviours from eye tracker), Ergonomics (clustering of hotel web sites based on their ergonomic quality).

- Several contacts (PACA, France Living Labs, Island of the Reunion) have been done related to projects in tourism and eco-tourism.

3By Semantic Web Mining, we mean the mutual benefits between two communities Semantic Web and Web Mining
4.4. User Involvement in Silver Economy, Environment, Energy and E-governement

Below are some topics where AxIS was or is involved in:

- **Preprocessing and analysing collective usage data and social networks** from group discussions related to design process: see ANR Intermed (2009) and FP7 Elliot where citizen generate ideas in terms of specific environmental sensors based services according to their needs.

- **Methods and tools for supporting open innovation based on open data**: a first work was made in 2010 with the CDISOD Color action related Public Data in collaboration with Fing (Marseille) and ADEME (Sophia Antipolis). We pursue such a study in the context of FP7 Elliot by providing to citizen environmental data (air quality and noise) issued from citizen and/or territories sensors.

All AxIS topics are relevant for these domains. Let us cite: social network analysis, personalization and information retrieval, recommender systems, expert search, design and evaluation of methods and tools for open innovation and user co-creation in the context of Living Labs, usage mining, mining data streams.

We have addressed specific works:

- **Silver Economy - Health & Well Being**: Axis contributed in 2010-2011 to a Living Lab characterisation in Health domain, study conducted by R. Picard (CGIET 4 via the participation of a working group (M. Pallot) and the visit of several European Living Labs, which operate in the domain of Health and Autonomy. B. Trousse as Inria representative of ICT usage lab involved in Health and Autonomy was also interviewed. This year Axis team managed the Green Services use case in the context of the achieved FP7 ELLIOT project involving pollution citizen sensors and in relation to health and Well being (targeted users with respiratory problems). interviews. This use case has been evaluated as "Good practice" by the international Design for All foundation (Awards 2014). Two ANR proposals involving France Living Labs and/or our living lab have been deposit with “Cité du Design” and University of Lorraine (cf. Sections 7.2.5 and 7.2.4). Let us note that France Living Labs is involved in the Silver Economy contract (cf. Section 7.2.6).

- **Energy**: the main AxIS topic here was usage analysis in the context of an energy challenge in an enterprise (ECOFFICES) taking into account the complex and real situation (installation for more than 400 sensors, differences between the three concerned teams, differences between the offices). Such an analysis aims to correlate team/office energy consuming, team/office eco-responsible behaviours and team/office profile. In 2012, our team was involved in a second project ECOFAMILIES aiming to co-design with families user interfaces for energy monitoring.

- **E-government**: The future Internet will bring a growing number of networked applications (services), devices and individual data (including private ones) to end-users. The important challenges are the organization of their access, and the guarantee of trust and privacy. The objectives of the PIMI 5 project (cf. section 7.2.1) are the definition of a design environment and a deployment platform for Personal Information Management system (PIM). The future PIM must provide the end-user personal data access with services that are relevant to his needs. In order to take mobility into account, the PIM will be accessed both by mobile devices (smart-phones) and Personal Computers. With the increasing number of services and associated data being accessible through Internet, the number and complexity of PIM will augment dramatically in the near future. This will require strong research investment in a number of topics, all contributing to the expected usability and accessibility of Individual Information Spaces for the end-user.

5Personal Information Management through Internet
4. Application Domains

4.1. Shape modeling

Geometric modeling is increasingly familiar for us (synthesized images, structures, vision by computer, Internet, ...). Nowadays, many manufactured objects are entirely designed and built by means of geometric software which describe with accuracy the shape of these objects. The involved mathematical models used to represent these shapes have often an algebraic nature. Their treatment can be very complicated, for example requiring the computations of intersections or isosurfaces (CSG, digital simulations, ...), the detection of singularities, the analysis of the topology, etc. Optimizing these shapes with respect to some physical constraints is another example where the choice of the models and the design process are important to lead to interesting problems in algebraic geometric modeling and computing. We propose the developments of methods for shape modeling that take into account the algebraic specificities of these problems. We tackle questions whose answer strongly depends on the context of the application being considered, in direct relationship with the industrial contacts that we are developing in Computer Aided Geometric Design.

4.2. Shape processing

Many problems encountered in the application of computer sciences start from measurement data, from which one wants to recover a curve, a surface, or more generally a shape. This is typically the case in image processing, computer vision or signal processing. This also appears in computer biology where the geometry of distances plays a significant role, for example, in the reconstruction from NMR (Nuclear Magnetic Resonance) experiments, or the analysis of realizable or accessible configurations. In another domain, scanners which tend to be more and more easily used yield large set of data points from which one has to recover compact geometric model. We are working in collaboration with groups in agronomy on the problems of reconstruction of branching models (which represent trees or plants). We are investigating the application of algebraic techniques to these reconstruction problems. Geometry is also highly involved in the numerical simulation of physical problems such as heat conduction, ship hull design, blades and turbines analysis, mechanical stress analysis. We apply our algebraic-geometric techniques in the isogeometric approach which uses the same (B-spline) formalism to represent both the geometry and the solutions of partial differential equations on this geometry.
4. Application Domains

4.1. Multicore System-on-Chip design

Synchronous formalisms and GALS or multiclock extensions are natural model representations of hardware circuits at various abstraction levels. They may compete with HDLs (Hardware Description Languages) at RTL and even TLM levels. The main originality of languages built upon these models is to be based on formal synthesis semantics, rather than mere simulation forms.

The flexibility in formal Models of Computation and Communication allows specification of modular Latency-Insensitive Designs, where the interconnect structure is built up and optimized around existing IP components, respecting some mandatory computation and communication latencies prescribed by the system architect. This allows a real platform view development, with component reuse and timing-closure analysis. The design and optimization of interconnect fabric around IP blocks transform at modeling level an (untimed) asynchronous versions into a (scheduled) multiclock timed one.

Also, Network on Chip (NoC) design may call for computable switching patterns, just like computable scheduling patterns were used in (predictable) Latency-Insensitive Design. Here again formal models, such as Cyclo-static dataflow graphs and extended Kahn networks with explicit routing schemes, are modeling elements of choice for a real synthesis/optimization approach to the design of systems. New parallel architecture paradigms, such as GPU co-processors or Massively Parallel Processor Arrays (MPPA) form natural targets as NoC-based platforms.

Multicore embedded architecture platform may be represented as Marte UML component diagrams. The semantics of concurrent applications may also be represented as Marte behavior diagrams embodying precise MoCCs. Optimized compilations/syntheses rely on specific algorithms, and are represented as model transformations and allocation (of application onto architecture).

Our current work aims thus primarily at providing Theoretical Computer Science foundations to this domain of multicore embedded SoCs, with possibly efficient application in modeling, analysis and compilation wherever possible due to some natural assumptions. We also deal with a comparative view of Esterel and SystemC TLM for more practical modeling, and the relation between the Spirit IP-Xact interface standard in SoC domain with its Marte counterpart.

4.2. Automotive and avionic embedded systems

Model-Driven Engineering is in general well accepted in the transportation domains, where design of digital software and electronic parts in usually tightly coupled with larger aspects of system design, where models from physics are being used already. The formalisms AADL (for avionics) and AutoSar [66] (for automotive) are providing support for this, unfortunately not always with a clean and formal semantics. Thus there is a strong need here for approaches that bring closer together formal methods and tools on the one hand, engineering best practices on the other hand.

From a structural point of view AUTOSAR succeeded in establishing a framework that provides significant confidence in the proper integration of software components from a variety of distinct suppliers. But beyond those structural (interface) aspects, dynamic and temporal views are becoming more of a concern, so that AUTOSAR has introduced the AUTOSAR Specification of Timing Extension. AUTOSAR (discrete) timing models consist of timing descriptions, expressed by events and event chains, and timing constraints that are imposed on these events and event chains.
An important issue in all such formalisms is to mix in a single design framework heterogeneous time models and tasks: based on different timebases, with different triggering policy (event-triggered and time-triggered), and periodic and/or aperiodic tasks, with distinct periodicity if ever. Adequate modeling is a prerequisite to the process of scheduling and allocating such tasks onto complex embedded architectural platforms (see AAA approach in foundation section 3.3). Only then can one devise powerful synthesis/analysis/verification techniques to guide designers towards optimized solutions.

Traceability is also an important concern, to close the gap between early requirements and constraints modelling on the one hand, verification and correct implementation of these constraints at the different levels of the development on the other hand.
4. Application Domains

4.1. Application Domains

- Medical Imaging
- Numerical simulation
- Geometric modeling
- Geographic information systems
- Visualization
- Data analysis
- Astrophysics
- Material physics
4. Application Domains

4.1. Web programming

Along with games, multimedia applications, electronic commerce, and email, the web has popularized computers in everybody’s life. The revolution is engaged and we may be at the dawn of a new era of computing where the web is a central element. The web constitutes an infrastructure more versatile, polymorphic, and open, in other words, more powerful, than any dedicated network previously invented. For this very reason, it is likely that most of the computer programs we will write in the future, for professional purposes as well as for our own needs, will extensively rely on the web.

In addition to allowing reactive and graphically pleasing interfaces, web applications are de facto distributed. Implementing an application with a web interface makes it instantly open to the world and accessible from much more than one computer. The web also partially solves the problem of platform compatibility because it physically separates the rendering engine from the computation engine. Therefore, the client does not have to make assumptions on the server hardware configuration, and vice versa. Lastly, HTML is highly durable. While traditional graphical toolkits evolve continuously, making existing interfaces obsolete and breaking backward compatibility, modern web browsers that render on the edge web pages are still able to correctly display the web pages of the early 1990’s.

For these reasons, the web is arguably ready to escape the beaten track of n-tier applications, CGI scripting and interaction based on HTML forms. However, we think that it still lacks programming abstractions that minimize the overwhelming amount of technologies that need to be mastered when web programming is involved. Our experience on reactive and functional programming is used for bridging this gap.

4.2. Multimedia

Electronic equipments are less and less expensive and more and more widely spread out. Nowadays, in industrial countries, computers are almost as popular as TV sets. Today, almost everybody owns a mobile phone. Many are equipped with a GPS or a PDA. Modem, routers, NASes and other network appliances are also commonly used, although they are sometimes sealed under proprietary packaging such as the Livebox or the Freebox. Most of us evolve in an electronic environment which is rich but which is also populated with mostly isolated devices.

The first multimedia applications on the web have appeared with the Web 2.0. The most famous ones are Flickr, YouTube, or Deezer. All these applications rely on the same principle: they allow roaming users to access the various multimedia resources available all over the Internet via their web browser. The convergence between our new electronic environment and the multimedia facilities offered by the web will allow engineers to create new applications. However, since these applications are complex to implement this will not happen until appropriate languages and tools are available. In the Indes team, we develop compilers, systems, and libraries that address this problem.

4.3. Home Automation

The web is the de facto standard of communication for heterogeneous devices. The number of devices able to access the web is permanently increasing. Nowadays, even our mobile phones can access the web. Tomorrow it could even be the turn of our wristwatches! The web hence constitutes a compelling architecture for developing applications relying on the “ambient” computing facilities. However, since current programming languages do not allow us to develop easily these applications, ambient computing is currently based on ad-hoc solutions. Programming ambient computing via the web is still to be explored. The tools developed in the Indes team allow us to build prototypes of a web-based home automation platform. For instance, we experiment with controlling heaters, air-conditioners, and electronic shutters with our mobile phones using web GUIs.
4. Application Domains

4.1. Reliability of embedded software

Software embedded in physical devices performs computations where the inputs are provided by measures and the outputs are transformed into actions performed by actuators. To improve the quality of these devices, we expect that all the computations performed in this kind of software will need to be made more and more reliable. We claim that formal methods can serve this purpose and we develop the libraries and techniques to support this claim. This implies that we take a serious look at how mathematics can be included in formal methods, especially concerning geometry and calculus.

4.2. Security and Cryptography

The modern economy relies on the possibility for every actor to trust the communications they perform with their colleagues, customers, or providers. We claim that this trust can only be built by a careful scrutiny of the claims made by all public protocols and software that are reproduced in all portable devices, computers, and internet infrastructure systems. We advocate the use of formal methods in these domains and we provide easy-to-use tools for cryptographers so that the formal verification of cryptographic algorithms can become routine and amenable to public scrutiny.

4.3. Mathematics and Education

As libraries for theorem provers evolve, they tend to cover an ever increasing proportion of the mathematical background expected from engineers and scientists of all domains. Because the content of a formally verified library is extremely precise and explicit, we claim that this will provide a new kind of material for teaching mathematics, especially useful in remote education.
4. Application Domains

4.1. Introduction

These domains are naturally linked to the problems described in Sections 3.2.1 and 3.2.2. By and large, they split into a systems-and-circuits part and an inverse-source-and-boundary-problems part, united under a common umbrella of function-theoretic techniques described in Section 3.3.

4.2. Inverse source problems in EEG

Participants: Laurent Baratchart, Kateryna Bashtova, Juliette Leblond.

This work is done in collaboration with Maureen Clerc and Théo Papadopoulo from the Athena Project-Team, and Jean-Paul Marmorat (Centre de mathématiques appliquées - CMA, École des Mines de Paris).

Solving overdetermined Cauchy problems for the Laplace equation on a spherical layer (in 3-D) in order to extrapolate incomplete data (see Section 3.2.1) is a necessary ingredient of the team’s approach to inverse source problems, in particular for applications to EEG since the latter involves propagating the initial conditions through several layers of different conductivities, from the boundary down to the center of the domain where the singularities (i.e., the sources) lie. Then, once propagated to the innermost sphere, it turns out that traces of the boundary data on 2-D cross sections (disks) coincide with analytic functions in the slicing plane, that has branched singularities inside the disk [3]. These singularities are related to the actual location of the sources (namely, they reach in turn a maximum in modulus when the plane contains one of the sources). Hence, we are back to the 2-D framework of Section 3.3.3 where approximately recovering these singularities can be performed using best rational approximation. The goal is to produce a fast but already good enough initial guess on the number and location of the sources in order to run heavier descent algorithms on the direct problem, which are more precise but computationally costly, and often fail to converge if not properly initialized.

Numerical experiments give very good results on simulated data and we are now engaged in the process of handling real experimental magneto-encephalographic data, see also Sections 5.6 and 6.1, in collaboration with the Athena team at Inria Sophia Antipolis, neuroscience teams in partner-hospitals (la Timone, Marseille), and the BESA company (Munich).

4.3. Inverse magnetization problems

Participants: Laurent Baratchart, Sylvain Chevillard, Juliette Leblond, Dmitry Ponomarev.

Generally speaking, inverse potential problems similar to the one in Section 4.2 appear naturally in connection with systems governed by Maxwell’s equation in the quasi-static approximation regime. In particular, they arise in magnetic reconstruction issues. A specific application is to geophysics, whose study led us to form an Inria Associate Team (“IMPINGE” for Inverse Magnetization Problems IN GEosciences) together with MIT and Vanderbilt University.

To set up the context, recall that the Earth’s geomagnetic field is generated by convection of the liquid metallic core (geodynamo) and that rocks become magnetized by the ambient field as they are formed or after subsequent alteration. Their remanent magnetization provides records of past variations of the geodynamo, which is used to study important processes in Earth sciences like motion of tectonic plates and geomagnetic reversals. Rocks from Mars, the Moon, and asteroids also contain remanent magnetization which indicates the past presence of core dynamos. Magnetization in meteorites may even record fields produced by the young sun and the protoplanetary disk which may have played a key role in solar system formation.
For a long time, paleomagnetic techniques were only capable of analyzing bulk samples and compute their net magnetic moment. The development of SQUID microscopes has recently extended the spatial resolution to submillimeter scales, raising new physical and algorithmic challenges. This associate team aims at tackling them, experimenting with the SQUID microscope set up in the Paleomagnetism Laboratory of the department of Earth, Atmospheric and Planetary Sciences at MIT. Typically, pieces of rock are sanded down to a thin slab, and the magnetization has to be recovered from the field measured on a parallel plane at small distance above the slab.

Mathematically speaking, both inverse source problems for EEG from Section 4.2 and inverse magnetization problems described presently amount to recover the (3-D valued) quantity m (primary current density in case of the brain or magnetization in case of a thin slab of rock) from measurements of the vector potential:

$$\int_{\Omega} \frac{\text{div} m(x')}{|x-x'|} \, dx'$$

outside the volume Ω of the object, from Maxwell’s equations. The big difference is that the distribution m is located in a volume in the case of EEG, and on a plane in the case of rock magnetization. This results in quite different identifiability properties, see [14] and Section 6.1.2.

4.4. Free boundary problems

Participants: Laurent Baratchart, Juliette Leblond, Slah Chaabi.

The team has engaged in the study of problems with variable conductivity σ, governed by a 2-D equation of the form $\text{div}(\sigma \nabla u) = 0$. Such equations are in one-to-one correspondence with real parts of solutions to conjugate-Beltrami equations $\bar{\partial} f = \nu \partial f$, so that complex analysis is a tool to study them, see [4], [13], [28]. This research was prompted by issues in plasma confinement for thermonuclear fusion in a tokamak, more precisely with the extrapolation of magnetic data on the boundary of the chamber from the outer boundary of the plasma, which is a level curve for the poloidal flux solving the original div-grad equation. Solving this inverse problem of Bernoulli type is of importance to determine the appropriate boundary conditions to be applied to the chamber in order to shape the plasma [58]. This research was started in collaboration with CEA-IRFM (Cadarache) and the Laboratoire J.-A. Dieudonné at the Univ. of Nice-SA. Within the team, it is now expanding to cover Dirichlet-Neumann problems for larger classes of conductivities, cf. in particular, the PhD thesis of S. Chaabi [12], [28], jointly supervised with the CMI-LATP at the Aix-Marseille University. (see Section 6.2).

4.5. Identification and design of microwave devices

Participants: Laurent Baratchart, Sylvain Chevillard, Martine Olivi, Fabien Seyfert.

This work is done in collaboration with Stéphane Bila (XLIM, Limoges) and Jean-Paul Marmorat (Centre de mathématiques appliquées (CMA), École des Mines de Paris).

One of the best training grounds for the research of the team in function theory is the identification and design of physical systems for which the linearity assumption works well in the considered range of frequency, and whose specifications are made in the frequency domain. This is the case of electromagnetic resonant systems which are of common use in telecommunications.

In space telecommunications (satellite transmissions), constraints specific to on-board technology lead to the use of filters with resonant cavities in the microwave range. These filters serve multiplexing purposes (before or after amplification), and consist of a sequence of cylindrical hollow bodies, magnetically coupled by irises (orthogonal double slits). The electromagnetic wave that traverses the cavities satisfies the Maxwell equations, forcing the tangent electrical field along the body of the cavity to be zero. A deeper study of the Helmholtz equation states that essentially only a discrete set of wave vectors is selected. In the considered range of frequency, the electrical field in each cavity can be seen as being decomposed along two orthogonal modes, perpendicular to the axis of the cavity (other modes are far off in the frequency domain, and their influence can be neglected).
Figure 1. Picture of a 6-cavities dual mode filter. Each cavity (except the last one) has 3 screws to couple the modes within the cavity, so that 16 quantities must be optimized. Quantities such as the diameter and length of the cavities, or the width of the 11 slits are fixed during the design phase.
Each cavity (see Figure 1) has three screws, horizontal, vertical and midway (horizontal and vertical are two
arbitrary directions, the third direction makes an angle of 45 or 135 degrees, the easy case is when all cavities
show the same orientation, and when the directions of the irises are the same, as well as the input and output
slits). Since the screws are conductors, they act more or less as capacitors; besides, the electrical field on the
surface has to be zero, which modifies the boundary conditions of one of the two modes (for the other mode,
the electrical field is zero hence it is not influenced by the screw), the third screw acts as a coupling between
the two modes. The effect of the iris is to the contrary of a screw: no condition is imposed where there is a hole,
which results in a coupling between two horizontal (or two vertical) modes of adjacent cavities (in fact the iris
is the union of two rectangles, the important parameter being their width). The design of a filter consists in
finding the size of each cavity, and the width of each iris. Subsequently, the filter can be constructed and tuned
by adjusting the screws. Finally, the screws are glued. In what follows, we shall consider a typical example, a
filter designed by the CNES in Toulouse, with four cavities near 11 GHz.

Near the resonance frequency, a good approximation of the Maxwell equations is given by the solution of
a second order differential equation. One obtains thus an electrical model for our filter as a sequence of
electrically-coupled resonant circuits, and each circuit will be modeled by two resonators, one per mode,
whose resonance frequency represents the frequency of a mode, and whose resistance represent the electric
losses (current on the surface).

In this way, the filter can be seen as a quadrupole, with two ports, when plugged on a resistor at one end
and fed with some potential at the other end. We are then interested in the power which is transmitted and
reflected. This leads to defining a scattering matrix S, that can be considered as the transfer function of a stable
causal linear dynamical system, with two inputs and two outputs. Its diagonal terms $S_{1,1}$, $S_{2,2}$ correspond to
reflections at each port, while $S_{1,2}$, $S_{2,1}$ correspond to transmission. These functions can be measured at
certain frequencies (on the imaginary axis). The filter is rational of order 4 times the number of cavities (that is
16 in the example), and the key step consists in expressing the components of the equivalent electrical circuit
as a function of the S_{ij} (since there are no formulas expressing the lengths of the screws in terms of parameters
of this electrical model). This representation is also useful to analyze the numerical simulations of the Maxwell
equations, and to check the design, particularly the absence of higher resonant modes.

In fact, resonance is not studied via the electrical model, but via a low-pass equivalent circuit obtained upon
linearizing near the central frequency, which is no longer conjugate symmetric (i.e. the underlying system may
not have real coefficients) but whose degree is divided by 2 (8 in the example).

In short, the identification strategy is as follows:

- measuring the scattering matrix of the filter near the optimal frequency over twice the pass band
 (which is 80MHz in the example).
- Solving bounded extremal problems for the transmission and the reflection (the modulus of he
 response being respectively close to 0 and 1 outside the interval measurement, cf. Section 3.3.1).
 This provides us with a scattering matrix of order roughly 1/4 of the number of data points.
- Approximating this scattering matrix by a rational transfer-function of fixed degree (8 in this
 example) via the Endymion or RARL2 software (cf. Section 3.3.2.2).
- A realization of the transfer function is thus obtained, and some additional symmetry constraints are
 imposed.
- Finally one builds a realization of the approximant and looks for a change of variables that eliminates
 non-physical couplings. This is obtained by using algebraic-solvers and continuation algorithms on
 the group of orthogonal complex matrices (symmetry forces this type of transformation).

The final approximation is of high quality. This can be interpreted as a validation of the linearity hypothesis
for the system: the relative L^2 error is less than 10^{-3}. This is illustrated by a reflection diagram (Figure 2).
Non-physical couplings are less than 10^{-2}.

The above considerations are valid for a large class of filters. These developments have also been used for the
design of non-symmetric filters, useful for the synthesis of repeating devices.
Figure 2. Nyquist Diagram. Rational approximation (degree 8) and data - S_{22}.

The team also investigates problems relative to the design of optimal responses for microwave devices. The resolution of a quasi-convex Zolotarev problems was for example proposed, in order to derive guaranteed optimal multi-band filter’s responses subject to modulus constraints [10]. This generalizes the classical single band design techniques based on Chebyshev polynomials and elliptic functions. These techniques rely on the fact that the modulus of the scattering parameters of a filters, say $|S_{1,2}|$, admits a simple expression in terms of the filtering function $D = |S_{1,1}|/|S_{1,2}|$ namely,

$$|S_{1,2}|^2 = \frac{1}{1 + D^2}.$$

The filtering function appears to be the ratio of two polynomials p_1/p_2, the numerator of the reflection and transmission scattering factors, that can be chosen freely. The denominator q is obtained as the unique stable and unitary polynomial solving the classical Feldtkeller spectral equation:

$$qq^* = p_1p_1^* + p_2p_2^*.$$

The relative simplicity of the derivation of a filter’s response under modulus constraints is due to the possibility of “forgetting” about Feldtkeller’s equation, and express all design constraints in terms of the filtering function D. This no longer the case when considering the synthesis N-port devices for $N > 3$, like multiplexers, routers power dividers or when considering the synthesis of filters under matching conditions. The efficient derivation of multiplexers responses is one of the team’s active recent research area, where techniques based on constrained Nevanlinna-Pick interpolation problems are being considered (see Section 6.3.1).
4. Application Domains

4.1. Space engineering, satellites, low thrust control

Space engineering is very demanding in terms of safe and high-performance control laws (for instance optimal in terms of fuel consumption, because only a finite amount of fuel is onboard a satellite for all its “life”). It is therefore prone to real industrial collaborations.

We are especially interested in trajectory control of space vehicles using their own propulsion devices, outside the atmosphere. Here we discuss “non-local” control problems (in the sense of section 3.1 point 1): orbit transfer rather than station keeping; also we do not discuss attitude control.

In the geocentric case, a space vehicle is subject to
- gravitational forces, from one or more central bodies (the corresponding acceleration is denoted by F_{grav} below),
- a thrust, the control, produced by a propelling device; it is the Gu term below; assume for simplicity that control in all directions is allowed, i.e. G is an invertible matrix
- other “perturbing” forces (the corresponding acceleration is denoted by F_2 below).

In position-velocity coordinates, its dynamics can be written as

$$\ddot{x} = F_{\text{grav}}(x,t) + F_2(x,\dot{x},t) + G(x,\dot{x})u, \quad \|u\| \leq u_{\text{max}}.$$ \hspace{1cm} (2)

In the case of a single attracting central body (the earth) and in a geocentric frame, F_{grav} does not depend on time, or consists of a main term that does not depend on time and smaller terms reflecting the action of the moon or the sun, that depend on time. The second term is often neglected in the design of the control at first sight; it contains terms like atmospheric drag or solar pressure. G could also bear an explicit dependence on time (here we omit the variation of the mass, that decreases proportionally to $\|u\|$.

4.1.1. Low thrust

Low thrust means that u_{max} is small, or more precisely that the maximum magnitude of Gu is small with respect to the one of F_{grav} (but in general not compared to F_2). Hence the influence of the control is very weak instantaneously, and trajectories can only be significantly modified by accumulating the effect of this low thrust on a long time. Obviously this is possible only because the free system is somehow conservative. This was “abstracted” in section 3.5.

Why low thrust? The common principle to all propulsion devices is to eject particles, with some relative speed with respect to the vehicle; conservation of momentum then induces, from the point of view of the vehicle alone, an external force, the “thrust” (and a mass decrease). Ejecting the same mass of particles with a higher relative speed results in a proportionally higher thrust; this relative speed (specific impulse, I_{sp}) is a characteristic of the engine; the higher the I_{sp}, the smaller the mass of particles needed for the same change in the vehicle momentum. Engines with a higher I_{sp} are highly desirable because, for the same maneuvers, they reduce the mass of “fuel” to be taken on-board the satellite, hence leaving more room (mass) for the payload. “Classical” chemical engines use combustion to eject particles, at a somehow limited speed even with very efficient fuel; the more recent electric engines use a magnetic field to accelerate particles and eject them at a considerably higher speed; however electrical power is limited (solar cells), and only a small amount of particles can be accelerated per unit of time, inducing the limitation on thrust magnitude.
Electric engines theoretically allow many more maneuvers with the same amount of particles, with the drawback that the instant force is very small; sophisticated control design is necessary to circumvent this drawback. High thrust engines allow simpler control procedures because they almost allow instant maneuvers (strategies consist in a few burns at precise instants).

4.1.2. Typical problems

Let us mention two.

- **Orbit transfer or rendez-vous.** It is the classical problem of bringing a satellite to its operating position from the orbit where it is delivered by the launcher; for instance from a GTO orbit to the geostationary orbit at a prescribed longitude (one says rendez-vous when the longitude, or the position on the orbit, is prescribed, and transfer if it is free). In equation (1) for the dynamics, \(F_{\text{grav}} \) is the Newtonian gravitation force of the earth (it then does not depend on time); \(F_2 \) contains all the terms coming either from the perturbations to the Newtonian potential or from external forces like radiation pressure, and the control is usually allowed in all directions, or with some restrictions to be made precise.

- **Three body problem.** This is about missions in the solar system leaving the region where the attraction of the earth, or another single body, is preponderant. We are then no longer in the situation of a single central body, \(F_{\text{grav}} \) contains the attraction of different planets and the sun. In regions where two central bodies have an influence, say the earth and the moon, or the sun and a planet, the term \(F_{\text{grav}} \) in (1) is the one of the restricted three body problem and dependence on time reflects the movement of the two “big” attracting bodies.

An issue for future experimental missions in the solar system is interplanetary flight planning with gravitational assistance. Tackling this global problem, that even contains some combinatorial problems (itinerary), goes beyond the methodology developed here, but the above considerations are a brick in this puzzle.

4.1.3. Properties of the control system.

If there are no restrictions on the thrust direction, i.e., in equation (1), if the control \(u \) has dimension 3 with an invertible matrix \(G \), then the control system is “static feedback linearizable”, and a fortiori flat, see section 3.2. However, implementing the static feedback transformation would consist in using the control to “cancel” the gravitation; this is obviously impossible since the available thrust is very small. As mentioned in section 3.1, point 3, the problem remains fully nonlinear in spite of this “linearizable” structure.

4.1.4. Context for these applications

The geographic proximity of Thales Alenia Space, in conjunction with the “Pole de compétitivité” PEGASE in PACA region is an asset for a long term collaboration between Inria - Sophia Antipolis and Thales Alenia Space (Thales Alenia Space site located in Cannes hosts one of the very few European facilities for assembly, integration and tests of satellites).

B. Bonnard and J.-B. Caillau in Dijon have had a strong activity in optimal control for space, in collaboration with the APO Team from IRIT at ENSEEIHT (Toulouse), and sometimes with EADS, for development of geometric methods in numerical algorithms.

4.2. Quantum Control

These applications started by a collaboration between B. Bonnard and D. Sugny (a physicist from ICB) in the ANR project Comoc, localized mainly at the University of Dijon. The problem was the control of the orientation of a molecule using a laser field, with a model that does take into account the dissipation due to the interaction with the environment, molecular collisions for instance. The model is a dissipative generalization

\[\text{However, the linear approximation around any feasible trajectory is controllable (a periodic time-varying linear system); optimal control problems will have no singular or abnormal trajectories.} \]
of the finite dimensional Schrödinger equation, known as Lindblad equation. It is a 3-dimensional system depending upon 3 parameters, yielding a very complicated optimal control problem that we have solved for prescribed boundary conditions. In particular we have computed the minimum time control and the minimum energy control for the orientation or a two-level system, using geometric optimal control and appropriate numerical methods (shooting and numerical continuation) [31], [30].

More recently, based on this project, we have reoriented our control activity towards Nuclear Magnetic Resonance (MNR). In MNR medical imaging, the contrast problem is the one of designing a variation of the magnetic field with respect to time that maximizes the difference, on the resulting image, between two different chemical species; this is the “contrast”. This research is conducted with Prof. S. Glaser (TU-München), whose group is performing both in vivo and in vitro experiments; experiments using our techniques have successfully measured the improvement in contrast between materials chemical species that have an importance in medicine, like oxygenated and de-oxygenated blood, see [29]; this is however still to be investigated and improved. The model is the Bloch equation for spin 1/2 particles, that can be interpreted as a sub-case of Lindblad equation for a two-level system; the control problem to solve amounts to driving in minimum time the magnetization vector of the spin to zero (for parameters of the system corresponding to one of the species), and generalizations where such spin 1/2 particles are coupled: double spin inversion for instance.

Note that a reference book by B. Bonnard and D. Sugny has been published on the topic [32].

4.3. Applications of optimal transport

Optimal Transportation in general has many applications. Image processing, biology, fluid mechanics, mathematical physics, game theory, traffic planning, financial mathematics, economics are among the most popular fields of application of the general theory of optimal transport. Many developments have been made in all these fields recently. Two more specific fields:

- In image processing, since a grey-scale image may be viewed as a measure, optimal transportation has been used because it gives a distance between measures corresponding to the optimal cost of moving densities from one to the other, see e.g. the work of J.-M. Morel and co-workers [57].
- In representation and approximation of geometric shapes, say by point-cloud sampling, it is also interesting to associate a measure, rather than just a geometric locus, to a distribution of points (this gives a small importance to exceptional “outlier” mistaken points); this was developed in Q. Mérigot’s PhD [59] in the GEOMETRICA project-team. The relevant distance between measures is again the one coming from optimal transportation.
- A collaboration between Ludovic Rifford and Robert McCann from the University of Toronto aims at applications of optimal transportation to the modeling of markets in economy; it was to subject of Alice Erlinger’s PhD, unfortunately interrupted.

Applications specific to the type of costs that we consider, i.e. these coming from optimal control, are concerned with evolutions of densities under state or velocity constraints. A fluid motion or a crowd movement can be seen as the evolution of a density in a given space. If constraints are given on the directions in which these densities can evolve, we are in the framework of non-holonomic transport problems.

4.4. Applications to some domains of mathematics.

Control theory (in particular thinking in terms of inputs and reachable set) has brought novel ideas and progresses to mathematics. For instance, some problems from classical calculus of variations have been revisited in terms of optimal control and Pontryagin’s Maximum Principle [47]; also, closed geodesics for perturbed Riemannian metrics where constructed in [50], [51] using control techniques.

The work in progress [39] is definitely in this line, applying techniques from control to construct some perturbations under constraints of Hamiltonian systems to solve longstanding open questions in the field of dynamical systems. Also, in [65], L. Rifford and R. Ruggiero applied successfully geometric control techniques to obtain genericity properties for Hamiltonian systems.
4. Application Domains

4.1. Computational electromagnetics

Electromagnetic devices are ubiquitous in present day technology. Indeed, electromagnetism has found and continues to find applications in a wide array of areas, encompassing both industrial and societal purposes. Applications of current interest include (among others) those related to communications (e.g. transmission through optical fiber lines), to biomedical devices (e.g. microwave imaging, micro-antenna design for telemedicine, etc.), to circuit or magnetic storage design (electromagnetic compatibility, hard disc operation), to geophysical prospecting, and to non-destructive evaluation (e.g. crack detection), to name but just a few. Equally notable and motivating are applications in defence which include the design of military hardware with decreased signatures, automatic target recognition (e.g. bunkers, mines and buried ordnance, etc.) propagation effects on communication and radar systems, etc. Although the principles of electromagnetics are well understood, their application to practical configurations of current interest, such as those that arise in connection with the examples above, is significantly complicated and far beyond manual calculation in all but the simplest cases. These complications typically arise from the geometrical characteristics of the propagation medium (irregular shapes, geometrical singularities), the physical characteristics of the propagation medium (heterogeneity, physical dispersion and dissipation) and the characteristics of the sources (wires, etc.).

Part of the activities of the NACHOS project-team aim at the development of high performance, high order, unstructured mesh based solvers for the full system of Maxwell equations, in the time domain and frequency domain regimes. Although many of the above-mentioned electromagnetic wave propagation problems can potentially benefit from the proposed numerical methodologies, the team concentrates its efforts on the following two situations.

4.1.1. Interaction of electromagnetic waves with biological tissues at microwave frequencies.

Two main reasons motivate our commitment to consider this type of problem for the application of the numerical methodologies developed in the NACHOS project-team:

- First, from the numerical modeling point of view, the interaction between electromagnetic waves and biological tissues exhibit the three sources of complexity identified previously and are thus particularly challenging for pushing one step forward the state-of-the art of numerical methods for computational electromagnetics. The propagation media is strongly heterogeneous and the electromagnetic characteristics of the tissues are frequency dependent. Interfaces between tissues have rather complicated shapes that cannot be accurately discretized using cartesian meshes. Finally, the source of the signal often takes the form of a complicated device (e.g. a mobile phone or an antenna array).

- Second, the study of the interaction between electromagnetic waves and living tissues is of interest to several applications of societal relevance such as the assessment of potential adverse effects of electromagnetic fields or the utilization of electromagnetic waves for therapeutic or diagnostic purposes. It is widely recognized nowadays that numerical modeling and computer simulation of electromagnetic wave propagation in biological tissues is a mandatory path for improving the scientific knowledge of the complex physical mechanisms that characterize these applications.
Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the great majority of numerical studies so far have been conducted using variants of the widely known FDTD (Finite Difference Time Domain) method due to Yee [63]. In this method, the whole computational domain is discretized using a structured (cartesian) grid. Due to the possible straightforward implementation of the algorithm and the availability of computational power, FDTD is currently the leading method for numerical assessment of human exposure to electromagnetic waves. However, limitations are still seen, due to the rather difficult departure from the commonly used rectilinear grid and cell size limitations regarding very detailed structures of human tissues. In this context, the general objective of the contributions of the NACHOS project-team is to demonstrate the benefits of high order unstructured mesh based Maxwell solvers for a realistic numerical modeling of the interaction of electromagnetic waves and biological tissues with emphasis on applications related to numerical dosimetry. Since the creation of the team, our works on this topic have mainly been focussed on the study of the exposure of humans to radiations from mobile phones or wireless communication systems (see Fig. 1). This activity has been conducted in close collaboration with the team of Joe Wiart at Orange Labs/Whist Laboratory http://whist.institut-telecom.fr/en/index.html (formerly, France Telecom Research & Development) in Issy-les-Moulineaux [15].

Figure 1. Exposure of head tissues to an electromagnetic wave emitted by a localized source. Top figures: surface triangulations of the skin and the skull. Bottom figures: contour lines of the amplitude of the electric field.

4.1.2. Interaction of electromagnetic waves with nanoparticles at optical frequencies (nanophotonics).
Nanostructuring of materials has opened up a number of new possibilities for manipulating and enhancing light-matter interactions, thereby improving fundamental device properties. Low-dimensional semiconductors, like quantum dots, enable one to catch the electrons and control the electronic properties of a material, while photonic crystal structures allow to synthesize the electromagnetic properties. These technologies may, e.g., be employed to make smaller and better lasers, sources that generate only one photon at a time, for applications in quantum information technology, or miniature sensors with high sensitivity. The incorporation of metallic structures into the medium add further possibilities for manipulating the propagation of electromagnetic waves. In particular, this allows subwavelength localisation of the electromagnetic field and, by subwavelength structuring of the material, novel effects like negative refraction, e.g. enabling super lenses, may be realized. Nanophotonics is the recently emerged, but already well defined, field of science and technology aimed at establishing and using the peculiar properties of light and light-matter interaction in various nanostructures. Nanophotonics includes all the phenomena that are used in optical sciences for the development of optical devices. Therefore, nanophotonics finds numerous applications such as in optical microscopy, the design of optical switches and electromagnetic chips circuits, transistor filaments, etc. Because of its numerous scientific and technological applications (e.g. in relation to telecommunication, energy production and biomedicine), nanophotonics represents an active field of research increasingly relying on numerical modeling beside experimental studies.

Plasmonics is a related field to nanophotonics. Nanostructures whose optical scattering is dominated by the response of the conduction electrons are considered as plasmonic media. If the structure presents an interface with e.g. a dielectric with a positive permittivity, collective oscillations of surface electrons create surface-plasmons-polaritons (SPPs) that propagate along the interface. SPPs are guided along metal-dielectric interfaces much in the same way light can be guided by an optical fiber, with the unique characteristic of subwavelength-scale confinement perpendicular to the interface. Nanofabricated systems that exploit SPPs offer fascinating opportunities for crafting and controlling the propagation of light in matter. In particular, SPPs can be used to channel light efficiently into nanometer-scale volumes, leading to direct modification of mode dispersion properties (substantially shrinking the wavelength of light and the speed of light pulses for example), as well as huge field enhancements suitable for enabling strong interactions with nonlinear materials. The resulting enhanced sensitivity of light to external parameters (for example, an applied electric field or the dielectric constant of an adsorbed molecular layer) shows great promise for applications in sensing and switching. In particular, very promising applications are foreseen in the medical domain [49]-[64].

Numerical modeling of electromagnetic wave propagation in interaction with metallic nanostructures at optical frequencies requires to solve the system of Maxwell equations coupled to appropriate models of physical dispersion in the metal, such the Drude and Drude-Lorentz models. Her again, the FDTD method is a widely used approach for solving the resulting system of PDEs [60]. However, for nanophotonic applications, the space and time scales, in addition to the geometrical characteristics of the considered nanostructures (or structured layouts of the latter), are particularly challenging for an accurate and efficient application of the FDTD method. Recently, unstructured mesh based methods have been developed and have demonstrated their potentialities for being considered as viable alternatives to the FDTD method [54]-[56]-[47]. The activities of the NACHOS project-team towards the development of accurate and efficient unstructured mesh based methods for nanophotonic applications have started in 2012 and are conducted in collaboration with Dr. Maciej Klemm at University of Bristol who is designing nanoantennas for medical applications [55].

4.2. Computational geoseismics

Computational challenges in geoseismics span a wide range of disciplines and have significant scientific and societal implications. Two important topics are mitigation of seismic hazards and discovery of economically recoverable petroleum resources. The research activities of the NACHOS project-team in this domain before all focus on the development of numerical methodologies and simulation tools for seismic hazard assessment, while the involvement on the second topic has been been initiated recently.
Figure 2. Scattering of a 20 nanometer radius gold nanosphere by a plane wave. The gold properties are described by a Drude dispersion model. Modulus of the electric field in the frequency domain. Top left figure: Mie solution. Top right figure: numerical solution. Bottom figure: 1D plot of the electric field modulus for various orders of approximation (PhD thesis of Jonathan Viquerat).
4.2.1. Seismic hazard assessment.

To understand the basic science of earthquakes and to help engineers better prepare for such an event, scientists want to identify which regions are likely to experience the most intense shaking, particularly in populated sediment-filled basins. This understanding can be used to improve building codes in high hazard areas and to help engineers design safer structures, potentially saving lives and property. In the absence of deterministic earthquake prediction, forecasting of earthquake ground motion based on simulation of scenarios is one of the most promising tools to mitigate earthquake related hazard. This requires intense modeling that meets the spatial and temporal resolution scales of the continuously increasing density and resolution of the seismic instrumentation, which record dynamic shaking at the surface, as well as of the basin models. Another important issue is to improve the physical understanding of the earthquake rupture processes and seismic wave propagation. Large scale simulations of earthquake rupture dynamics and wave propagation are currently the only means to investigate these multi-scale physics together with data assimilation and inversion. High resolution models are also required to develop and assess fast operational analysis tools for real time seismology and early warning systems. Modeling and forecasting earthquake ground motion in large basins is a challenging and complex task. The complexity arises from several sources. First, multiple scales characterize the earthquake source and basin response: the shortest wavelengths are measured in tens of meters, whereas the longest measure in kilometers; basin dimensions are on the order of tens of kilometers, and earthquake sources up to hundreds of kilometers. Second, temporal scales vary from the hundredths of a second necessary to resolve the highest frequencies of the earthquake source up to as much as several minutes of shaking within the basin. Third, many basins have a highly irregular geometry. Fourth, the soil’s material properties are highly heterogeneous. And fifth, geology and source parameters are observable only indirectly and thus introduce uncertainty in the modeling process. Because of its modeling and computational complexity, earthquake simulation is currently recognized as a grand challenge problem.

Numerical methods for the propagation of seismic waves have been studied for many years. Most of existing numerical software rely on finite difference type methods. Among the most popular schemes, one can cite the staggered grid finite difference scheme proposed by Virieux [62] and based on the first order velocity-stress hyperbolic system of elastic waves equations, which is an extension of the scheme derived by Yee [63] for the solution of the Maxwell equations. Many improvements of this method have been proposed, in particular, higher order schemes in space or rotated staggered-grids allowing strong fluctuations of the elastic parameters. Despite these improvements, the use of cartesian grids is a limitation for such numerical methods especially when it is necessary to incorporate surface topography or curved interface. Moreover, in presence of a non planar topography, the free surface condition needs very fine grids (about 60 points by minimal Rayleigh wavelength) to be approximated. In this context, our objective is to develop high order unstructured mesh based methods for the numerical solution of the system of elastodynamic equations for elastic media in a first step, and then to extend these methods to a more accurate treatment of the heterogeneities of the medium or to more complex propagation materials such as viscoelastic media which take into account the intrinsic attenuation. Initially, the team has considered in detail the necessary methodological developments for the large-scale simulation of earthquake dynamics [2]-[1]. More recently, the team has initiated a close collaboration with CETE Méditerranée http://www.cete-mediterranee.fr/gb which is a regional technical and engineering centre whose activities are concerned with seismic hazard assessment studies, and IFSTTAR http://www.ifsttar.fr/en/welcome which is the French institute of science and technology for transport, development and networks, conducting research studies on control over aging, risks and nuisances.

4.2.2. Imperfect interfaces.

A long term scientific collaboration (at least 5 years long) has been recently set up between the NACHOS project-team and LMA (Laboratoire de Mécanique et Acoustique) http://www.lma.cnrs-mrs.fr with the arrival of Marie-Hélène Lallemand who joinged NACHOS in October 2012. That collaboration has been motivated by common scientific interests concerning both geodynamics (seismic wave propagation) and seismology (Non Destructive Control by wave propagation). The goal is to contribute in the area of both fracture dynamics modelings and the setting of adequate constitutive laws for interfaces separating two continuous media. Since the whole medium under study is heterogeneous in term of both materials and geometries, the study of
equivalent homogeneous representation/modellings is crucial to get a suitable reduced model which can be used for numerical simulations. In the particular example of rock-type soils near mountain areas, the medium may be viewed from the geologist, at the macro-scale, for example, as large layers of continuous materials separated by interfacial areas through which discontinuities (of displacements, velocities, stress components ...) may occur. Even if the so-called interfaces may have a depth which may attain many times ten meters and a length of many times hundred meters, they are assimilated as interfaces, from the geologist point of view. Inside those thin layers, there are usually some mixture of multiphase materials (water, sand, gas, etc.), and the exact composition is not known in advance. While perfect interfaces are usually assumed in inverse problems in seismology, the question is to qualify and to quantify the errors if we do not take those assumptions for granted. When soil rheology is requested, assuming perfect interfaces or imperfect interfaces greatly influence the physical parameters obtained in reversing the data collected in the captrors. Interface modelling is one of the expertise area of LMA, and the project-team is interested in taking that opportunity to improve its knowledge in multi-scale modelling while ready to help answering the numerical implementation of such resulting models. That collaboration is not restricted to that aspect though. Well-posedness of the resulting models, numerical solvers are also domains which are also addressed.

4.2.3. Seismic exploration.

This application topic has been considered recently by the NACHOS project-team and this is done in close collaboration with the MAGIQUE-3D project-team at Inria Bordeaux - Sud-Ouest which is coordinating the Depth Imaging Partnership (DIP) http://dip.inria.fr between Inria and TOTAL. The research program of DIP includes different aspects of the modeling and numerical simulation of seismic wave propagation that must be considered to construct an efficient software suites for producing accurate images of the subsurface. Our common objective with the MAGIQUE-3D project-team is to design high order unstructured mesh based methods for the numerical solution of the system of elastodynamic equations in the time domain and in the frequency domain, that will be used as forward modelers in appropriate inversion procedures.
OPALE Project-Team

4. Application Domains

4.1. Aeronautics and space

The demand of the aeronautical industry remains very strong in aerodynamics, as much for conventional aircraft, whose performance must be enhanced to meet new societal requirements in terms of economy, noise (particularly during landing), vortex production near runways, etc., as for high-capacity or supersonic aircraft of the future. Our implication concerns shape optimization of wings or simplified configurations.

Our current involvement with Space applications relates to software platforms for code coupling.

4.2. Mechanical industry

A new application domain related to the parameter and shape optimization of mechanical structures is under active development. The mechanical models range from linear elasticity of 2D or 3D structures, or thin shells, to nonlinear elastoplasticity and structural dynamics. The criteria under consideration are multiple: formability, stiffness, rupture, fatigue, crash, and so on. The design variables are the thickness and shape, and possibly the topology, of the structures. The applications are performed in collaboration with world-leading industrials, and involve the optimization of the stamping process (Blank Force, Die and Tools shapes) of High Performance steel structures as well as the optimal design of structures used for packaging purposes (cans and sprays under high pressure). Our main contribution relies on providing original and efficient algorithms to capture Pareto fronts, using smart meta-modelling, and to apply game theory approaches and algorithms to propose stable compromise solutions (e.g. Nash equilibria).

4.3. Electromagnetics

In the context of shape optimization of antennas, we can split the existing results in two parts: the two-dimensional modeling concerning only the specific transverse mode TE or TM, and treatments of the real physical 3-D propagation accounting for no particular symmetry, whose objective is to optimize and identify real objects such as antennas.

Most of the numerical literature in shape optimization in electromagnetics belongs to the first part and makes intensive use of the 2-D solvers based on the specific 2-D Green kernels. The 2-D approach for the optimization of directivity led recently to serious errors due to the modeling defect. There is definitely little hope for extending the 2-D algorithms to real situations. Our approach relies on a full analysis in unbounded domains of shape sensitivity analysis for the Maxwell equations (in the time-dependent or harmonic formulation), in particular, by using the integral formulation and the variations of the Colton and Kreiss isomorphism. The use of the France Telecom software SR3D enables us to directly implement our shape sensitivity analysis in the harmonic approach. This technique makes it possible, with an adequate interpolation, to retrieve the shape derivatives from the physical vector fields in the time evolution processes involving initial impulses, such as radar or tomography devices, etc. Our approach is complementary to the “automatic differentiation codes” which are also very powerful in many areas of computational sciences. In Electromagnetics, the analysis of hyperbolic equations requires a sound treatment and a clear understanding of the influence of space approximation.

4.4. Biology and medicine

A particular effort is made to apply our expertise in solid and fluid mechanics, shape and topology design, multidisciplinary optimization by game strategies to biology and medicine. We focus more precisely on developing and validating cell dynamics models. Two selected applications are privileged: solid tumors and wound healing.
Opale’s objective is to push further the investigation of these applications, from a mathematical-theoretical viewpoint and from a computational and software development viewpoint as well. These studies are led in collaboration with biologists, as well as image processing specialists.

4.5. Traffic flow

The modeling and analysis of traffic phenomena can be performed at a macroscopic scale by using partial differential equations derived from fluid dynamics. Such models give a description of collective dynamics in terms of the spatial density $\rho(t, x)$ and average velocity $v(t, x)$. Continuum models have shown to be in good agreement with empirical data. Moreover, they are suitable for analytical investigations and very efficient from the numerical point of view. Finally, they contain only few variables and parameters and they can be very versatile in order to describe different situations encountered in practice.

Opale’s research focuses on the study of macroscopic models of vehicular and pedestrian traffic, and how optimal control approaches can be used in traffic management. The project opens new perspectives of interdisciplinary collaborations on urban planning and crowd dynamics analysis.

4.6. Multidisciplinary couplings

Our expertise in theoretical and numerical modeling, in particular in relation to approximation schemes, and multilevel, multi-scale computational algorithms, allows us to envisage to contribute to integrated projects focused on disciplines other than, or coupled with fluid dynamics, such as structural mechanics, electromagnetics, biology and virtual reality, image processing, etc in collaboration with specialists of these fields. Part of this research is conducted in collaboration with ONERA.
4. Application Domains

4.1. Automatic Differentiation

Automatic Differentiation of programs gives sensitivities or gradients, that are useful for many types of applications:

- optimum shape design under constraints, multidisciplinary optimization, and more generally any algorithm based on local linearization,
- inverse problems, such as parameter estimation and in particular 4Dvar data assimilation in climate sciences (meteorology, oceanography),
- first-order linearization of complex systems, or higher-order simulations, yielding reduced models for simulation of complex systems around a given state,
- mesh adaptation and mesh optimization with gradients or adjoints,
- equation solving with the Newton method,
- sensitivity analysis, propagation of truncation errors.

4.2. Multidisciplinary optimization

A CFD program computes the flow around a shape, starting from a number of inputs that define the shape and other parameters. From this flow one can define optimization criteria e.g. the lift of an aircraft. To optimize a criterion by a gradient descent, one needs the gradient of the output criterion with respect to all the inputs, and possibly additional gradients when there are constraints. Adjoint-mode AD is a promising way to compute these gradients.

4.3. Inverse problems and Data Assimilation

Inverse problems aim at estimating the value of hidden parameters from other measurable values, that depend on the hidden parameters through a system of equations. For example, the hidden parameter might be the shape of the ocean floor, and the measurable values the altitude and speed of the surface.

One particular case of inverse problems is data assimilation [31] in weather forecasting or in oceanography. The quality of the initial state of the simulation conditions the quality of the prediction. But this initial state is largely unknown. Only some measures at arbitrary places and times are available. A good initial state is found by solving a least squares problem between the measures and a guessed initial state which itself must verify the equations of meteorology. This boils down to solving an adjoint problem, which can be done though AD [34]. Figure 1 shows an example of a data assimilation exercise using the oceanography code OPA [32] and its AD adjoint produced by TAPENADE.

The special case of 4Dvar data assimilation is particularly challenging. The 4th dimension in “4D” is time, as available measures are distributed over a given assimilation period. Therefore the least squares mechanism must be applied to a simulation over time that follows the time evolution model. This process gives a much better estimation of the initial state, because both position and time of measurements are taken into account. On the other hand, the adjoint problem involved grows in complexity, because it must run (backwards) over many time steps. This demanding application of AD justifies our efforts in reducing the runtime and memory costs of AD adjoint codes.
Figure 1. Twin experiment using the adjoint of OPA. We add random noise to a simulation of the ocean state around the Antarctic, and we remove this noise by minimizing the discrepancy with the physical model.
4.4. Linearization

Simulating a complex system often requires solving a system of Partial Differential Equations. This is sometimes too expensive, in particular in the context of real time. When one wants to simulate the reaction of this complex system to small perturbations around a fixed set of parameters, there is a very efficient approximate solution: just suppose that the system is linear in a small neighborhood of the current set of parameters. The reaction of the system is thus approximated by a simple product of the variation of the parameters with the Jacobian matrix of the system. This Jacobian matrix can be obtained by AD. This is especially cheap when the Jacobian matrix is sparse. The simulation can be improved further by introducing higher-order derivatives, such as Taylor expansions, which can also be computed through AD. The result is often called a reduced model.

4.5. Mesh adaptation

Some approximation errors can be expressed by an adjoint state. Mesh adaptation can benefit from this. The classical optimization step can give an optimization direction not only for the control parameters, but also for the approximation parameters, and in particular the mesh geometry. The ultimate goal is to obtain optimal control parameters up to a precision prescribed in advance.
TOSCA Project-Team

4. Application Domains

4.1. Application Domains

TOSCA is interested in developing stochastic models and probabilistic numerical methods. Our present motivations come from Finance, Neuroscience and Biology, Fluid Mechanics and Meteorology, Chemical Kinetics, Diffusions in random media, Transverse problems, Software and Numerical experiments.

Finance For a long time now TOSCA has collaborated with researchers and practitioners in various financial institutions and insurance companies. We are particularly interested in calibration problems, risk analysis (especially model risk analysis), optimal portfolio management, Monte Carlo methods for option pricing and risk analysis, asset and liabilities management. We also work on the partial differential equations related to financial issues, for example the stochastic control Hamilton–Jacobi–Bellman equations. We study existence, uniqueness, qualitative properties and appropriate deterministic or probabilistic numerical methods. At the moment we pay special attention to the financial consequences induced by modelling errors and calibration errors on hedging strategies and portfolio management strategies.

Neuroscience and Biology The interest of TOSCA in biology is developing in three main directions: neuroscience, molecular dynamics and population dynamics. In neuroscience, stochastic methods are developed to analyze stochastic resonance effects, to solve inverse problems and to investigate mean-field/McKean-Vlasov equations. For example, we are studying probabilistic interpretations and Monte Carlo methods for divergence form second-order differential operators with discontinuous coefficients, motivated by the 3D MEG inverse problem. Our research in molecular dynamics focuses on the development of Monte Carlo methods for the Poisson-Boltzmann equation which also involves a divergence form operator, and of original algorithms to construct improved simulation techniques for protein folding or interaction. Finally, our interest in population dynamics comes from ecology, evolution and genetics. For example, we are studying the emergence of diversity through the phenomenon of evolutionary branching in adaptive dynamics. Some collaborations in biostatistics on cancer problems are also being initiated.

Fluid Mechanics and Meteorology In Fluid Mechanics we develop probabilistic methods to solve vanishing viscosity problems and to study the behavior of complex flows at the boundary, and their interaction with the boundary. We elaborate and analyze stochastic particle algorithms. Our studies concern the convergence analysis of these methods on theoretical test cases and the design of original schemes for applicative cases. A first example concerns the micro-macro model of polymeric fluids (the FENE model). A second example concerns stochastic Lagrangian modelling of turbulent flows. We are particularly motivated by the meteorological downscaling, and by the computation of characteristic properties of the local wind activity in areas where windmills are built. Our goal is to estimate local potential resources which are subject to meteorological variability (randomness) by developing a stochastic downscaling methodology, that is able to refine wind prevision at large scale, and to compute management strategies of wind resources.

Chemical Kinetics The TOSCA team is studying coagulation and fragmentation models, that have numerous areas of applications (polymerization, aerosols, cement industry, copper industry, population dynamics...). Our current motivation comes from the industrial copper crushers in Chile. We aim to model and calibrate the process of fragmentation of brass particles of copper in industrial crushers, in order to improve their efficiency at a low cost.

Diffusions in random media A random medium is a material with a lot of heterogeneity which can be described only statistically. Typical examples are fissured porous media within rocks of different types, turbulent fluids or unknown or deficient materials in which polymers evolve or waves
propagate. For the last few years, the TOSCA team has been collaborating with the Geophysics community on problems related to underground diffusions, especially those which concern waste transport or oil extraction. We are extending our previous results on the simulation of diffusion processes generated by divergence form operators with discontinuous coefficients. Such an operator appears for example in the Darcy law for the behavior of a fluid in a porous media. We are also developing another class of Monte Carlo methods to simulate diffusion phenomena in discontinuous media.

Transverse problems Several of the topics of interest of TOSCA do not only concern a single area of application. This is the case in particular for long time simulation methods of nonlinear McKean-Vlasov PDEs, the problem of simulation of multivalued models, variance reduction techniques or stochastic partial differential equations. For example, multivalued processes have applications in random mechanics or neuroscience, and variance reduction techniques have applications in any situation where Monte Carlo methods are applicable.

Software, numerical experiments TOSCA is interested in designing algorithms of resolution of specific equations in accordance with the needs of practitioners. We benefit from our strong experience of the programming of probabilistic algorithms of various architectures including intensive computation architectures. In particular, our activity will concern the development of grid computing techniques to solve large dimensional problems in Finance. We are also interested in intensively comparing various Monte Carlo methods for PDEs and in the development of open source libraries for our numerical methods in Fluid Mechanics, MEG or Chemical Kinetics.
4. Application Domains

4.1. Structural Biology and Biophysics

As the name of the project-team suggest, Algorithms-Biology-Structure is primarily concerned with the investigation of the structure-to-function relationship in structural biology and biophysics.
ASCLEPIOS Project-Team (section vide)
4. Application Domains

4.1. Applications of Diffusion MRI

Various examples of CNS diseases as Alzheimer’s and Parkinson’s diseases and others like multiple sclerosis, traumatic brain injury and schizophrenia have characteristic abnormalities in the micro-structure of brain tissues that are not apparent and cannot be revealed reliably by standard imaging techniques. Diffusion MRI can make visible these co-lateral damages to the fibers of the CNS white matter that connect different brain regions. This is why in our research, Diffusion MRI is the major anatomical imaging modality that will be considered to recover the CNS connectivity.

Clinical domain: Diagnosis of neurological disorder

- Parkinson's and Alzheimer's diseases are among the most important CNS diseases. Six million patients (among which 850,000 in France) are suffering from Alzheimer’s, making it the most important neurodegenerative disease in Europe. Over 85 years of age, 1 woman in 4 and 1 man in 5 are affected in Europe. In France, the number of Alzheimer’s patients is expected to reach at least 2 million in 2025 and will probably double in 2050, with the increasing age of the population. Parkinson’s disease is the second most important neurodegenerative disease. There are six and a half million patients in the world and roughly 150,000 patients in France, among which 10% are under 40 and 50% over 58. Together with our partners from NeuroSpin (Saclay), Inserm U678 and CENIR (CHUPS, Paris), we are involved in the ANR project NucleiPark which is about high field MRI of the brainstem, the deep nuclei and their connections in the Parkinsonian syndromes.

- Spinal Cord Injury (SCI) has a significant impact on the quality of life since it can lead to motor deficits (paralysis) and sensory deficits. In the world, about 2.5 million people live with SCI (http://www.campaignforcure.org). To date, there is no consensus for full rehabilitative cure in SCI, although many therapeutic approaches have shown benefits [69], [72]. It is thus of great importance to develop tools that will improve the characterization of spinal lesions as well as the integrity of remaining spinal tracts to eventually establish better prognosis after spinal injury. We have already started to be active in this domain with our collaborators at Inserm U678 (H. Benali) and CRSN/Faculté de médecine Université de Montréal (Pr. S. Rossignol).

4.2. Applications of M/EEG

Applications of EEG and MEG cover: Clinical domain: diagnosis of neurological disorders

The dream of all M/EEG researchers is to alleviate the need for invasive recordings (electrocorticograms or intracerebral electrodes), which are often necessary prior to brain surgery, in order to precisely locate both pathological and vital functional areas. We are involved in this quest, particularly through our collaborations with the La Timone hospital in Marseille.

Subtopics include:

- Diagnosis of neurological disorders such as epilepsy, schizophrenia, tinnitus, ...
- Presurgical planning of brain surgery.

Cognitive research

- Aims at better understanding the brain spatio-temporal organisation.
- Collaboration with the Laboratory for Neurobiology of Cognition in order to develop methods that suit their needs for sophisticated data analysis.
Brain Computer Interfaces look at allowing a direct control of the world using brain signal such as EEG signals. Those can be considered both as an application of EEG processing techniques and as a tool for fundamental and applied research as it opens the way for more dynamical and active brain cognitive protocols.

We are developing research collaborations with the Neurelec company in Sophia Antipolis (subsidiary of Oticon Medical) and with the leading EEG software company BESA based in Munich. We are conducting a feasibility study with the Nice University Hospital on the usage of BCI-based communication for ALS patients.

3Nice University Hospital hosts a regional reference center for patients suffering from Amyotrophic Lateral Syndrome.
4. Application Domains

4.1. Bioenergy

Finding sources of renewable energy is a key challenge for our society. We contribute to this topic through two main domains for which a strong and acknowledged expertise has been acquired over the years. First, we consider anaerobic digesters, the field of expertise of the members of the team at the Laboratory of Environmental Biotechnology (LBE), for the production of methane and/or biohydrogen from organic wastes. The main difficulty is to make these processes more reliable and exploit more efficiently the produced biogas by regulating both its quality and quantity despite high variability in the influent wastes. One of the specific applications that needs to be tackled is the production of biogas in a plant when the incoming organic waste results from the mixing of a finite number of substrates. The development of control laws that optimize the input mix of the substrates as a function of the actual state of the system is a key challenge for the viability of this industry.

The second topic consists in growing microalgae, the field of expertise of the members of the team at the Oceanographic Laboratory of Villefranche-sur-Mer (LOV), to produce biofuel. These microorganisms can synthesize lipids with a much higher productivity than terrestrial oleaginous species. The difficulty is to better understand the involved processes, which are mainly transient, to stimulate and optimize them on the basis of modeling and control strategies. Predicting and optimizing the productivity reached by these promising systems in conditions where light received by each cell is strongly related to hydrodynamics, is a crucial challenge.

Finally, for the energy balance of the process, it is important to couple microalgae and anaerobic digestion to optimize the solar energy that can be recovered from microalgae, as was explored within the ANR Symbiose project (2009-2012) [81].

4.2. CO$_2$ fixation and fluxes

Phytoplanktonic species, which assimilate CO$_2$ during photosynthesis, have received a lot of attention in the last years. Microalgal based processes have been developed in order to mitigate industrial CO$_2$. As for biofuel productions, many problems arise when dealing with microalgae which are more complex than bacteria or yeasts. Several models have been developed within our team to predict the CO$_2$ uptake in conditions of variable light and nitrogen availability. The first modeling challenge in that context consists in taking temperature effects and light gradient into account.

The second challenge consists in exploiting the microalgal bioreactors which have been developed in the framework of the quantification of carbon fluxes between ocean and atmospheres. The SEMPO platform (simulator of variable environment computer controlled), developed within the LOV team, has been designed to reproduce natural conditions that can take place in the sea and to accurately measure the cells behavior. This platform, for which our team has developed models and control methods over the years, is an original and unique tool to develop relevant models which stay valid in dynamic conditions. It is worth noting that a better knowledge of the photosynthetic mechanisms and improved photosynthesis models will benefit both thematics: CO$_2$ mitigation and carbon fluxes predictions in the sea.

4.3. Biological control for plants and micro-plants production systems

This work concentrates on the protection of cultures of photosynthetic organisms against their pests or their competitors. The forms of cultures that we study are crop and micro-algae productions. In both cases, the devices are more or less open to the outside, depending on the application (greenhouse/field, photobioreactor/raceway) so that they may give access to invading species which can be harmful to the cultures; we opt for protecting the culture through the use of biocontrol agents which are, generically, natural enemies of these noxious populations [9].
In crop production, biological control is indeed a very promising alternative to pesticide usage; the use of predators, parasitoids or pathogens of crop pests in order to fight them has many advantages with respect to environmental protection, health of the consumers and the producers, the limited development of resistance (compared to chemicals).... It is however not widespread yet because it often lacks efficiency in real-life crop production systems (while its efficiency in the laboratory is much higher) and can fail to be economically competitive. Our objective is to propose models that would help to explain which factors are locks that prevent the smooth transition from the laboratory to the agricultural crop as well as develop new methods for the optimal deployment of the pests natural enemies.

Microalgal production is faced with exactly the same problems since predators of the produced microalgal (e.g. zooplankton) or simply other species of microalgae can invade the photobioreactors and outcompete or eradicate the one that we wish to produce. Methods need therefore to be proposed for fighting the invading species; this could be done by introducing predators of the pest and so keeping it under control, or by controlling the conditions of culture in order to reduce the possibility of invasion; the design of such methods could greatly take advantage of our knowledge developed in crop protection since the problems and models are related.

4.4. Biological depollution

These works will be carried out with the LBE, mainly on anaerobic treatment plants. This process, despite its strong advantages (methane production and reduced sludge production) can have several locally stable equilibria. In this sense, proposing reliable strategies to stabilize and optimise this process is a key issue. Because of the recent (re)development of anaerobic digestion, it is crucial to propose validated supervision algorithms for this technology. A problem of growing importance is to take benefit of various waste sources in order to adapt the substrate quality to the bacterial biomass activity and finally optimize the process. This generates new research topics for designing strategies to manage the fluxes of the various substrate sources meeting at the same time the depollution norms and providing a biogas of constant quality. In the past years, we have developed models of increasing complexity. However there is a key step that must be considered in the future: how to integrate the knowledge of the metabolisms in such models which represent the evolution of several hundreds bacterial species? How to improve the models integrating this two dimensional levels of complexity? With this perspective, we wish to better represent the competition between the bacterial species, and drive this competition in order to maintain, in the process, the species with the highest depollution capability. This approach, initiated in [103] must be extended from a theoretical point of view and validated experimentally.

4.5. Experimental Platforms

To test and validate our approach, we use experimental platforms developed by our partner teams; these are highly instrumented for accurately monitoring the state of biological species:

- At LOV: A photobioreactor (SEMPO) for experimental simulation of the Lagrangian dynamical environment of marine microalgae with computer controlled automata for high frequency measurement and on-line control. This photobioreactor is managed by Amélie Talec and Eric Pruvost.
- At LBE: Several pilot anaerobic digesters that are highly instrumented and computerized and the algotron, that is the coupling of a digester and a photobioreactor for microalgal production. Eric Latrille is our main contact for this platform at LBE.
- AT ISA: Experimental greenhouses of various sizes (from laboratory to semi-industrial size) and small scale devices for insect behavior testing. Christine Poncet and Alexandre Bout are our main contacts regarding experimental setups at ISA.

Moreover, we may use the data given by several experimental devices at EPI IBIS/ Hans Geiselmann Laboratory (University J. Fourier, Grenoble) for microbial genomics.
4. Application Domains

4.1. Tokamaks

In the conception of the ITER tokamak, several key challenging points have been identified. One of them is the necessity to understand and control the huge thermal loads that are directed to the divertor target plates from the scrape-off layer (SOL) region since they are at the edge of or above what can be handled by today’s materials. In the same spirit, the control of ELMs type instabilities that can also result in huge energy losses impacting the plasma facing components is considered as of crucial importance for the ITER program. The optimization of scenarii for designing the discharges of ITER and WEST will be addressed as well as some problems of ionospheric plasma.
4. Application Domains

4.1. Porous Media

Clearly, the analysis and simulation of flows in porous media is a major theme in our team. It is strongly motivated by industrial partnerships, with Total, GdF-Suez, ANDRA, BRGM, etc. with direct applications in geothermy, geological storages, and oil and gas recovery.

Our research has first dealt with the discretization and convergence analysis of multiphase Darcy flows on general polyhedral meshes and for heterogeneous anisotropic media. We have investigated both the Vertex Approximate Gradient (VAG) scheme using both cell and vertex unknowns and the Hybrid Finite Volume (HFV) scheme using both cell and face unknowns. It is remarkable that the VAG scheme is much more accurate than existing nodal approaches (such as CVFE) for heterogeneous test cases: since it avoids the mixing of different rocktypes inside the control volumes, while preserving the low cost of nodal discretizations thanks to the elimination of cell unknowns without any fill-in. The convergence of the numerical discretizations has been studied for the problem of contaminant transport with adsorption in the case of HFV scheme and for two phase Darcy flows in global pressure formulation using particular VAG or HFV schemes, as well as the more general framework of gradient schemes. To reduce the Grid Orientation Effect, a general methodology is proposed in on general meshes. It is based on the recombination of given conservative fluxes to define new conservative fluxes on a richer stencil. On the same token, we have considered the transport of radionucleides by water in porous media. The question is naturally motivated by security studies of nuclear waste storage. We have dealt with the non linear Peaceman system, set on a heterogeneous domain, typically a layered geological medium. The system couples anisotropic diffusion equation and a diffusion-dispersion equation for the pollutant concentration. We have developed and analyzed a specific DDFV scheme to investigate such flows.

4.2. Particulate and mixture flows

We investigate fluid mechanics models referred to as “multi–fluids” flows. A large part of our activity is more specifically concerned with the case where a disperse phase interacts with a dense phase. Such flows arise in numerous applications, like for pollutant transport and dispersion, the combustion of fuel particles in air, the modelling of fluidized beds, the dynamic of sprays and in particular biosprays with medical applications, engine fine particles emission... There are many possible modelings of such flows: microscopic models where the two phases occupy distinct domains and where the coupling arises through intricate interface conditions; macroscopic models which are of hydrodynamic (multiphase) type, involving non standard state laws, possibly with non conservative terms, and the so–called mesoscopic models. The latter are based on Eulerian–Lagrangian description where the disperse phase is described by a particle distribution function in phase space. Following this path we are led to a Vlasov-like equation coupled to a system describing the evolution of the dense phase that is either the Euler or the Navier-Stokes equations. It turns out that the leading effect in such models is the drag force. However, the role of other terms, of more or less phenomenological nature, deserves to be discussed (close packing terms, lift term, Basset force...). Of course the fluid/kinetic model is interesting in itself and needs further analysis and dedicated numerical schemes. In particular, in collaboration with the Atomic Energy Commission (CEA), we have proposed a semi-Lagrangian scheme for the simulation of particulate flows, extending the framework established in plasma physics to such flows.
We also think it is worthwhile to identify hydrodynamic regimes: it leads to discuss hierarchies of coupled hydrodynamic systems, the nature of which could be quite intriguing and original, while they share some common features of the porous media problems. We are particularly interested in revisiting the modeling of mixture flows through the viewpoint of kinetic models and hydrodynamic regimes. We propose to revisit the derivation of new mixture models, generalizing Kazhikov-Smagulov equations, through hydrodynamic asymptotics. The model is of “hybrid” type in the sense that the constraint reduces to the standard incompressibility condition when the disperse phase is absent, while it involves derivatives of the particle volume fraction when the disperse phase is present.

4.3. Biological degradation, biofilms formation and algae proliferation

Members of the team have started an original research program devoted to biofilms formation and algae proliferation. We started working on this subject through a collaboration with Roberto Natalini and a group of experts in Firenze interested in preventing damages on historical monuments. It is also motivated by Ostreopsis proliferation in the Mediterranean Sea. The multidisciplinary character of this research relies on discussions with researchers of the Oceanography Laboratory in Villefranche-sur-Mer, a leading marine research unit, and the Inria team BIOCORE, led by J-L. Gouzé. This research is supported by a ANR-project, led by M. Ribot, and it is the main topic of the PhD thesis of B. Polizzi.
4. Application Domains

4.1. Objective quantification and understanding of movement disorders

One main advantage of developing a model based on a physical description of the system is that the parameters are meaningful. Therefore, these parameters when identified on a given individual (valid or deficient), give objective and quantitative data that characterize the system and thus can be used for diagnosis purposes.

Modelling provides a way to simulate movements for a given patient and therefore based on an identification procedure it becomes possible to analyse and then understand his pathology. In order to describe complex pathology such as spasticity that appears on paraplegic patients, one needs not only to model the biomechanics parts - including muscles -, but also parts of the peripheral nervous system - including natural sensors - to assess reflex problems. One important application is then to explore deficiencies globally due to both muscles and peripheral neural nets disorders.

4.2. Palliative solutions for movement deficiencies

Functional electrical stimulation is one possibility to restore or control motor functions in an evolutive and reversible way. Pacemaker, cochlear implants, deep brain stimulation (DBS) are successful examples. DEMAR focuses on movement disorder restoration in paraplegic and quadriplegic patients, enhancements in hemiplegic patients, and some other motor disorders such as bladder and bowel control. Nevertheless, since some advances in neuroprosthetic devices can be exploited for the next generation of cochlear implants, the team also contributes to technological and scientific improvements in this domain.

The possibility to interface the sensory motor system, both activating neural structure with implanted FES, and sensing through implanted neural signal recordings open a wide application area:

- Restoring motor function such as grasping for quadriplegic patient, standing and walking for paraplegic patient, compensating foot drop for hemiplegic patients. These applications can be firstly used in a clinical environment to provide physiotherapist with a new efficient FES based therapy (using mainly surface electrodes) in the rehabilitation process. Secondly, with a more sophisticated technology such as implanted neuroprostheses, systems can be used at home by the patient himself without a clinical staff.

- Modulating motor function such as tremors in Parkinsonian patient using DBS. Techniques are very similar but for the moment, modelling is not achieved because it implies the central nervous system modelling in which we are not implied.

- Sensing the afferent pathways, such as muscle’s spindles, will be used to provide a closed loop control of FES through natural sensing and then a complete implanted solution. Sensing the neural system is a necessity in some complex motor controls such as the bladder control. Indeed, antagonist muscle’s contractions, and sensory feedbacks interfere with FES when applied directly on the sacral root nerve concerned. Thus, enhanced activation waveforms and sensing feedback or feedforward signals are needed to perform a highly selective stimulation.

To achieve such objectives, experimentation on animals and humans are necessary. This research takes therefore a long time in order to go from theoretical results to real applications. This process is a key issue in biomedical research and is based on: i) design of complex experimental protocols and setups both for animals and humans, ii) ethical attitude both for humans and animals, with ethical committee approval for human experiments iii) volunteers and selected persons, both disabled and healthy, to perform experiments with the adequate medical staff.
4. Application Domains

4.1. Wastewater treatment systems

The water resources of our planet are limited, and today the quality of drinking water is considered to be responsible of more human deaths than malnutrition. Pollution and over-exploitation of water resources affect almost all the water reservoirs on Earth. Preserving the quality of water has thus become a worldwide problem. The industry of decontamination is thus a necessity, but waste-water treatment is costly and requires large plants. It relies on the use of micro-organisms that concentrate toxic soluble substances into sludge (that can be used as a fertilizer in agriculture). Today, a water decontamination plant costs about 1000 to 5000 euros per inhabitant. 30 to 40% of its running costs are devoted to the energy necessary for pool ventilation.

The waste-water treatment industry use software to optimize the plant design (number, size, interconnections of tanks), but design and improvements of bio-processes remain costly. This is why modeling allows numerical simulations of virtual bio-processes that can save substantial amount of money, avoiding tests at a real scale.

There is presently a growing need to conceive treatment systems in a more global framework, including the valorization of the “outputs” such as: the biogaz production, and the reuse of treated water for agriculture or dam refill in case of drought. This requires to re-think the use of the models or to couple them with other models with new outputs and novel criteria to be optimized.

This is our most important domain of transfer and dissemination.

4.2. Environmental microbiology

Chemostat-like models (see Section 3.1.1) are also quite popular in theoretical marine ecology or in soil bio-chemistry, because micro-organisms play again a crucial role in the bio-geo-chemical cycles on Earth. Questioning are here a bit different than the ones depicted in Section 4.1 , because it is much more oriented towards comprehension and prediction than decision making (at the present time). Grasping the role of the microbial biodiversity appears to be an everlasting and common important question among scientists of various domains.

Nevertheless, mathematical models are quite similar but with some specificity (much more resources are available in marine microbiology; the spatial heterogeneities play a crucial role in underground processes).

A recent trend of considering natural microbial ecosystems on the Earth to be able to delivering new “eco-systemic services” has emerged, especially in terms of bio-remediation. Modeling and simulating tools are much relevant as in site experiments are quite costly and time-consuming.

4.3. Bioprocesses industry

Several industries use micro-organisms or yeasts to product substances of commercial interest (in pharmaceutics, green biotechnology, food making...). Novel investigation techniques in microbiology (such as multistage continuous bioreactors) bring new insights on the metabolic behavior of the various strains. This conducts to revisit old models such as Monod’s one, and to look for new estimation and piloting strategies. Those questions are quite closed to those studied in Sections 4.1 and 4.2 , although the ecological aspect is less present (most of the culture are pure ones). The team is naturally asked to contribute together with the specialists to problems related to modeling, simulation and control of these bio-processes.
MORPHEME Project-Team (section vide)
NEUROMATHCOMP Project-Team (section vide)
VIRTUAL PLANTS Project-Team (section vide)
4. Application Domains

4.1. Telecommunication networks

COATI is mostly interested in telecommunications networks. Within this domain, we consider applications that follow the needs and interests of our industrial partners, in particular Orange Labs or Alcatel-Lucent Bell-Labs, but also SMEs like 3-Roam and Avisto.

We focus on the design and management of heterogeneous networks. The project has kept working on the design of backbone networks (optical networks, radio networks, IP networks). We also study routing algorithms such as dynamic and compact routing schemes in the context of the FP7 EULER leaded by Alcatel-Lucent Bell-Labs (Belgium), and the evolution of the routing in case of any kind of topological modifications (maintenance operations, failures, capacity variations, etc.).

4.2. Other domains

Our combinatorial tools may be well applied to solve many other problems in various areas (transport, biology, resource allocation, chemistry, smart-grids, speleology, etc.) and we intend to collaborate with teams of these other domains.

For instance, we have recently started a collaboration in Structural Biology with EPI ABS (Algorithms Biology Structure) from Sophia Antipolis (described in Section 6.2). Furthermore, we are also working on robot moving problems coming from Artificial Intelligence/Robotic with Xavier Defago (Associate Professor at Japan Advanced Institute of Science and Technology, Japan).
4. Application Domains

4.1. Internet Citizen Rights Observatory

Internet users are highly interested in knowing the expected and/or actual quality of experience and in detecting potential privacy leakages. These are two essential Internet citizen rights we plan to address in the Diana team. However, the Internet is based on the best effort model and therefore provides no quality of service support. The perceived quality depends on many factors as network and service provisioning, the behavior of the other users, peering agreements between operators, and the diverse practices of network administrators in terms of security and traffic engineering done manually today and probably automatically on programmable infrastructure tomorrow. The proliferation of wireless and mobile access have complicated further this unpredictability of the Internet by adding other factors such as the mobility of end users, the type of wireless technology used, the coverage and level of interference. In addition, the Internet does not have a standard measurement and control plane. Apart from basic information on routing tables, all the rest (delays, available bandwidth, loss rate, anomalies and their root cause, network topology, ISP commercial relationships, etc.) are to be discovered. Several monitoring tools were developed by projects such as CAIDA or Googleâs M-Lab to understand the performance of the Internet and provide end users with information on the quality of their access. However, existing tools and techniques are mostly host-oriented and provide network-level measurements that can hardly be interpreted by the end users in terms of Quality of Experience (QoE). In fact, as the usage model shifts toward Information-centric networking, there is a need to define solutions to monitor and even predict application-level performance at the access based on objective measurements from the network. In the future Internet, there should be some minimum level of transparency allowing end users to evaluate their Internet access regarding the different services and applications they are interested in, and in case of trouble, to identify its origin. This migration of measurements to contents and services, which can be qualified as a Future Internet Observatory, requires understanding the traffic generated by the applications, inferring the practices of content providers and operators, defining relevant QoE metrics, finding low cost techniques to avoid measurement traffic explosion and redundancy (based, for example, on crowd sourcing) and leveraging spatiotemporal correlations for better localization of network anomalies.

Unfortunately, the quality of Internet applications as perceived by end users depends on numerous factors influenced directly by the home network, the access link (either wireless or wired), the core network, or even the content provider infrastructure. The perceived quality also depends on the application requirements in terms of network characteristics and path performances. This multiplicity of factors makes it difficult for the end user to understand the reasons for any quality degradation. Understanding the reasons of the degradation is getting even more difficult with the mobility of end users and the complexity of applications and services themselves. Nevertheless, it is essential for end users to understand the quality they obtain from the Internet and in case of dissatisfaction, to identify the root cause of the problem and pinpoint responsibilities. This process implies two major challenges. On one hand, there is a need to have a mapping between the quality obtained and the network performance, and to understand the exact behavior of modern applications and protocols. This phase involves the measurements and analysis of applications’ traffic and user feedback, and the calibration of models to map the perceived level of quality to network level performance metrics. On the other hand, there is a need for inference techniques to identify the network part hidden behind the observed problem, e.g. knowing which the part of the network causes a bandwidth decrease or high loss rate event. In the literature, this inference problem is often called network tomography, which consists of inferring internal network behavior from edge measurements. Network tomography can be done in two complementary ways. One approach is to run several tests from the end user access excluding each time different network parts, and by intersecting the observations, find the part very likely causing the problem. The advantage of this approach is that the user controls every point of the inference. Unfortunately, this technique requires extensive measurements from each user, which can be difficult to realize when resources are scarce such as on mobile...
wireless networks. Another approach can be to distribute the measurement among different end points and share their observations. The advantage is clearly to reduce the load for every one but it comes at the expense of higher complexity to successfully performing the inference. A first difficulty is in the distribution of the measurement work among users and devices. Another issue is in the combination of observations (i.e., which weight to give to each end user according to its location, type of access, etc.) particularly as network conditions can vary from one to another.

The shift of measurements toward mobile devices and modern applications and services will require a completely new methodology. We have dealt up to know with network-level measurements to infer the performance of the current Internet architecture. This past measurement effort has mostly targeted well-known protocols and architectures that are mostly standardized. It has targeted laptops and desktops that are often easily programmable and not suffering from bandwidth and computing resource constraints. For this new project, we will deal with a large number of proprietary services and applications that require, each from its side, a considerable measurement effort to understand its behavior, and implement the appropriate network-level measurements to predict its quality. And given the large number of these applications and services, we will face a certain problem of measurement overhead explosion that we will have to solve and reduce by either measurement reutilization or crowd-sourcing approach. The consideration of mobiles with their close operating systems and limited resources will increase even further the complexity of this measurement effort.

QoE and user privacy are, in our vision, the most critical issue for end-users. There are daily headlines on issues linked to citizen rights degradation (such as, Google data retention, PRISM, mobile applications privacy leakages, targeted and differentiated advertisements, etc.) The common belief is that it is not possible to improve the situation as all technological choices are in the hands of big Internet companies and states. The long-term objective of our research is to study the validity of this statement and to propose to end-users (and possibly service providers) architectural solutions to improve transparency by exposing potential citizen rights violations. One way to improve this transparency is to leverage on the end-users set-top-box in order to implement an indirection infrastructure auditing and filtering all traffic from each end-user.

4.2. Open Network Architecture

As discussed above, whereas the Internet can successfully interconnect billions of devices, it fails to provide a transparent and efficient sharing between information producers and consumers. Here Information producers and consumers must be considered in their broad definition, for instance a microphone, a speaker, a digital camera, a TV screen, a CPU, a hard drive, but also services such as email, storage in the cloud, a Facebook account, etc. In addition to classical contents, information can include a flow of content updated in real time, a description of a device, a Web service, etc. Enabling a transparent open access and sharing to information among all these devices will likely revolutionize the way the Internet is used today.

This research direction aims at proposing global solutions for easy and open content access and more generally to information interoperability. This activity will leverage on current efforts on information-centric networking (e.g., CCN, PSIRP, NetInf). In a first stage, the goal will consist in offering to users a personal overlay solution to publish and manage their own contents, at anytime and whatever the available network access technology (cable, Wi-Fi, 3G, 4G, etc.). The main challenge will be to design scalable mechanisms to seamlessly publish and access information in an efficient way, while preserving privacy. Another challenge will be to incrementally deploy these mechanisms and ensure their adoption by end users, content providers, and network operators. In the context of the evolution of the Internet architecture and in particular through Software defined Networking (SDN), there is a risk that some network operators or other tenants use the increased flexibility of the network against the benefits of the users. So, one of our concern will be to design innovative solutions to prevent possible violation of the network neutrality or to prevent illegitimate collection of private data. In parallel, we envision using SDN as an enabling technology to adapt the network in order to maximize user QoE. Indeed, virtualized network appliances are an efficient way to dynamically insert at strategic places in-network functionalities such as caching proxies, load balancers, cyphers, or firewalls. On this purpose, we plan to build a dedicated open infrastructure relying on a mix of middle boxes and mobile devices applications to capture, analyze and optimize traffic between mobile devices and the Internet.
SDN will introduce a deep shift in the way to design and deploy communications mechanisms. Traditionally, and mainly due to the ossification of the Internet, we used to enhance communication mechanisms by designing our solutions as overlays to the network infrastructure. Using SDN, we will have the opportunity to implement and use new functionalities within the network. If we make them available through well-defined API, those new network functions could be used to implement interoperable, transparent and open services for the benefit of the user. Indeed, implementing these functionalities within the network is not only more efficient than overlay solutions but this can facilitate the deployment of standard services. Important challenges will have to be solved to make this happen, and particularly, to ensure consistency, stability, scalability, reliability and privacy.

Our long-term objective in this research direction is to contribute to the design of network architecture providing native support for easy, transparent, secure, privacy preserving access to information. For instance, an objective is to enable end-users to leverage on their home infrastructure (set-top-boxes, computers, smartphones, tablets) to sanitize traffic and host information.
4. Application Domains

4.1. Ubiquitous Systems

The main application domain for Focus are ubiquitous systems, broadly systems whose distinctive features are: mobility, high dynamicity, heterogeneity, variable availability (the availability of services offered by the constituent parts of a system may fluctuate, and similarly the guarantees offered by single components may not be the same all the time), open-endedness, complexity (the systems are made by a large number of components, with sophisticated architectural structures). In Focus we are particularly interested in the following aspects.

- **Linguistic primitives** for programming dialogues among components.
- **Contracts** expressing the functionalities offered by components.
- **Adaptability and evolvability** of the behaviour of components.
- **Verification** of properties of component systems.
- Bounds on component *resource consumption* (e.g., time and space consumed).

4.2. Service Oriented Computing and Cloud Computing

Today the component-based methodology often refers to Service Oriented Computing. This is a specialized form of component-based approach. According to W3C, a service-oriented architecture is “a set of components which can be invoked, and whose interface descriptions can be published and discovered”. In the early days of Service Oriented Computing, the term services was strictly related to that of Web Services. Nowadays, it has a much broader meaning as exemplified by the XaaS (everything as a service) paradigm: based on modern virtualization technologies, Cloud computing offers the possibility to build sophisticated service systems on virtualized infrastructures accessible from everywhere and from any kind of computing device. Such infrastructures are usually examples of sophisticated service oriented architectures that, differently from traditional service systems, should also be capable to elastically adapt on demand to the user requests.

4.3. Software Product Lines

A Software Product Line is a set of software systems that together address a particular market segment or fulfill a particular mission. Today, Software Product Lines are successfully applied in a range of industries, including telephony, medical imaging, financial services, car electronics, and utility control [51]. Customization and integration are keywords in Software Product Lines: a specific system in the family is constructed by selecting its properties (often technically called “features”), and, following such selection, by customizing and integrating the needed components and deploying them on the required platform.
4. Application Domains

4.1. Applications

Because of its generality, our overlay network can target many applications. We would like to list a small number of useful programmable overlay-network-related case studies that can be considered as “LogNet Grand Challenges”, to help potential readers understand the interest of our research program.

- Interconnecting overlay networks transparently;
- building a programmable social network platform relying on a cloud + P2P architecture;
- experimenting with our interconnecting algorithm in the domain of video streaming;
- studying and integrating mobile devices and mobile networks 3G/4G as a real peer in actual P2P systems;
- studying trust and reputation systems applied to P2P and web economy;
- studying new distributed models of computation (long term objective);
- studying new type theories and lambda-calculi to be the basis of new proof assistants based on Curry-Howard isomorphism.
MAESTRO Project-Team

4. Application Domains

4.1. Main Application Domains

MAESTRO’s main application area is networking, to which we apply modeling, performance evaluation, optimization and control. Our primary focus is on protocols and network architectures, and recent evolutions include the study of the Web and social networks, as well as models for Green IT.

- Wireless (cellular, ad hoc, sensor) networks: WLAN, WiMAX, UMTS, LTE, HSPA, delay tolerant networks (DTN), power control, medium access control, transmission rate control, redundancy in source coding, mobility models, coverage, routing, green base stations,
- Internet applications: social networks, content distribution systems, peer-to-peer systems, overlay networks, multimedia traffic, video-on-demand, multicast;
- Information-Centric Networking (ICN) architectures: Content-Centric Network (CCN, also called Content-Oriented Networks);
- Internet infrastructure: TCP, high speed congestion control, voice over IP, service differentiation, quality of service, web caches, proxy caches.
4. Application Domains

4.1. Service Oriented Architectures (SOA)

Service Oriented Architectures aim at the integration of distributed services and more generally at the integration of distributed and heterogeneous data, at the level of the Enterprise or of the whole Internet (big data dimension).

The team seeks solutions to the problems encountered here, with the underlying motivation to demonstrate the usefulness of a large-scale distributed programming approach and runtime support as featured by ProActive and GCM:

- Interaction between services: the uniform usage of web services based client-server invocations, through the possible support of an Enterprise Service Bus, can provide a simple interoperability between them. For more loosely coupled interactions between services (e.g. compliant to the Web Services Notification standard), we pursue efforts to support publish-subscribe interaction models. Scalability in terms of number of notified events per time unit, and full interoperability through the use of semantic web notations applied to these events/data are some of the key challenges the community is addressing and we too. Events also correspond to data that may be worth to store, for future analytics, besides being propagated to interested parties (in the form of the event content). Our research can thus also contribute to the Big Data domain: we started to focus on how the use of flexible distributed and reconfigurable programming approaches through software components can allow us to devise powerful and flexible analytics on big data flows.

- Services compositions on a possibly large set of machines: if service compositions can even be turned as autonomic activities, these capabilities will really make SOA ready for the Open Internet scale (because at such a scale, a global management of all services is not possible). For service compositions represented as GCM-based component assemblies, we are indeed exploring the use of control components put in the components membranes, acting as sensors or actuators, that can drive the self-deployment and self-management of composite services, according to negotiated Service Level Agreements. For service orchestrations usually expressed as BPEL like processes, and expressing the composition in time aspect of the composition of services, supports for deployment, management, and execution capable to support dynamic adaptations are also needed. Here again we believe a middleware based upon distributed and autonomous components as GCM is really helpful.

4.2. Simulation tools and methodology

Components are being used in simulation since many years. However, given its many application fields and its high computation needs, simulation is still a challenging application for component-based programming techniques and tools.

We have been exploring the application of Oasis programming methods to simulation problems in various areas of engineering problems, but also of financial applications.

More recently, with the arrival of O. Dalle in the team, and following a work previously started in the Mascotte project-team in 2006 [42], we are pursuing research on applying distributed component-based programming techniques to simulation.

With respect to the simulation methodology, we have also started to address some fundamental questions such as the time representation in discrete event simulation.
AYIN Team

4. Application Domains

4.1. Remote sensing

With the development and launch of new instruments (for instance, GeoEye, Ikonos, Pleiades, COSMO-SkyMed, TerraSAR-X, and future missions EnMAP, PRISMA, HYPXIM, ...) capturing Earth images at very high spatial, spectral, and temporal resolutions, numerous new applications arise, such as precision agriculture, natural disaster management, monitoring of urban environments, and mineralogy. We will apply our new methodologies to the analysis of SAR, multi- and hyper-spectral remote sensing images and temporal sequences. In particular, we will address image segmentation and classification, change detection, the extraction of structures, and object tracking.

4.2. Skin care

The most recent sensors used in dermatology and cosmetology produce images with very high spatial, spectral, and temporal resolutions. As with remote sensing, numerous applications then arise that can make use of the new information. In the application to dermatology, we are particularly interested in hyperpigmentation detection and the evaluation of the severity of various disorders (for instance, for melasma, vitiligo, acne, melanoma, etc.). In the application to cosmetology, our main goals are the analysis, modeling, and characterization of the condition of human skin, especially as applied to the evaluation of methods designed to influence that condition.
4. Application Domains

4.1. Introduction

We currently focus on two application domains: **agronomy**, where knowledge representation is applied to the quality in agri-food chains, and **bibliographic databases**, in particular management of bibliographic metadata. The choice of the agronomy domain is motivated both by the strong expertise of GraphIK (UMR IATE) and by its adequation to our research themes. Indeed, the agri-food domain seems to be particularly well-adapted to artificial intelligence techniques: there are no mathematical models available to solve the problems related to the quality of agrifood chains, which need to be stated at a more conceptual level; solving these problems requires an integrated approach that takes into account expert knowledge, which is typically symbolic, as well as numeric data, vague or uncertain information, multi-granularity knowledge, multiple and potentially conflicting viewpoints and actors.

The second area, metadata management, is not strictly speaking an application domain, but rather a cross-cutting axis. Indeed, metadata can be used to describe data in various areas (including for instance scientific publications in agronomy). We have a long experience in this domain, and we currently focus on document metadata.

4.2. Agronomy

Within this field we have investigated two different agronomy scenarios: (1) choosing between two different kinds of flour in function of their nutritional, economic, health and other factors and (2) packaging conception. The second scenario is part of a larger decision support system implemented within the EU FP7 project EcoBioCap (see Section 8.2).

Both scenarios rely upon different criteria which bring conflicting information for decision making. The aim is then twofold. First properly model the knowledge using facts, rules and negative constraints. Then, in a second step, in the possibly inconsistent knowledge base thus obtained, select maximally consistent subsets that will be used for decision making. We have chosen to use argumentation in this context (of reasoning in the presence of inconsistency) due to the fact that we aim to investigate, in the future, the explanation power of argumentation approaches (very useful in this context where the domain experts are not computer scientists).

4.3. Document Metadata

Semantic metadata, in particular semantic annotations for multimedia documents, are at the core of the applications we are working on for several years. In our current project ANR Qualinca with ABES and INA (see Section 8.1), the semantic metadata considered consists of information present in bibliographic databases and authority notices (which respectively describe documents and so-called authorities, such as authors typically). The challenge is not to build these metadata, which have been built by human specialists and already exist, but to check their validity, to link or to merge different metadata bases.
4. Application Domains

4.1. Application Domains

The natural applications of our research are obviously in robotics. In fact, researches undertaken in the Lagadic group can apply to all the fields of robotics implying a vision sensor. They are indeed conceived to be independent of the system considered (and the robot and the vision sensor can even be virtual for some applications).

Currently, we are mostly interested in using visual servoing for aerial and space application, micromanipulation, autonomous vehicle navigation in large urban environments or for disabled or elderly people.

We also address the field of medical robotics. The applications we consider turn around new functionalities of assistance to the clinician during a medical examination: visual servoing on echographic images, needle insertion, compensation of organ motions, etc.

Robotics is not the only possible application field to our researches. In the past, we were interested in applying visual servoing in computer animation, either for controlling the motions of virtual humanoids according to their pseudo-perception, or for controlling the point of view of visual restitution of an animation. In both cases, potential applications are in the field of virtual reality, for example for the design of video games, or virtual cinematography.

Applications also exist in computer vision and augmented reality. It is then a question of carrying out a virtual visual servoing for the 3D localization of a tool with respect to the vision sensor, or for the estimation of its 3D motion. This field of application is very promising, because it is in full rise for the realization of special effects in the multi-media field or for the design and the inspection of objects manufactured in the industrial world.
REVES Project-Team (section vide)
4. Application Domains

4.1. Introduction

While in our research the focus is to develop techniques, models and platforms that are generic and reusable, we also make effort in the development of real applications. The motivation is twofold. The first is to validate the new ideas and approaches we introduce. The second is to demonstrate how to build working systems for real applications of various domains based on the techniques and tools developed. Indeed, Stars focuses on two main domains: video analytics and healthcare monitoring.

4.2. Video Analytics

Our experience in video analytics [7], [1], [9] (also referred to as visual surveillance) is a strong basis which ensures both a precise view of the research topics to develop and a network of industrial partners ranging from end-users, integrators and software editors to provide data, objectives, evaluation and funding.

For instance, the Keeneo start-up was created in July 2005 for the industrialization and exploitation of Orion and Pulsar results in video analytics (VSIP library, which was a previous version of SUP). Keeneo has been bought by Digital Barriers in August 2011 and is now independent from Inria. However, Stars continues to maintain a close cooperation with Keeneo for impact analysis of SUP and for exploitation of new results.

Moreover new challenges are arising from the visual surveillance community. For instance, people detection and tracking in a crowded environment are still open issues despite the high competition on these topics. Also detecting abnormal activities may require to discover rare events from very large video data bases often characterized by noise or incomplete data.

4.3. Healthcare Monitoring

We have initiated a new strategic partnership (called CobTek) with Nice hospital [66], [86] (CHU Nice, Prof P. Robert) to start ambitious research activities dedicated to healthcare monitoring and to assistive technologies. These new studies address the analysis of more complex spatio-temporal activities (e.g. complex interactions, long term activities).

To achieve this objective, several topics need to be tackled. These topics can be summarized within two points: finer activity description and longer analysis. Finer activity description is needed for instance, to discriminate the activities (e.g. sitting, walking, eating) of Alzheimer patients from the ones of healthy older people. It is essential to be able to pre-diagnose dementia and to provide a better and more specialised care. Longer analysis is required when people monitoring aims at measuring the evolution of patient behavioural disorders. Setting up such long experimentation with dementia people has never been tried before but is necessary to have real-world validation. This is one of the challenge of the European FP7 project Dem@Care where several patient homes should be monitored over several months.

For this domain, a goal for Stars is to allow people with dementia to continue living in a self-sufficient manner in their own homes or residential centers, away from a hospital, as well as to allow clinicians and caregivers remotely proffer effective care and management. For all this to become possible, comprehensive monitoring of the daily life of the person with dementia is deemed necessary, since caregivers and clinicians will need a comprehensive view of the person’s daily activities, behavioural patterns, lifestyle, as well as changes in them, indicating the progression of their condition.
The development and ultimate use of novel assistive technologies by a vulnerable user group such as individuals with dementia, and the assessment methodologies planned by Stars are not free of ethical, or even legal concerns, even if many studies have shown how these Information and Communication Technologies (ICT) can be useful and well accepted by older people with or without impairments. Thus one goal of Stars team is to design the right technologies that can provide the appropriate information to the medical carers while preserving people privacy. Moreover, Stars will pay particular attention to ethical, acceptability, legal and privacy concerns that may arise, addressing them in a professional way following the corresponding established EU and national laws and regulations, especially when outside France.

As presented in 3.1, Stars aims at designing cognitive vision systems with perceptual capabilities to monitor efficiently people activities. As a matter of fact, vision sensors can be seen as intrusive ones, even if no images are acquired or transmitted (only meta-data describing activities need to be collected). Therefore new communication paradigms and other sensors (e.g. accelerometers, RFID, and new sensors to come in the future) are also envisaged to provide the most appropriate services to the observed people, while preserving their privacy. To better understand ethical issues, Stars members are already involved in several ethical organizations. For instance, F. Bremond has been a member of the ODEGAM - “Commission Ethique et Droit” (a local association in Nice area for ethical issues related to older people) from 2010 to 2011 and a member of the French scientific council for the national seminar on “La maladie d’Alzheimer et les nouvelles technologies - Enjeux éthiques et questions de société” in 2011. This council has in particular proposed a chart and guidelines for conducting researches with dementia patients.

For addressing the acceptability issues, focus groups and HMI (Human Machine Interaction) experts, will be consulted on the most adequate range of mechanisms to interact and display information to older people.
4. Application Domains

4.1. Domains

In addition to tackling scientific challenges, our research on geometric modeling and processing is motivated by applications to computational engineering, reverse engineering, digital mapping and urban planning. The main deliverables of our research are algorithms with theoretical foundations. Ultimately we wish to contribute to making geometric modeling and processing routine for practitioners who deal with real-world data. Our contributions may also be used as a sound basis for future software and technology developments.

Our ambition for technology transfer is to consolidate the components of our research experiments in the form of new software components for the CGAL (Computational Geometry Algorithms Library) library. Through CGAL we wish to contribute to the “standard geometric toolbox”, so as to provide a generic answer to application needs instead of fragmenting our contributions. We already cooperate with the Inria spin-off company Geometry Factory, which commercializes CGAL, maintains it and provide technical support.

We also started increasing our research momentum with companies through advising Cifre Ph.D. theses and postdoctoral fellows.
4. Application Domains

4.1. Introduction

A number of evolutions have changed the face of information systems in the past decade but the advent of the Web is unquestionably a major one and it is here to stay. From an initial wide-spread perception of a public documentary system, the Web as an object turned into a social virtual space and, as a technology, grew as an application design paradigm (services, data formats, query languages, scripting, interfaces, reasoning, etc.). The universal deployment and support of its standards led the Web to take over nearly all of our information systems. As the Web continues to evolve, our information systems are evolving with it.

Today in organizations, not only almost every internal information system is a Web application, but these applications also more and more often interact with external Web applications. The complexity and coupling of these Web-based information systems call for specification methods and engineering tools. From capturing the needs of users to deploying a usable solution, there are many steps involving computer science specialists and non-specialists.

We defend the idea of relying on Semantic Web formalisms to capture and reason on the models of these information systems supporting the design, evolution, interoperability and reuse of the models and their data as well as the workflows and the processing.

4.2. Linked Data on the Web and on Intranets

With billions of triples online (see Linked Open Data initiative), the Semantic Web is providing and linking open data at a growing pace and publishing and interlinking the semantics of their schemas. Information systems can now tap into and contribute to this Web of data, pulling and integrating data on demand. Many organizations also started to use this approach on their intranets leading to what is called linked enterprise data.

A first application domain for us is the publication and linking of data and their schemas through Web architectures. Our results provide software platforms to publish and query data and their schemas, to enrich these data in particular by reasoning on their schemas, to control their access and licences, to assist the workflows that exploit them, to support the use of distributed datasets, to assist the browsing and visualization of data, etc.

Examples of collaboration and applied projects include: Corese/KGRAM, Datalift, DBpedia, ALU/BLF Convention, ADT SeGViz.

4.3. Assisting Web-based Epistemic Communities

In parallel to linked open data on the Web, social Web applications also spread virally (e.g. Facebook growing toward 800 million users) first giving the Web back its status of a social read-write media and then leading it to its full potential of a virtual place where to act, react and interact. In addition, many organizations are now considering deploying social Web applications internally to foster community building, expert cartography, business intelligence, technological watch and knowledge sharing in general.

Reasoning on the Linked Data and the semantics of the schemas used to represent social structures and Web resources, we intend to provide applications supporting communities of practice and interest and fostering their interactions.

We use typed graphs to capture and mix: social networks with the kinds of relationships and the descriptions of the persons; compositions of Web services with types of inputs and outputs; links between documents with their genre and topics; hierarchies of classes, thesauri, ontologies and folksonomies; recorded traces and suggested navigation courses; submitted queries and detected frequent patterns; timelines and workflows; etc.
Our results assist epistemic communities in their daily activities such as biologists exchanging results, business intelligence and technological watch networks informing companies, engineers interacting on a project, conference attendees, students following the same course, tourists visiting a region, mobile experts on the field, etc. Examples of collaboration and applied projects include: Kollflow, OCKTOPUS, ISICIL, SAP Convention.
4. Application Domains

4.1. Data-intensive Scientific Applications

The application domains covered by Zenith are very wide and diverse, as they concern data-intensive scientific applications, i.e. most scientific applications. Since the interaction with scientists is crucial to identify and tackle data management problems, we are dealing primarily with application domains for which Montpellier has an excellent track record, i.e. agronomy, environmental science, life science, with scientific partners like INRA, IRD, CIRAD and IRSTEA. However, we are also addressing other scientific domains (e.g. astronomy, oil extraction) through our international collaborations (e.g. in Brazil).

Let us briefly illustrate some representative examples of scientific applications on which we have been working on.

- **Management of astronomical catalogs.** An example of data-intensive scientific applications is the management of astronomical catalogs generated by the Dark Energy Survey (DES) project on which we are collaborating with researchers from Brazil. In this project, huge tables with billions of tuples and hundreds of attributes (corresponding to dimensions, mainly double precision real numbers) store the collected sky data. Data are appended to the catalog database as new observations are performed and the resulting database size is estimated to reach 100TB very soon. Scientists around the globe can query the database with queries that may contain a considerable number of attributes. The volume of data that this application holds poses important challenges for data management. In particular, efficient solutions are needed to partition and distribute the data in several servers. An efficient partitioning scheme should try to minimize the number of fragments accessed in the execution of a query, thus reducing the overhead associated to handle the distributed execution.

- **Personal health data analysis and privacy** The “Quantified Self” movement has gained a large popularity these past few years. Today, it is possible to acquire data on many domains related to personal data. For instance, one can collect data on her daily activities, habits or health. It is also possible to measure performances in sports. This can be done thanks to sensors, communicating devices or even connected glasses (as currently being developped by companies such as Google, for instance). Obviously, such data, once acquired, can lead to valuable knowledge for these domains. For people having a specific disease, it might be important to know if they belong to a specific category that needs particular care. For an individual, it can be interesting to find a category that corresponds to her performances in a specific sport and then adapt her training with an adequate program. Meanwhile, for privacy reasons, people will be reluctant to share their personal data and make them public. Therefore, it is important to provide them with solutions that can extract such knowledge from everybody’s data, while guaranteeing that their data won’t leave their computer and won’t be disclosed to anyone.

- **Botanical data sharing.** Botanical data is highly decentralized and heterogeneous. Each actor has its own expertise domain, hosts its own data, and describes them in a specific format. Furthermore, botanical data is complex. A single plant’s observation might include many structured and unstructured tags, several images of different organs, some empirical measurements and a few other contextual data (time, location, author, etc.). A noticeable consequence is that simply identifying plant species is often a very difficult task; even for the botanists themselves (the so-called taxonomic gap). Botanical data sharing should thus speed up the integration of raw observation data, while providing users an easy and efficient access to integrated data. This requires to deal with social-based data integration and sharing, massive data analysis and scalable content-based information retrieval. We address this application in the context of the French initiative Pl@ntNet, with CIRAD and IRD.
Deepwater oil exploitation. An important step in oil exploitation is pumping oil from ultra-deepwater from thousand meters up to the surface through long tubular structures, called risers. Maintaining and repairing risers under deep water is difficult, costly and critical for the environment. Thus, scientists must predict risers fatigue based on complex scientific models and observed data for the risers. Risers fatigue analysis requires a complex workflow of data-intensive activities which may take a very long time to compute. A typical workflow takes as input files containing riser information, such as finite element meshes, winds, waves and sea currents, and produces result analysis files to be further studied by the scientists. It can have thousands of input and output files and tens of activities (e.g. dynamic analysis of risers movements, tension analysis, etc.). Some activities, e.g. dynamic analysis, are repeated for many different input files, and depending on the mesh refinements, each single execution may take hours to complete. To speed up risers fatigue analysis requires parallelizing workflow execution, which is hard to do with existing systems. We address this application in collaboration with UFRJ, and Petrobras.

These application examples illustrate the diversity of requirements and issues which we are addressing with our scientific application partners. To further validate our solutions and extend the scope of our results, we also want to foster industrial collaborations, even in non scientific applications, provided that they exhibit similar challenges.
4. Application Domains

4.1. Application Domains

While the methods developed in the project can be used for a very broad set of application domains (for example we have an activity in CO2 emission allowances [18]), it is clear that the size of the project does not allow us to address all of them. Hence we have decided to focus our applicative activities on mechanism theory, where we focus on optimal design and geometrical modeling of mechanisms. Along the same line our focus is robotics and especially service robotics which includes rescue robotics, rehabilitation and assistive robots for elderly and handicapped people (section 6.1.2). Although these topics were new for us in 2008 we have spent two years determining priorities and guidelines by conducting about 200 interviews with field experts (end-users, practitioners, family and caregivers, institutes), establishing strong collaboration with them (e.g. with the CHU of Nice-Cimiez) and putting together an appropriate experimental setup for testing our solutions. A direct consequence of setting up this research framework is a reduction in our publication and contract activities. But this may be considered as an investment as assistance robotics will constitute the major research axis of the project on the long term.