Activity Report 2012

Section Software

Algorithmics, Programming, Software and Architecture

1. ARIC Team ... 4
2. COMPSYS Project-Team ... 8
3. CONVECS Team .. 14
4. POP ART Project-Team .. 17

Applied Mathematics, Computation and Simulation

5. BIPOP Project-Team .. 22
6. MISTIS Project-Team ... 25
7. NANO-D Team .. 28
8. NECS Project-Team .. 29
9. OPALE Project-Team .. 31

Computational Sciences for Biology, Medicine and the Environment

10. BAMBOO Project-Team .. 33
11. BEAGLE Team .. 37
12. DRACULA Project-Team ... 38
13. IBIS Project-Team ... 39
14. MOISE Project-Team .. 40
15. NUMED Project-Team .. 42
16. STEEP Exploratory Action ... 43

Networks, Systems and Services, Distributed Computing

17. AVALON Team .. 44
18. DANTE Team ... 47
19. MESCAL Project-Team .. 48
20. MOAIS Project-Team ... 51
21. PLANETE Project-Team ... 56
22. ROMA Team ... 63
23. SARDES Project-Team .. 64
24. SOCRATE Team .. 67
25. URBANET Team .. 68

Perception, Cognition, Interaction

26. E-MOTION Project-Team ... 69
27. EXMO Project-Team .. 71
28. IMAGINE Team .. 73
29. LEAR Project-Team .. 76
30. MAVERICK Team .. 77
31. MORPHEO Team .. 81
32. PERCEPTION Team .. 83
33. PRIMA Project-Team .. 85
34. WAM Project-Team ... 92
5. Software

5.1. Overview

AriC software and hardware realizations are accessible from the web page http://www.ens-lyon.fr/LIP/AriC/ware.html. We describe below only those which progressed in 2012.

5.2. FloPoCo

Participants: Florent de Dinechin [correspondant], Matei Istoan.

The purpose of the FloPoCo project is to explore the many ways in which the flexibility of the FPGA target can be exploited in the arithmetic realm. FloPoCo is a generator of operators written in C++ and outputting synthesizable VHDL automatically pipelined to an arbitrary frequency.

In 2012, the diverging multiplier implementations in FloPoCo were unified using a common bit-heap framework. In addition, several new operators were added.

FloPoCo also now offers state-of-the-art random generators written by David Thomas at Imperial College. Versions 2.3.1 and 2.4.0 were released in 2012.

5.3. GNU MPFR

Participants: Vincent Lefèvre [correspondant], Paul Zimmermann [Caramel, Inria Nancy - Grand Est].

GNU MPFR is an efficient multiple-precision floating-point library with well-defined semantics (copying the good ideas from the IEEE-754 standard), in particular correct rounding in 5 rounding modes. GNU MPFR provides about 80 mathematical functions, in addition to utility functions (assignments, conversions...). Special data (Not a Number, infinities, signed zeros) are handled like in the IEEE-754 standard.

MPFR was one of the main pieces of software developed by the old SPACES team at Loria. Since late 2006, with the departure of Vincent Lefèvre to Lyon, it has become a joint project between the Caramel (formerly SPACES then CACAO) and the AriC (formerly Arénaire) project-teams. MPFR has been a GNU package since 26 January 2009.

An MPFR-MPC developers meeting took place from 25 to 27 June 2012 in Bordeaux. GNU MPFR 3.1.1 was released on 3 July 2012.

The main changes done in the AriC project-team for the future versions are tcc support, more automation for the releases, new functions to operate on groups of flags, and bug fixes.

URL: http://www.mpfr.org/

GNU MPFR is now on the Ohloh community platform for free and open source software: https://www.ohloh.net/p/gnu-mpfr

- ACM: D.2.2 (Software libraries), G.1.0 (Multiple precision arithmetic), G.4 (Mathematical software).
- AMS: 26-04 Real Numbers, Explicit machine computation and programs.
- APP: no longer applicable (copyright transferred to the Free Software Foundation).
- License: LGPL version 3 or later.
- Type of human computer interaction: C library, callable from C or other languages via third-party interfaces.
- OS/Middleware: any OS, as long as a C compiler is available.
- Required library or software: GMP.
- Programming language: C.
- Documentation: API in texinfo format (and other formats via conversion); algorithms are also described in a separate document.

5.4. Exhaustive Tests for the Correct Rounding of Mathematical Functions

Participant: Vincent Lefèvre.
The search for the worst cases for the correct rounding (hardest-to-round cases) of mathematical functions (exp, log, sin, cos, etc.) in a fixed precision (mainly double precision) using Lefèvre’s algorithm is implemented by a set of utilities written in Perl, with calls to Maple/intpakX for computations on intervals and with C code generation for fast computations. It also includes a client-server system for the distribution of intervals to be tested and for tracking the status of intervals (fully tested, being tested, aborted).

The Perl scripts have been improved to detect various errors from Maple and in particular, restart Maple automatically when the license server is not reachable.

5.5. FLIP: Floating-point Library for Integer Processors

Participants: Claude-Pierre Jeannerod [correspondant], Jingyan Jourdan-Lu.

FLIP is a C library for the efficient software support of binary32 IEEE 754-2008 floating-point arithmetic on processors without floating-point hardware units, such as VLIW or DSP processors for embedded applications. The current target architecture is the VLIW ST200 family from STMicroelectronics (especially the ST231 cores). This year, we have extended the DP2 operator (fused dot product in dimension two) and its specializations, initially designed for rounding to nearest, to directed rounding modes. We have also worked on the implementation of the simultaneous computation of sine and cosine, with proven 1-ulp accuracy and in the same latency as the evaluation of sine alone.

URL: http://flip.gforge.inria.fr/

- ACM: D.2.2 (Software libraries), G.4 (Mathematical software)
- AMS: 26-04 Real Numbers, Explicit machine computation and programs.
- APP: IDDN.FR.001.230018.S.A.2010.000.10000
- License: CeCILL v2
- Type of human computer interaction: C library callable, from any C program.
- OS/Middleware: any, as long as a C compiler is available.
- Required library or software: none.
- Programming language: C

5.6. FPLLL: A Lattice Reduction Library

Participants: Xavier Pujol, Damien Stehlé [correspondant].

fplll contains several algorithms on lattices that rely on floating-point computations. This includes implementations of the floating-point LLL reduction algorithm, offering different speed/guarantees ratios. It contains a “wrapper” choosing the estimated best sequence of variants in order to provide a guaranteed output as fast as possible. In the case of the wrapper, the succession of variants is oblivious to the user. It also includes a rigorous floating-point implementation of the Kannan-Fincke-Pohst algorithm that finds a shortest non-zero lattice vector, and the BKZ reduction algorithm.

The fplll library is used or has been adapted to be integrated within several mathematical computation systems such as Magma, Sage and PariGP. It is also used for cryptanalytic purposes, to test the resistance of cryptographic primitives.

Versions 4.0.0 and 4.0.1 were released in 2012, implementing the BKZ reduction algorithm.

URL: http://xpujol.net/fplll/

- ACM: D.2.2 (Software libraries), G.4 (Mathematical software)
- APP: Procedure started
- License: LGPL v2.1
- Type of human computer interaction: C++ library callable, from any C++ program.
- OS/Middleware: any, as long as a C++ compiler is available.
- Required library or software: MPFR and GMP.
- Programming language: C++.
- Documentation: available in html format on [URL:http://xpujol.net/fplll/fplll-doc.html](http://xpujol.net/fplll/fplll-doc.html)
5.7. Symbolic-numeric Computations with Linear ODEs

Participant: Marc Mezzarobba.

NumGfun is a Maple package for performing numerical and “analytic” computations with the solutions of linear ordinary differential equations with polynomial coefficients. Its main features include the numerical evaluation of these functions with rigorous error bounds and the computation of symbolic bounds on solutions of certain recurrences. NumGfun is distributed as part of gfun, itself part of the Algolib bundle. It is used by the Dynamic Dictionary of Mathematical Functions to provide its numerical evaluation features. NumGfun 0.6, released in 2012, provides new feature for the numerical solution of so-called regular singular connection problems, and many small improvements.

URL: http://marc.mezzarobba.net/#code-NumGfun

- ACM: D.2.2 (Software libraries), G.4 (Mathematical software)
- APP: cf. gfun
- License: LGPL v2.1
- Type of human computer interaction: Maple library, usable interactively or from Maple code.
- OS/Middleware: any platform supporting Maple.
- Required library or software: Maple, gfun.
- Programming language: Maple
- Documentation: available as Maple help pages and in pdf format.

5.8. SIPE: Small Integer Plus Exponent

Participant: Vincent Lefèvre.

SIPE (Small Integer Plus Exponent) is a mini-library in the form of a C header file, to perform computations in very low precisions with correct rounding to nearest in radix 2. The goal of such a tool is to do proofs of algorithms/properties or computations of tight error bounds in these precisions by exhaustive tests, in order to try to generalize them to higher precisions. The currently supported operations are the addition, subtraction, multiplication, FMA, minimum/maximum/comparison functions (of the signed numbers or in magnitude), and conversions.

A new macro SIPE_2MUL, returning the rounded result and the error of a multiplication, has been added.

A test program and scripts to perform timing comparisons with hardware IEEE-754 floating-point and with GNU MPFR are available, together with a discussion on the technical and algorithmic choices behind SIPE and timing results. [39]

- ACM: D.2.2 (Software libraries), G.4 (Mathematical software).
- AMS: 26-04 Real Numbers, Explicit machine computation and programs.
- License: LGPL version 2.1 or later.
- Type of human computer interaction: C header file.
- OS/Middleware: any OS.
- Required library or software: GCC compiler.
- Programming language: C.
- Documentation: Research report Inria RR-7832.
- URL: http://www.vinc17.net/software/sipe.h
5. Software

5.1. Introduction

This section lists and briefly describes the software developments conducted within Compsys. Most are tools that we extend and maintain over the years. They now concern two activities only: a) the development of tools linked to polyhedra and loop/array transformations, b) the development of algorithms within the back-end compiler of STMicroelectronics.

Many tools based on the polyhedral representation of codes with nested loops are now available. They have been developed and maintained over the years by different teams, after the introduction of Paul Feautrier’s Pip, a tool for parametric integer linear programming. This “polytope model” view of codes is now widely accepted: it used by Inria projects-teams Cairn and Alchemy/Parkas, PIPS at École des Mines de Paris, Suif from Stanford University, Compaan at Berkeley and Leiden, PiCo from the HP-Labs (continued as PicoExpress by Synfora and now Synopsis), the DTSE methodology at Imec, Sadayappan’s group at Ohio State University, Rajopadhye’s group at Colorado State’s University, etc. More recently, several compiler groups have shown their interest in polyhedral methods, e.g., the Gcc group, IBM, and Reservoir Labs, a company that develops a compiler fully based on the polytope model and on the techniques that we (the french community) introduced for loop and array transformations. Polyhedra are also used in test and certification projects (Verimag, Lande, Vertecs). Now that these techniques are well-established and disseminated in and by other groups, we prefer to focus on the development of new techniques and tools, which are described here.

The other activity concerns the developments within the compiler of STMicroelectronics. These are not stand-alone tools, which could be used externally, but algorithms and data structures implemented inside the LAO back-end compiler, year after year, with the help of STMicroelectronics colleagues. As these are also important developments, it is worth mentioning them in this section. They are also completed by important efforts for integration and evaluation within the complete STMicroelectronics toolchain. They concern exact (ILP-based) methods, algorithms for aggressive optimizations, techniques for just-in-time compilation, and for improving the design of the compiler.

5.2. Pip

Participants: Cédric Bastoul [MCF, IUT d’Orsay], Paul Feautrier.

Paul Feautrier is the main developer of Pip (Parametric Integer Programming) since its inception in 1988. Basically, Pip is an “all integer” implementation of the Simplex, augmented for solving integer programming problems (the Gomory cuts method), which also accepts parameters in the non-homogeneous term. Pip is freely available under the GPL at http://www.piplib.org. It is widely used in the automatic parallelization community for testing dependences, scheduling, several kind of optimizations, code generation, and others. Beside being used in several parallelizing compilers, Pip has found applications in some unconnected domains, as for instance in the search for optimal polynomial approximations of elementary functions (see the Inria project Arénaire).

5.3. Syntol

Participant: Paul Feautrier.
Syntol is a modular process network scheduler. The source language is C augmented with specific constructs for representing communicating regular process (CRP) systems. The present version features a syntax analyzer, a semantic analyzer to identify DO loops in C code, a dependence computer, a modular scheduler, and interfaces for CLooG (loop generator developed by C. Bastoul) and Cl@k (see Sections 5.4 and 5.6). The dependence computer now handles casts, records (structures), and the modulo operator in subscripts and conditional expressions. The latest developments are, firstly, a new code generator, and secondly, several experimental tools for the construction of bounded parallelism programs.

- The new code generator, based on the ideas of Boulet and Feautrier [17], generates a counter automaton that can be presented as a C program, as a rudimentary VHDL program at the RTL level, as an automaton in the Aspic input format, or as a drawing specification for the DOT tool.
- Hardware synthesis can only be applied to bounded parallelism programs. Our present aim is to construct threads with the objective of minimizing communications and simplifying synchronization. The distribution of operations among threads is specified using a placement function, which is found using techniques of linear algebra and combinatorial optimization.

5.4. Cl@k

Participants: Christophe Alias, Fabrice Baray [Mentor, Former post-doc in Compsys], Alain Darte.

Cl@k (Critical LAttice Kernel) is a stand-alone optimization tool useful for the automatic derivation of array mappings that enable memory reuse, based on the notions of admissible lattice and of modular allocation (linear mapping plus modulo operations). It has been developed in 2005-2006 by Fabrice Baray, former post-doc Inria under Alain Darte’s supervision. It computes or approximates the critical lattice for a given 0-symmetric polytope. (An admissible lattice is a lattice whose intersection with the polytope is reduced to 0; a critical lattice is an admissible lattice with minimal determinant.) Its application to array contraction has been implemented by Christophe Alias in a tool called Bee (see Section 5.6). Bee uses Rose as a parser, analyzes the lifetimes of the elements of the arrays to be compressed, and builds the necessary input for Cl@k, i.e., the 0-symmetric polytope of conflicting differences. Then, Bee computes the array contraction mapping from the lattice provided by Cl@k and generates the final program with contracted arrays. More details on the underlying theory are available in previous reports. Cl@k can be viewed as a complement to the Polylib suite, enabling yet another kind of optimizations on polyhedra. Initially, Bee was the complement of Cl@k in terms of its application to memory reuse. Now, Bee is a stand-alone tool that contains more and more features for program analysis and loop transformations.

5.5. PoCo

Participant: Christophe Alias.

PoCo is a polyhedral compilation framework providing many features to quickly prototype program analysis and optimizations in the polyhedral model. Essentially, PoCo provides:

- A C front-end extracting the polyhedral representation of the input program. The parser itself is based on EDG (via Rose), an industrial C/C++ parser from Edison group used in Intel compilers.
- An extended language of pragmas to feed the source code with compilation directives (a schedule, for example).
- A symbolic layer on polyhedral libraries Polylib (set operations on polyhedra) and Piplib (parameterized ILP). This feature simplifies drastically the developer task.
- Some dependence analysis (polyhedral dependence graph, array dataflow analysis), array region analysis, array liveness analysis.
- A C and VHDL code generation based on the ideas of P. Boulet and P. Feautrier [17].

The array dataflow analysis (ADA) of PoCo has been extended to a FADA (Fuzzy ADA) by M. Belaoucha, former PhD student at Université de Versailles. FADALib is available at http://www.prism.uvsq.fr/~bem/fadalib/.
PoCo has been developed by Christophe Alias. It represents more than 19000 lines of C++ code. The tools Bee, Chuba, and RanK presented thereafter make an extensive use of PoCo abstractions.

5.6. Bee

Participants: Christophe Alias, Alain Darte.

Bee is a source-to-source optimizer that contracts the temporary arrays of a program under scheduling constraints. Bee bridges the gap between the mathematical optimization framework described in [19] and implemented in Cl@k (Section 5.4), and effective source-to-source array contraction. Bee applies a precise lifetime analysis for arrays to build the mathematical input of Cl@k. Then, Bee derives the array allocations from the basis found by Cl@k and generates the C code accordingly. Bee is – to our knowledge – the only complete array contraction tool.

Bee is sensitive to the program schedule. This latter feature enlarges the application field of array contraction to parallel programs. For instance, it is possible to mark a loop to be software-pipelined (with an affine schedule) and to let Bee find an optimized array contraction. But the most important application is the ability to optimize communicating regular processes (CRP). Given a schedule for every process, Bee can compute an optimized size for the channels, together with their access functions (the corresponding allocations). We currently use this feature in source-to-source transformations for high-level synthesis (see Section 3.3).

- Bee was made available to STMicroelectronics as a binary.
- Bee will be transferred to the (incubated) start-up Zettice, initiated by Alexandru Plesco.
- Bee is used as an external tool by the compiler Gecos developed in the Cairn team at Irisa.

Bee has been implemented by Christophe Alias, using the compiler infrastructure PoCo. It represents more than 2400 lines of C++ code.

5.7. Chuba

Participants: Christophe Alias, Alain Darte, Alexandru Plesco [Compsys/Zettice].

Chuba is a source-level optimizer that improves a C program in the context of the high-level synthesis (HLS) of hardware. Chuba is an implementation of the work described in the PhD thesis of Alexandru Plesco. The optimized program specifies a system of multiple communicating accelerators, which optimize the data transfers with the external DDR memory. The program is divided into blocks of computations obtained thanks to tiling techniques, and, in each block, data are fetched by block to reduce the penalty due to line changes in the DDR accesses. Four accelerators achieve data transfers in a macro-pipeline fashion so that data transfers and computations (performed by a fifth accelerator) are overlapped.

So far, the back-end of Chuba is specific to the HLS tool C2H but the analysis is quite general and adapting Chuba to other HLS tools should be possible. Besides, it is interesting to mention that the program analysis and optimizations implemented in Chuba address a problem that is also very relevant in the context of GPGPUs.

Chuba has been implemented by Christophe Alias, using the compiler infrastructure PoCo. It represents more than 900 lines of C++. The reduced size of Chuba is mainly due to the high-level abstractions provided by PoCo.

5.8. IceBuilder

Participants: Christophe Alias, Alexandru Plesco [Compsys/Zettice].
IceBuilder is the HLS tool to be transferred in the start-up Zettice. It is a compiler, whose input is a C program annotated with pragmas, and whose output is an equivalent hardware description as synthesizable VHDL. Also, IceBuilder produces a non-synthesizable SystemC description for debugging purpose. As for any compiler, IceBuilder consists into two steps: (i) a front-end, which generates an intermediate representation from the C program, and (ii) a back-end, which translates the intermediate representation into hardware. The intermediate representation of IceBuilder is a data-aware process network (DPN) (see Section 6.3). The front-end does most of the high-level optimizations (communication pipelining, buffer sizing, datapath pipeline scheduling), which are explicitly represented in the DPN. The front-end is implemented as a separate tool, Dcc, so as to be reused with different targets, for instance GPGPUs. Then, the back-end generates the hardware implementation of the DPN. It produces and connects the required buffers, multiplexors, demultiplexors, synchronization channels, finite-state machines, and datapaths.

IceBuilder represents more than 3000 lines of C++ code.

5.9. Dcc

Participants: Christophe Alias, Alexandru Plesco [Compsys/Zettice].

Dcc is the front-end of the IceBuilder tool. Dcc takes as input a C program annotated with pragmas and produces an optimized data-aware process network (DPN). To do so, Dcc reuses most of the analysis implemented in PoCo (dataflow analysis and control generation), Chuba (communication pipelining), Cl@k and Bee (buffer sizing). Dcc and DPNs are very critical parts of IceBuilder and will require a patent before any publication.

Dcc represents more than 2500 lines of C++ code.

5.10. C2fsm

Participant: Paul Feautrier.

C2fsm is a general tool that converts an arbitrary C program into a counter automaton. This tool reuses the parser and pre-processor of Syntol, which has been greatly extended to handle while and do while loops, goto, break, and continue statements. C2fsm reuses also part of the code generator of Syntol and has several output formats, including FAST (the input format of Aspic), a rudimentary VHDL generator, and a DOT generator which draws the output automaton. C2fsm is also able to do elementary transformations on the automaton, such as eliminating useless states, transitions and variables, simplifying guards, or selecting cut-points, i.e., program points on loops that can be used by RanK to prove program termination.

5.11. RanK

Participants: Christophe Alias, Alain Darte, Paul Feautrier, Laure Gonnord [Compsys/LIFL].

RanK is a software tool that can prove the termination of a program (in some cases) by computing a ranking function, i.e., a mapping from the operations of the program to a well-founded set that decreases as the computation advances. In case of success, RanK can also provide an upper bound of the worst-case time complexity of the program as a symbolic affine expression involving the input variables of the program (parameters), when it exists. In case of failure, RanK tries to prove the non-termination of the program and then to exhibit a counter-example input. This last feature is of great help for program understanding and debugging, and has already been experimented.

The input of RanK is an integer automaton, computed by C2fsm (see Section 5.10), representing the control structure of the program to be analyzed. RanK uses the Aspic tool, developed by Laure Gonnord during her PhD thesis, to compute automaton invariants. RanK has been used to discover successfully the worst-case time complexity of many benchmarks programs of the community. It uses the libraries Piplib and Polylib.

RanK has been implemented by Christophe Alias, using the compiler infrastructure PoCo. It represents more than 3000 lines of C++.
5.12. SToP

Participants: Christophe Alias, Guillaume Andrieu [LIFL], Laure Gonnord [Compsys/LIFL].

SToP (Scalable Termination of Programs) is the implementation of the modular termination technique presented in Section 6.7. It takes as input a large irregular C program and conservatively checks its termination. To do so, SToP generates a set of small programs whose termination implies the termination of the whole input program. Then, the termination of each small program is checked thanks to RanK. In case of success, SToP infers a ranking (schedule) for the whole program. This schedule can be used in a subsequent analysis to optimize the program.

SToP represents more than 2000 lines of C++.

5.13. Simplifiers

Participant: Paul Feautrier.

The aim of the simple library is to simplify Boolean formulas on affine inequalities. It works by detecting redundant inequalities in the representation of the subject formula as an ordered binary decision diagram (OBDD). It uses PIP for testing the feasibility – or unfeasibility – of a conjunction of affine inequalities.

The library is written in Java and is presented as a collection of class files. For experimentation, several front-ends have been written. They differ mainly in their input syntax, among which are a C like syntax, the Mathematica and SMTLib syntaxes, and an ad hoc Quast (quasi-affine syntax tree) syntax.

5.14. LAO Developments in Aggressive Compilation

Participants: Benoit Boissinot, Florent Bouchez, Florian Brandner, Quentin Colombet, Alain Darte, Benoît Dupont de Dinechin [Kalray], Christophe Guillon [STMicroelectronics], Sebastian Hack [Former post-doc in Compsys], Fabrice Rastello, Cédric Vincent [Former student in Compsys].

Our aggressive optimization techniques are all implemented in stand-alone experimental tools (as for example for register coalescing algorithms) or within LAO, the back-end compiler of STMicroelectronics, or both. They concern SSA construction and destruction, instruction-cache optimizations, register allocation. Here, we report only our more recent activities, which concern register allocation.

Our developments on register allocation within the STMicroelectronics compiler started when Cédric Vincent (bachelor degree, under Alain Darte supervision) developed a complete register allocator in LAO, the assembly-code optimizer of STMicroelectronics. This was the first time a complete implementation was done with success, outside the MCDT (now CEC) team, in their optimizer. This continued with developments made during the master internships and PhD theses of Florent Bouchez, Benoît Boissinot, and Quentin Colombet, and post-doctoral works of Sebastian Hack and Florian Brandner. In 2009, Quentin Colombet started to develop and integrate into the main trunk of LAO a full implementation of a two-phases register allocation. This implementation now includes two different decoupled spilling phases, the first one as described in Sebastian Hack’s PhD thesis and a second ILP-based solution. It also includes an up-to-date graph-based register coalescing. Finally, since all these optimizations take place under SSA form, it includes also a mechanism for going out of colored-SSA (register-allocated SSA) form that can handle critical edges and does further optimizations.

5.15. LAO Developments in JIT Compilation

Participants: Benoit Boissinot, Florian Brandner, Quentin Colombet, Alain Darte, Benoît Dupont de Dinechin [Kalray], Christophe Guillon [STMicroelectronics], Fabrice Rastello.

The other side of our work in the STMicroelectronics compiler LAO has been to adapt the compiler to make it more suitable for JIT compilation. This means lowering the time and space complexity of several algorithms. In particular we implemented our fast out-of-SSA translation method, and we programmed and tested various ways to compute the liveness information. Recent efforts also focused on developing a tree-scan register allocator for the JIT part of the compiler, in particular a JIT conservative coalescing. The technique is to bias the tree-scan coalescing, taking into account register constraints, with the result of a JIT aggressive coalescing.
5.16. Low-Level Exchange Format (TireX) and Minimalist Intermediate Representation (MinIR)

Participants: Christophe Guillon [STMicroelectronics], Fabrice Rastello, Benoît Dupont de Dinechin [Kalray].

Most compilers define their own intermediate representation (IR) to be able to work on a program. Sometimes, they even use a different representation for each representation level, from source code parsing to the final object code generation. MinIR (Minimalist Intermediate Representation) is a new intermediate representation, designed to ease the interconnection of compilers, static analyzers, code generators, and other tools. In addition to the specification of MinIR, generic core tools have been developed to offer a basic toolkit and to help the connection of client tools. MinIR generators exist for several compilers, and different analyzers are developed as a testbed to rapidly prototype different static analyses over SSA code. This new common format enables the comparison of the code generator of several production compilers, and simplifies the connection of external tools to existing compilers.

MinIR has been extended into TireX, a Textual Intermediate Representation for EXchanging target-level information between compiler optimizers and whole or parts of code generators (aka compiler back-end). The first motivation for this intermediate representation is to factor target-specific compiler optimizations into a single component, in case several compilers need to be maintained for a particular target (e.g., operating system compiler and application code compiler). Another motivation is to reduce the run-time cost of JIT compilation and of mixed mode execution, since the program to compile is already in a representation lowered to the level of the target processor. Beside the lowering at the target level, the extensions of MinIR include the program data stream and loop scoped information. TireX is currently produced by the Open64/Path64 and the LLVM compilers, with a GCC producer under work. It is used by the LAO code generator.

Detailed information, generic core tools, and LLVM IR based generator for MinIR are available at http://www.assembla.com/spaces/minir-dev/wiki. Open64/Path64 emitter for TireX and its LAO back-end are available at https://compilation.ens-lyon.fr/. MinIR was presented at WIR’11 [28].
5. Software

5.1. The CADP Toolbox

Participants: Hubert Garavel [correspondent], Frédéric Lang, Radu Mateescu, Wendelin Serwe.

We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known as CAESAR/ALDEBARAN Development Package) [4], a toolbox for protocols and distributed systems engineering (see http://cadp.inria.fr). In this toolbox, we develop and maintain the following tools:

- CAESAR.ADT [41] is a compiler that translates LOTOS abstract data types into C types and C functions. The translation involves pattern-matching compiling techniques and automatic recognition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.
- CAESAR [48], [47] is a compiler that translates LOTOS processes into either C code (for rapid prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done using several intermediate steps, among which the construction of a Petri net extended with typed variables, data handling features, and atomic transitions.
- OPEN/CAESAR [42] is a generic software environment for developing tools that explore graphs on the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed independently of any particular high level language. In this respect, OPEN/CAESAR plays a central role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR consists of a set of 16 code libraries with their programming interfaces, such as:
 - CAESAR_GRAPH, which provides the programming interface for graph exploration,
 - CAESAR_HASH, which contains several hash functions,
 - CAESAR_SOLVE, which resolves Boolean equation systems on the fly,
 - CAESAR_STACK, which implements stacks for depth-first search exploration, and
 - CAESAR_TABLE, which handles tables of states, transitions, labels, etc.
A number of tools have been developed within the OPEN/CAESAR environment, among which:
 - BISIMULATOR, which checks bisimulation equivalences and preorders,
 - CUNCTATOR, which performs on-the-fly steady-state simulation of continuous-time Markov chains,
 - DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic, or stochastic systems,
 - DISTRIBUTOR, which generates the graph of reachable states using several machines,
 - EVALUATOR, which evaluates regular alternation-free µ-calculus formulas,
 - EXECUTOR, which performs random execution,
 - EXHIBITOR, which searches for execution sequences matching a given regular expression,
 - GENERATOR, which constructs the graph of reachable states,
 - PROJECTOR, which computes abstractions of communicating systems,
 - REDUCTOR, which constructs and minimizes the graph of reachable states modulo various equivalence relations,
 - SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and
 - TERMINATOR, which searches for deadlock states.
• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using efficient compression techniques) and a software environment for handling this format. BCG also plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG environment consists of various libraries with their programming interfaces, and of several tools, such as:
 – BCG_DRAW, which builds a two-dimensional view of a graph,
 – BCG_EDIT, which allows the graph layout produced by BCG_DRAW to be modified interactively,
 – BCG_GRAPH, which generates various forms of practically useful graphs,
 – BCG_INFO, which displays various statistical information about a graph,
 – BCG_IO, which performs conversions between BCG and many other graph formats,
 – BCG_LABELS, which hides and/or renames (using regular expressions) the transition labels of a graph,
 – BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can also deal with probabilistic and stochastic systems),
 – BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-time Markov chains,
 – BCG_TRANSIENT, which performs transient numerical analysis of (extended) continuous-time Markov chains, and
 – XTL (eXecutable Temporal Language), which is a high level, functional language for programming exploration algorithms on BCG graphs. XTL provides primitives to handle states, transitions, labels, successor and predecessor functions, etc.
 For instance, one can define recursive functions on sets of states, which allow evaluation and diagnostic generation fixed point algorithms for usual temporal logics (such as HML [50], CTL [37], ACTL [38], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned LTS [46] and providing a unified access to a graph partitioned in fragments distributed over a set of remote machines, possibly located in different countries. The PBG format is supported by several tools, such as:
 – PBG_CP, PBG_MV, and PBG_RM, which facilitate standard operations (copying, moving, and removing) on PBG files, maintaining consistency during these operations,
 – PBG_MERGE (formerly known as BCG_MERGE), which transforms a distributed graph into a monolithic one represented in BCG format,
 – PBG_INFO, which displays various statistical information about a distributed graph.

• The connection between explicit models (such as BCG graphs) and implicit models (explored on the fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:
 – BCG_OPEN, for models represented as BCG graphs,
 – CAESAR.OPEN, for models expressed as LOTOS descriptions,
 – EXP.OPEN, for models expressed as communicating automata,
 – FSP.OPEN, for models expressed as FSP [55] descriptions,
 – LNT.OPEN, for models expressed as LNT descriptions, and
 – SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by the VERIMAG laboratory (Grenoble) and the VERTECS project team at Inria Rennes – Bretagne-Atlantique.
The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical interface or the SVL [43] scripting language. Both EUCALYPTUS and SVL provide users with an easy and uniform access to the CADP tools by performing file format conversions automatically whenever needed and by supplying appropriate command-line options as the tools are invoked.

5.2. The TRAIAN Compiler

Participants: Hubert Garavel [correspondent], Frédéric Lang.

We develop a compiler named TRAIAN for translating LOTOS NT descriptions into C programs, which will be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful applications in compiler construction [44], being used in all recent compilers developed by the CONVECS team.

The TRAIAN compiler can be freely downloaded from the CONVECS Web site (see http://convecs.inria.fr/software/traian).

5.3. The PIC2LNT Translator

Participants: Radu Mateescu, Gwen Salaün [correspondent].

We develop a translator named PIC2LNT from an applied π-calculus (see Section 6.1) to LNT, which enables the analysis of concurrent value-passing mobile systems using CADP.

PIC2LNT is developed by using the SYNTAX tool (developed at Inria Paris-Rocquencourt) for lexical and syntactic analysis together with LOTOS NT for semantical aspects, in particular the definition, construction, and traversal of abstract trees.

The PIC2LNT translator can be freely downloaded from the CONVECS Web site (see http://convecs.inria.fr/software/pic2lnt).
5. Software

5.1. NBac

Participant: Bertrand Jeannet.

NBAC (Numerical and Boolean Automaton Checker) \(^{15}\) is a verification/slicing tool for reactive systems containing combination of Boolean and numerical variables, and continuously interacting with an external environment. NBAC can also handle the same class of hybrid systems as the HyTech tool \(^{63}\). It aims at handling efficiently systems combining a non-trivial numerical behaviour with a complex logical (Boolean) behaviour.

NBAC is connected to two input languages: the synchronous dataflow language LUSTRE, and a symbolic automaton-based language, AUTO/AUTO, where a system is defined by a set of symbolic hybrid automata communicating via valued channels. It can perform reachability analysis, co-reachability analysis, and combination of the above analyses. The result of an analysis is either a verdict to a verification problem, or a set of states together with a necessary condition to stay in this set during an execution. NBAC is founded on the theory of abstract interpretation.

It has been used for verifying and debugging LUSTRE programs \(^{65}\) \(^{52}\) \(^{36}\). It is connected to the LUSTRE toolset \(^{16}\). It has also been used for controller synthesis of infinite-state systems. The fact that the analyses are approximated results simply in the obtention of a possibly non-optimal controller. In the context of conformance testing of reactive systems, it has been used by the test generator STG \(^{42}\) \(^{66}\) for selecting test cases.

It has recently been superseded by ReaVer (see Section 5.2).

5.2. ReaVer

Participant: Peter Schrammel.

ReaVer (REActive VERifier \(^{18}\)) is a tool framework for the safety verification of discrete and hybrid systems specified by logico-numerical data-flow languages, like LUSTRE, LUCIDSYNCHRONE or ZELUS. It provides time-unbounded analysis based on abstract interpretation techniques. In many aspects it is the successor of NBAC (see Section 5.1).

It features partitioning techniques and several logico-numerical analysis methods based on Kleene iteration with widening and descending iterations, abstract acceleration, max-strategy iteration, and relational abstractions; logico-numerical product and power domains (based on the APRON and BddApron domain libraries) with convex polyhedra, octagons, intervals, and template polyhedra; and frontends for the hybrid NBAC format, LUSTRE via lus2nbac, and ZELUS/LUCIDSYNCHRONE. Compared to NBAC, it is connected to higher-level, more recent synchronous and hybrid languages, and provides much more options regarding analysis techniques.

It has been used for several experimental comparisons published in papers and it integrates all the methods developed by Peter Schrammel in its PhD.

5.3. Implementations of Synchronous Programs

Participant: Alain Girault.

\(^{15}\) http://pop-art.inrialpes.fr/people/bjeannet/nbac/
\(^{16}\) http://www-verimag.imag.fr/The-Lustre-Toolbox.html
\(^{17}\) http://www.irisa.fr/priv/e/ployette/stg-doc/stg-web.html
\(^{18}\) http://members.ktvam.at/schrammel/research/reaver
5.3.1. Fault Tolerance

We have been cooperating for several years with the INRIA team AOSTE (INRIA Sophia-Antipolis and Rocquencourt) on the topic of fault tolerance and reliability of safety critical embedded systems. In particular, we have implemented several new heuristics for fault tolerance and reliability within their software SYNDEx19. Our first scheduling heuristic produces static multiprocessor schedules tolerant to a specified number of processor and communication link failures \[55\]. The basic principles upon which we rely to make the schedules fault tolerant is, on the one hand, the active replication of the operations \[56\], and on the other hand, the active replication of communications for point-to-point communication links, or their passive replication coupled with data fragmentation for multi-point communication media (\textit{i.e.}, buses) \[57\]. Our second scheduling heuristic is multi-criteria: it produces a static schedule multiprocessor schedule such that the reliability is maximized, the power consumption is minimized, and the execution time is minimized \[3\] \[33\] \[17\], \[11\]. Our results on fault tolerance are summarized in a web page 20.

5.4. Apron and BddApron Libraries

\textbf{Participant:} Bertrand Jeannet.

5.4.1. Principles

The APRON library 21 is dedicated to the static analysis of the numerical variables of a program by abstract interpretation \[43\]. Many abstract domains have been designed and implemented for analysing the possible values of numerical variables during the execution of a program (see Figure 1). However, their API diverge largely (datatypes, signatures, ...), and this does not ease their diffusion and experimental comparison \textit{w.r.t.} efficiency and precision aspects.

The APRON library provides:

- a uniform API for existing numerical abstract domains;
- a higher-level interface to the client tools, by factorizing functionalities that are largely independent of abstract domains.

From an abstract domain designer point of view, the benefits of the APRON library are:

- the ability to focus on core, low-level functionalities;
- the help of generic services adding higher-level services for free.

For the client static analysis community, the benefits are a unified, higher-level interface, which allows experimenting, comparing, and combining abstract domains.

In 2011, the Taylor1plus domain \[53\], which is the underlying abstract domain of the tool FLUCTUAT \[51\] has been improved. Glue code has also been added to enable the connection of an abstract domain implemented in OCaml to the APRON infrastructure written in C (this requires callbacks from C to OCaml that are safe \textit{w.r.t.} garbage collection). This will enable the integration in APRON of the MaxPlus polyhedra library written by X. Allamigeon \[30\] in the context of the ANR ASOPT project.

The BDDAPRON library 22 aims at a similar goal, by adding finite-types variables and expressions to the concrete semantics of APRON domains. It is built upon the APRON library and provides abstract domains for the combination of finite-type variables (Booleans, enumerated types, bitvectors) and numerical variables (integers, rationals, floating-point numbers). It first allows the manipulation of expressions that freely mix, using BDDs and MTBDDs, finite-type and numerical APRON expressions and conditions. It then provides abstract domains that combines BDDs and APRON abstract values for representing invariants holding on both finite-type variables and numerical variables.

19http://www-rocx.inria.fr/syndex
20http://pop-art.inrialpes.fr/~girault/Projets/FT
21http://apron.cri.ensmp.fr/library/
22http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/index.html
5.4.2. Implementation and Distribution

The APRON library (Fig. 2) is written in ANSI C, with an object-oriented and thread-safe design. Both multi-precision and floating-point numbers are supported. A wrapper for the OCAML language is available, and a C++ wrapper is on the way. It has been distributed since June 2006 under the LGPL license and available at http://apron.cri.ensmp.fr. Its development has still progressed much since. There are already many external users (ProVal/Demons, LRI Orsay, France — CEA-LIST, Saclay, France — Analysis of Computer Systems Group, New-York University, USA — Sierum software analysis platform, Kansas State University, USA — NEC Labs, Princeton, USA — EADS CCR, Paris, France — IRIT, Toulouse, France) and is currently packaged as a REDHAT and DEBIAN package.

The BDDAPRON library is written in OCAML, using polymorphism features of OCAML to make it generic. It is also thread-safe. It provides two different implementations of the same domain, each one presenting pros and cons depending on the application. It is currently used by the CONCURINTERPROC interprocedural and concurrent program analyzer.

5.5. Prototypes

5.5.1. Logical Causality

Participant: Gregor Goessler [contact person].

We have developed LoCA, a new prototype tool written in Scala that implements the analysis of logical causality described in 6.6.2. LoCA currently supports causality analysis in BIP. The core analysis engine is implemented as an abstract class, such that support for other models of computation (MOC) can be added by instantiating the class with the basic operations of the MOC.

5.5.2. Cosyma

Participants: Gregor Goessler [contact person], Sebti Mouelhi.

We have developed COSYMA, a tool for automatic controller synthesis for incrementally stable switched systems based on multi-scale discrete abstractions (see 6.2.1). The tool accepts a description of a switched system represented by a set of differential equations and the sampling parameters used to define an approximation of the state-space on which discrete abstractions are computed. The tool generates a controller — if it exists — for the system that enforces a given safety or time-bounded reachability specification.
5.5.3. Automatic Controller Generation

Participants: Emil Dumitrescu, Alain Girault [contact person].

We have developed a software tool chain to allow the specification of models, the controller synthesis, and the execution or simulation of the results. It is based on existing synchronous tools, and thus consists primarily in the use and integration of SIGALI\(^{23}\) and Mode Automata\(^{24}\). It is the result of a collaboration with Eric Rutten from the SARD\(\)ES team.

Useful component templates and relevant properties can be materialized, on one hand by libraries of task models, and, on the other hand, by properties and synthesis objectives.

5.5.4. Rapture

Participant: Bertrand Jeannet.

RAPTURE\(^{25}\) \([64] \) \([46] \) is a verification tool that was developed jointly by BRICS (Denmark) and INRIA in years 2000–2002. The tool is designed to verify reachability properties on Markov Decision Processes (MDP), also known as Probabilistic Transition Systems. This model can be viewed both as an extension to classical (finite-state) transition systems extended with probability distributions on successor states, or as an extension of Markov Chains with non-determinism. We have developed a simple automata language that allows the designer to describe a set of processes communicating over a set of channels à la CSP. Processes can also manipulate local and global variables of finite type. Probabilistic reachability properties are specified by defining two sets of initial and final states together with a probability bound. The originality of the tool is to provide two reduction techniques that limit the state space explosion problem: automatic abstraction and refinement algorithms, and the so-called essential states reduction.

\(^{23}\)http://www.irisa.fr/vertecs/Logiciels/sigali.html
\(^{24}\)http://www-verimag.imag.fr
\(^{25}\)http://pop-art.inrialpes.fr/people/bjeannet/rapture/rapture.html
5.5.5. The Interproc family of static analyzers

Participant: Bertrand Jeannet [contact person].

These analyzers and libraries are of general use for people working in the static analysis and abstract interpretation community, and serve as an experimental platform for the ANR project ASOPT (see §8.1.2.1).

- **FIXPOINT**\(^{26}\): a generic fix-point engine written in OCAML. It allows the user to solve systems of fix-point equations on a lattice, using a parameterized strategy for the iteration order and the application of widening. It also implements recent techniques for improving the precision of analysis by alternating post-fixpoint computation with widening and descending iterations in a sound way [59].

- **INTERPROC**\(^{27}\): a simple interprocedural static analyzer that infers properties on the numerical variables of programs in a toy language. It is aimed at demonstrating the use of the previous library and the above-described APRON library, and more generally at disseminating the knowledge in abstract interpretation. It is also deployed through a web-interface \(^{28}\). It is used as the experimental platform of the ASOPT ANR project.

- **CONCURINTERPROC** extends **INTERPROC** with concurrency, for the analysis of multithreaded programs interacting via shared global variables. It is also deployed through a web-interface \(^{29}\).

- **PINTERPROC** extends **INTERPROC** with pointers to local variables. It is also deployed through a web-interface \(^{30}\).

5.5.6. Heptagon/BZR

Participant: Gwenaël Delaval.

HEPTAGON is a dataflow synchronous language, inspired from **LUCIDSYNCHRONE**\(^{31}\). Its compiler is meant to be simple and modular, allowing this language to be a good support for the prototyping of compilation methods of synchronous languages. It is developped within the **SYNCHRONE**\(^{32}\) large-scale action.

HEPTAGON has been used to built **BZR** \(^{32}\), which is an extension of the former with contracts constructs. These contracts allow to express dynamic temporal properties on the inputs and outputs of **HEPTAGON** node. These properties are then enforced, within the compilation of a BZR program, by discrete controller synthesis, using the **SIGALI** tool \(^{33}\). The synthesized controller is itself generated in **HEPTAGON**, allowing its analysis and compilation towards different target languages (C, JAVA, VHDL).

\(^{26}\) http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint

\(^{27}\) http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc

\(^{28}\) http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

\(^{29}\) http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi

\(^{30}\) http://pop-art.inrialpes.fr/interproc/pinterprocweb.cgi

\(^{32}\) http://bzr.inria.fr

\(^{33}\) http://www.insa.fr/vertecs/Logiciels/sigali.html
BIPOP Project-Team

5. Software

5.1. Nonsmooth dynamics: Siconos

Participants: Vincent Acary, Maurice Bremond, Olivier Bonnefon.

In the framework of the European project Siconos, Bipop was the leader of the Work Package 2 (WP2), dedicated to the numerical methods and the software design for nonsmooth dynamical systems. The aim of this work is to provide a common platform for the simulation, modeling, analysis and control of abstract nonsmooth dynamical systems. Besides usual quality attributes for scientific computing software, we want to provide a common framework for various scientific fields, to be able to rely on the existing developments (numerical algorithms, description and modeling software), to support exchanges and comparisons of methods, to disseminate the know-how to other fields of research and industry, and to take into account the diversity of users (end-users, algorithm developers, framework builders) in building expert interfaces in Python and end-user front-end through Scilab.

After the requirement elicitation phase, the Siconos Software project has been divided into 5 work packages which are identified to software products:

1. SICONOS/NUMERICS This library contains a set of numerical algorithms, already well identified, to solve non smooth dynamical systems. This library is written in low-level languages (C,F77) in order to ensure numerical efficiency and the use of standard libraries (Blas, Lapack, ...)

2. SICONOS/KERNEL This module is an object-oriented structure (C++) for the modeling and the simulation of abstract dynamical systems. It provides the users with a set of classes to describe their nonsmooth dynamical system (dynamical systems, intercations, nonsmooth laws, ...) and to perform a numerical time integration and solving.

3. SICONOS/FRONT-END. This module is mainly an auto-generated wrapper in Python which provides a user-friendly interface to the Siconos libraries. A scilab interface is also provided in the Front-End module.

4. SICONOS/CONTROL This part is devoted to the implementation of control strategies of non smooth dynamical systems.

5. SICONOS/MULTIBODY. This part is dedicated to the modeling and the simulation of multi-body systems with 3D contacts, impacts and Coulomb’s friction. It uses the Siconos/Kernel as simulation engine but relies on a industrial CAD library (OpenCascade and pythonOCC) to deal with complex body geometries and to compute the contact locations and distances.

Further informations may be found at http://siconos.gforge.inria.fr/

5.2. Humanoid motion analysis and simulation

Participants: Pierre-Brice Wieber.

The HuMANs toolbox offers tools for the modelling, control and analysis of humanoid motion, be it of a robot or a human. It is a C/C++/Scilab/Maple-based set of integrated tools for the generation of dynamical models of articulated bodies with unilateral contact and friction, their simulation with an event-driven integration scheme, their 3D visualization, the computation of stability measures, optimal positions and trajectories, the generation of control laws and observers, the reconstruction of movements from different sensing systems.

5.3. AMELIF

Participants: Pierre-Brice Wieber, François Keith.
The AMELIF framework is an integrative framework that proposes an API for the representation and simulation of virtual scenes including articulated bodies. AMELIF was devised to realize interactive scenario studies with haptic feedback while providing an interface enabling fast and general prototyping of humanoids (avatars or robots). It is entirely developed in C++ and is cross-platform. The framework is articulated around a core library, upon which several modules have been developed for collision detection, dynamic simulation (contact handling in a time stepping scheme), 3D rendering, haptic interaction, posture generation. This framework is developed mostly at the CNRS/AIST UMI JRL, but we started using it in the Bipop team and therefore started contributing actively to its development.

5.4. Optimization

Participant: Claude Lemaréchal.

Essentially two possibilities exist to distribute our optimization software: library programs (say Modulopt codes), communicated either freely or not, depending on what they are used for, and on the other hand specific software, developed for a given application.

The following optimization codes have been developed in the framework of the former Promath project. They are generally available at http://www-rocq.inria.fr/~gilbert/modulopt/; M1QN3 is also distributed under GPL.

5.4.1. Code M1QN3

Optimization without constraints for problems with many variables ($n \geq 10^3$, has been used for $n = 10^6$). Technically, uses a limited-memory BFGS algorithm with Wolfe’s line-search (see Chap. 4 of [3] for the terminology).

5.4.2. Code M2QN1

Optimization with simple bound-constraints for (small) problems: D is a paralleloptope in \mathbb{R}^n. Uses BFGS with Wolfe’s line-search and active-set strategy.

5.4.3. Code N1CV2

Minimization without constraints of a convex nonsmooth function by a proximal bundle method (Chap. XV of [10], Chap. 9 of [3]).

5.4.4. Modulopt

In addition to codes such as above, the Modulopt library contains application problems, synthetic or from the real world. It is a field for experimentation, functioning both ways: to assess a new algorithm on a set of test-problems, or to select among several codes one best suited to a given problem.

5.5. MECHE: Simulation of fibrous materials

The software MECHE was essentially developed during the MECHE ADT (2009-2011), for simulating the dynamics of assemblies of thin rods (such as hair), subject to contact and friction. Currently, this software is extensively used by two PhD students (A. Derouet-Jourdan and R. Casati) and continues to be enriched with new rod models and inversion modules. This software combines a panel of well-accepted models for rods (ranging from reduced coordinates to maximal coordinates models, and including models recently developed by some members of the group) with classical as well as innovative schemes for solving the problem of frictional contact (incorporating the most recent results of the group, as well as the new contact solver we published in [8]). The aim of this software is twofold: first, to compare and analyze the performance of nonsmooth schemes for the frictional contact problem, in terms of realism (capture of dry friction, typically), robustness, and computational efficiency. A first study of this kind was conducted in 2010-2011 onto the different rod models that were available in the software. New studies are planned for evaluating further rod models. Second, we believe such a software will help us understand the behavior of a fibrous material (such as hair) through virtual experiments, thanks to which we hope to identify and understand some important
emergent phenomena. A careful validation study against experiments started to be conducted in 2011 in collaboration with physicists from L’Oréal. Once this discrete elements model will be fully validated, our ultimate goal would be to build a continuous macroscopic model for the hair medium relying on nonsmooth laws. The core of this software was transferred to L’Oréal in 2011.
5. Software

5.1. The ECMPR software

Participant: Florence Forbes.

Joint work with: Radu Horaud and Manuel Iguel.

The ECMPR (Expectation Conditional Maximization for Point Registration) package implements [57] [65]. It registers two (2D or 3D) point clouds using an algorithm based on maximum likelihood with hidden variables. The method can register both rigid and articulated shapes. It estimates both the rigid or the kinematic transformation between the two shapes as well as the parameters (covariances) associated with the underlying Gaussian mixture model. It has been registered in APP in 2010 under the GPL license.

5.2. The LOCUS and P-LOCUS software

Participants: Florence Forbes, Senan James Doyle.

Joint work with: Michel Dojat.

From brain MR images, neuroradiologists are able to delineate tissues such as grey matter and structures such as Thalamus and damaged regions. This delineation is a common task for an expert but unsupervised segmentation is difficult due to a number of artefacts. The LOCUS software and its recent extension P-LOCUS automatically perform this segmentation for healthy and pathological brains. An image is divided into cubes on each of which a statistical model is applied. This provides a number of local treatments that are then integrated to ensure consistency at a global level, resulting in low sensitivity to artifacts. The statistical model is based on a Markovian approach that enables to capture the relations between tissues and structures, to integrate a priori anatomical knowledge and to handle local estimations and spatial correlations.

The LOCUS software has been developed in the context of a collaboration between Mistis, a computer science team (Magma, LIG) and a Neuroscience methodological team (the Neuroimaging team from Grenoble Institut of Neurosciences, INSERM). This collaboration resulted over the period 2006-2008 into the PhD thesis of B. Scherrer (advised by C. Garbay and M. Dojat) and in a number of publications. In particular, B. Scherrer received a “Young Investigator Award” at the 2008 MICCAI conference. Its extension (P-LOCUS) for lesion detection is realized by S. Doyle with financial support from Gravit for possible industrial transfer.

The originality of this work comes from the successful combination of the teams respective strengths i.e. expertise in distributed computing, in neuroimaging data processing and in statistical methods.

5.3. The POPEYE software

Participant: Florence Forbes.

Joint work with: Vasil Khalidov, Radu Horaud, Miles Hansard, Ramya Narasimha, Elise Arnaud.

POPEYE contains software modules and libraries jointly developed by three partners within the POP STREP project: Inria, University of Sheffield, and University of Coimbra. It includes kinematic and dynamic control of the robot head, stereo calibration, camera-microphone calibration, auditory and image processing, stereo matching, binaural localization, audio-visual speaker localization. Currently, this software package is not distributed outside POP.

5.4. The HDDA and HDDC toolboxes

Participant: Stéphane Girard.
Joint work with: Charles Bouveyron (Université Paris 1). The High-Dimensional Discriminant Analysis (HDDA) and the High-Dimensional Data Clustering (HDDC) toolboxes contain respectively efficient supervised and unsupervised classifiers for high-dimensional data. These classifiers are based on Gaussian models adapted for high-dimensional data [53]. The HDDA and HDDC toolboxes are available for Matlab and are included into the software MixMod [52]. Recently, a R package has been developed and integrated in The Comprehensive R Archive Network (CRAN). It can be downloaded at the following URL: http://cran.r-project.org/web/packages/HDclassif/.

5.5. The Extremes freeware

Participant: Stéphane Girard.

Joint work with: Diebolt, J. (CNRS), Laurent Gardes (Univ Strasbourg) and Garrido, M. (INRA Clermont-Ferrand-Theix).

The EXTREMES software is a toolbox dedicated to the modelling of extremal events offering extreme quantile estimation procedures and model selection methods. This software results from a collaboration with EDF R&D. It is also a consequence of the PhD thesis work of Myriam Garrido [55]. The software is written in C++ with a Matlab graphical interface. It is now available both on Windows and Linux environments. It can be downloaded at the following URL: http://extremes.gforge.inria.fr/.

5.6. The SpaCEM³ program

Participants: Senan James Doyle, Florence Forbes.

SpaCEM³ (Spatial Clustering with EM and Markov Models) is a software that provides a wide range of supervised or unsupervised clustering algorithms. The main originality of the proposed algorithms is that clustered objects do not need to be assumed independent and can be associated with very high-dimensional measurements. Typical examples include image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. More generally, the software provides algorithms to cluster multimodal data with an underlying dependence structure accounting for some spatial localisation or some kind of interaction that can be encoded in a graph.

This software, developed by present and past members of the team, is the result of several research developments on the subject. The current version 2.09 of the software is CeCILLB licensed.

Main features. The approach is based on the EM algorithm for clustering and on Markov Random Fields (MRF) to account for dependencies. In addition to standard clustering tools based on independent Gaussian mixture models, SpaCEM³ features include:

- The unsupervised clustering of dependent objects. Their dependencies are encoded via a graph not necessarily regular and data sets are modelled via Markov random fields and mixture models (eg. MRF and Hidden MRF). Available Markov models include extensions of the Potts model with the possibility to define more general interaction models.
- The supervised clustering of dependent objects when standard Hidden MRF (HMRF) assumptions do not hold (ie. in the case of non-correlated and non-unimodal noise models). The learning and test steps are based on recently introduced Triplet Markov models.
- Selection model criteria (BIC, ICL and their mean-field approximations) that select the "best" HMRF according to the data.
- The possibility of producing simulated data from:
 - general pairwise MRF with singleton and pair potentials (typically Potts models and extensions)
 - standard HMRF, ie. with independent noise model
 - general Triplet Markov models with interaction up to order 2
- A specific setting to account for high-dimensional observations.
- An integrated framework to deal with missing observations, under Missing At Random (MAR) hypothesis, with prior imputation (KNN, mean, etc), online imputation (as a step in the algorithm), or without imputation.
The software is available at http://spacem3.gforge.inria.fr. A user manual in English is available on the web site above together with example data sets. The INRA Toulouse unit is more recently participating to this project for promotion among the bioinformatics community [75].

5.7. The FASTRUCT software

Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former Post-doctoral fellow in Mistis).

The FASTRUCT program is dedicated to the modelling and inference of population structure from genetic data. Bayesian model-based clustering programs have gained increased popularity in studies of population structure since the publication of the software STRUCTURE [70]. These programs are generally acknowledged as performing well, but their running-time may be prohibitive. FASTRUCT is a non-Bayesian implementation of the classical model with no-admixture uncorrelated allele frequencies. This new program relies on the Expectation-Maximization principle, and produces assignment rivaling other model-based clustering programs. In addition, it can be several-fold faster than Bayesian implementations. The software consists of a command-line engine, which is suitable for batch-analysis of data, and a MS Windows graphical interface, which is convenient for exploring data.

It is written for Windows OS and contains a detailed user’s guide. It is available at http://mistis.inrialpes.fr/realisations.html.

The functionalities are further described in the related publication:

- Molecular Ecology Notes 2006 [56].

5.8. The TESS software

Participant: Florence Forbes.

Joint work with: Francois, O. (TimB, TIMC) and Chen, C. (former post-doctoral fellow in Mistis).

TESS is a computer program that implements a Bayesian clustering algorithm for spatial population genetics. Is it particularly useful for seeking genetic barriers or genetic discontinuities in continuous populations. The method is based on a hierarchical mixture model where the prior distribution on cluster labels is defined as a Hidden Markov Random Field [60]. Given individual geographical locations, the program seeks population structure from multilocus genotypes without assuming predefined populations. TESS takes input data files in a format compatible to existing non-spatial Bayesian algorithms (e.g. STRUCTURE). It returns graphical displays of cluster membership probabilities and geographical cluster assignments through its Graphical User Interface.

The functionalities and the comparison with three other Bayesian Clustering programs are specified in the following publication:

- Molecular Ecology Notes 2007
NANO-D Team

5. Software

5.1. SAMSON

A major objective of NANO-D is to try and integrate a variety of adaptive algorithms into a unified framework. As a result, NANO-D is developing SAMSON (Software for Adaptive Modeling and Simulation Of Nanosystems), a software platform aimed at including all developments from the group, in particular those described below.

The objective is to make SAMSON a generic application for computer-aided design of nanosystems, similar to existing applications for macrosystem prototyping (CATIA, SolidWorks, etc.).

The current architecture of SAMSON is visible in Figure 6. The code is organized into four main parts: a) the Base (in which “Core” contains, in particular, the heart of the adaptive algorithms: signaling mechanisms specifically designed for SAMSON), b) the Software Development Kit (SDK: a subset of the base that will be provided to module developers), c) Modules, and d) the SAMSON application itself.

Similar to the concept of Mathematica toolboxes, for example, the goal has been to make it possible to personalize the user interface of SAMSON for potentially many distinct applications. For example, we may want to personalize the interface of SAMSON for crystallography, drug design, protein folding, electronics, material science, nano-engineering, etc., by loading different modules at startup, depending on the user application domain.

Figure 6. SAMSON’s architecture.
NECS Project-Team

5. Software

5.1. ORCCAD

Participants: Daniel Simon [correspondant], Soraya Arias [SED], Roger Pissard-Gibollet [SED].

ORCCAD is a software environment that allows for the design and implementation of the continuous and discrete time components of complex control systems, e.g. robotics systems which provided it first ground [59]. It also allows the specification and validation of complex missions to be performed by the system. It is mainly intended for critical real-time applications, in which automatic control aspects (servo loops) have to interact narrowly with the handling of discrete events (exception handling, mode switching). ORCCAD offers a complete and coherent vertical solution, ranging from the high level specification to real-time code generation. The ORCCAD V3 software was designed with proprietary tools that moreover are now becoming obsolete. ORCCAD V4 is currently deeply re-engineered to be compliant with open-source and free software tools (Java/Eclipse). Current targets are Linux (Posix threads) and Xenomai, a real-time development framework cooperating with the Linux kernel (http://www.xenomai.org). ORCCAD is supported by the Support Expérimentations & Développement (SED) service of INRIA-Rhône-Alpes. ORCCAD is used by the experimental robotics platforms of INRIA-Rhône-Alpes and by the Safenecs ANR project in a real-time simulator of a X4 drone. New functionalities and updates are developed jointly by the SED service and researchers of the NECS team. Web page: http://orccad.gforge.inria.fr.

5.2. MASim

Participants: J. Dumon [contact person], P. Bellemain [GIPSA-Lab], S. Nicolas [PROLEXIA], N. Maciol [PROLEXIA], F. Martinez [ROBOSOFT], J. Caquas [ROBOSOFT].

MASIM is a tool that has been adapted from our former multiagent simulator MUSim (MUSim=MASim + ConnectSim + ConnectIHM). It integrates agent’s models, communication media including their limitations, heterogeneous network, and all the variants of the multi-agent control strategies. Besides the models and simulation engine, the simulation can be replayed through a GUI, an interactive graphical interface which is used to visualise and interpret the state of the multi-agent control system and communication topology. The validation scenario is a real-size application enough complex to enforce the pertinence of our results. The simulator MASim is now being used as an open research tool for various applications in the field of multi-agents networked systems, particularly within the FeedNetBack project (see Fig. 4).

5.3. GTL

Participants: C. Canudas de Wit [contact person], I. Bellicot [contact person], L. Leon Ojeda, D. Pisarski.

The team has created a software demonstrator to have a showcase including cutting-edge model developments. This software is a global services platform for end-user traffic use, providing accurate density calculation on traffic color vision, and integration of estimator and prediction motor for travel-time calculation. GTL (Grenoble Traffic Lab) is a real-time traffic data center platform intended to collect traffic road infrastructure information in real-time with minimum latency and fast sampling periods. The main elements of the GTL are: a real-time database, a show room, and a suit of traffic forecasting software. Sensed informations come from a dense wireless sensor network providing macroscopic traffic signals such as flows, velocities, densities, and magnetic signatures. This sensor network was set in place in collaboration with Inria spin-off Karrus-ITS, local traffic authorities (DIR-CE, CG38, La Metro), and specialized traffic research centers.
Figure 4. A scenario’s view obtained with MASIM.

Figure 5. The GTL Macro-simulator.
5. Software

5.1. NUM3SIS

Participants: Régis Duvigneau [correspondant], Nora Aïssiouene, Babett Lekouta.

NUM3SIS (http://num3sis.inria.fr) is a modular platform devoted to scientific computing and numerical simulation. It is not restricted to a particular application field, but is designed to host complex multidisciplinary simulations. Main application fields are currently Computational Fluid Dynamics (CFD), Computational Electro-Magnetics (CEM, in collaboration with Nachos Project-Team) and pedestrian traffic simulation.

The most important concept in NUM3SIS is the concept of node. It is a visual wrapper around derivatives of fundamental concepts such as data, algorithm or viewer. Atomic nodes are provided for convenience in order to manipulate computational data (such as grids or fields), apply computational methods (such as the building of a finite-element matrix or the construction of a finite-volume flux) and visualize computational results (such as vector or tensor fields, on a screen or in an immersive space). For a given abstract node, different implementations can be found, each of them being embedded in a plugin system that is managed by a factory.

The second important concept in NUM3SIS is the concept of composition. It consists of the algorithmic pipeline used to link the nodes together. The use of these two concepts, composition and nodes, provides a highly flexible, re-usable and efficient approach to develop new computational scenarii and take benefit from already existing tools. This is a great advantage with respect to classical monolithic softwares commonly used in these fields.

This work is being carried out with the support of two engineers in the framework of an ADT (Action de Développement Technologique) program.

5.2. FAMOSA

Participant: Régis Duvigneau [correspondant].

Opale team is developing the software platform FAMOSA (C++), that is devoted to multidisciplinary design optimization in engineering. It integrates the following components:

- an optimization library composed of various algorithms: several descent methods from steepest-descent method to quasi-Newton BFGS method (deterministic, smooth), the Multi-directional Search Algorithm (deterministic, noisy), the Covariance Matrix Adaption Evolution Strategy (semi-stochastic, multi-modal) and the Efficient Global Optimization method (deterministic, multi-modal). It also contains the Pareto Archived Evolution Strategy to solve multi-objective optimization problems;
- an evaluation library managing the performance estimation process (communication with external simulation tools);
- a metamodel library that contains tools to build a database and kriging models that are used to approximate the objective function for different purposes;
- a scenario library that allows to use the previous components to achieve various tasks:
 - Construct a design of experiments;
 - Construct a metamodel;
 - Find the design that minimizes a cost functional;
 - Find the Pareto front for two cost functionals;
 - Play a Nash game to find the equilibrium between two criteria;
 - Apply a multiple gradient descent strategy to improve simultaneously two criteria.
The FAMOSA platform is employed by Opale Project-Team to test its methodological developments in multidisciplinary design optimization (MDO). The platform is also used by the Fluid Mechanics Laboratory at Ecole Centrale de Nantes and by the K-Epsilon company (http://www.k-epsilon.com) for hydrodynamic design applications. Moreover, it is presently tested by Peugeot Automotive industry for external aerodynamic design purpose.

5.3. Plugins for AXEL

Participants: Régis Duvigneau [correspondant], Louis Blanchard.

Opale team is developing plugins in the framework of the algebraic modeler Axel, in collaboration with GALAAD team. These developments correspond to two research axes:

• methods for isogeometric analysis and design. In particular, two simulation tools for heat conduction and compressible flows have been implemented, in conjunction with some deterministic and semi-stochastic optimization algorithms for optimum-shape design;
• methods for geometrical modeling of bow shapes for trawler ships.

5.4. Integration platform for multidiscipline optimization applications

Participants: Toan Nguyen, Laurentiu Trifan.

A prototype software integration platform is developed and tested for multidiscipline optimization applications. It is based on a workflow management system called YAWL (http://www.yawlfoundation.org). The goal is to design, develop and assess high-performance distributed scientific workflows featuring resilience, i.e., fault-tolerance and exception-handling capabilities. The platform is used to experiment new resilience algorithms, including monitoring and management of application-level errors. Errors include time-outs and out of bounds data values. They can be added and modified by the users. The platform is tested against use-cases provided by the industry partners in the OMD2 project supported by the French Agence Nationale de la Recherche. For example, an optimization of a car air-conditioning pipe was implemented and deployed on the Grid5000 infrastructure. It also takes into account run-time errors related to resource consumption, e.g., memory overflow, to automatically and dynamically relocate the applications tasks involved on the various clusters. This work is part of Laurentiu Trifan’s PhD thesis that is to be defended in 2013. (See Fig. 1.)

![Figure 1. Testcase deployment on the Grid5000 infrastructure.](image)
5. Software

5.1. AcypiCyc

Participants: Hubert Charles [EPI], Patrice Baa Puyoule [Contact, Patrice.Baa-Puyoulet@lyon.inra.fr], Stefano Colella [Contact, stefano.colella@lyon.inra.fr], Ludovic Cottret, Marie-France Sagot [EPI], Augusto Vellozo [Contact, augusto@cycadsys.org], Amélie Véron.

Database of the metabolic network of *Acyrthosiphon pisum*.
http://acypicyc.cycadsys.org/

5.2. ALViE

Participants: Pierluigi Crescenzi [Contact, pierluigi.crescenzi@unifi.it, ext. member EPI], Giorgio Gambosi, Roberto Grossi, Carlo Nocentini, Tommaso Papini, Walter Verdese.

ALViE is a post-mortem algorithm visualization Java environment, which is based on the interesting event paradigm. The current distribution of ALViE includes more than forty visualizations. Almost all visualizations include the representation of the corresponding algorithm C-like pseudo-code. The ALViE distribution allows a programmer to develop new algorithms with their corresponding visualization: the included Java class library, indeed, makes the creation of a visualization quite an easy task (once the interesting events have been identified).
http://piluc.dsi.unifi.it/alvie/

5.3. Cassis

Participants: Christian Baudet [EPI, Contact, christian.baudet@univ-lyon1.fr], Christian Gautier [EPI], Claire Lemaitre [Contact, claire.lemaitre@inria.fr], Marie-France Sagot [EPI], Eric Tannier.

Algorithm for precisely detecting genomic rearrangement breakpoints.
http://pbil.univ-lyon1.fr/software/Cassis/

5.4. Cravela

Participants: Ana Teresa Freitas, Nuno Mendes [Contact, ndm@kdbio.inesc-id.pt], Marie-France Sagot [EPI, Contact, marie-france.sagot@inria.fr].

Framework for the identification and evaluation of miRNA precursors (finished), targets (in development) and regulatory modules (in development).
http://www.cravela.org/

5.5. C3P

Participants: Frédéric Boyer, Anne Morgat [EPI, ext. member], Alain Viari [EPI, Contact, alain.viari@inria.fr].

Merging two or more graphs representing biological data (e.g. pathways, ...).
http://www.inrialpes.fr/helix/people/viari/cccpart

5.6. CycADS

Participants: Hubert Charles [EPI], Patrice Baa Puyoule [Contact, Patrice.Baa-Puyoulet@lyon.inra.fr], Stefano Colella [Contact, stefano.colella@lyon.inra.fr], Ludovic Cottret, Marie-France Sagot [EPI], Augusto Vellozo [Contact, augusto@cycadsys.org].

Cyc annotation database system.
5.7. Gobbolino

Participants: Vicente Acuña [EPI], Etienne Birmelé [EPI, délégation], Ludovic Cottret, Pierluigi Crescenzi, Fabien Jourdan, Vincent Lacroix, Alberto Marchetti-Spaccamela [EPI, ext. member], Andrea Marino, Paulo Vieira Milreu [EPI, Contact, pvmilreu@gmail.com], Marie-France Sagot [EPI], Leen Stougie [EPI, ext. member].

Algorithm to enumerate all metabolic stories in a metabolic network given a set of metabolites of interest. Code available on request.

5.8. kisSNP

Participants: Vincent Lacroix [EPI], Pierre Peterlongo [Contact, pierre.peterlongo@inria.fr], Nadia Pisanti, Marie-France Sagot [EPI], Nicolas Schnel.

Algorithm for identifying SNPs without a reference genome by comparing raw reads.
http://alcovna.genouest.org/kissnp/

5.9. kisSplice

Participants: Rayan Chikhi, Janice Kielbassa [EPI], Vincent Lacroix [Contact, EPI], Pierre Peterlongo [Contact, pierre.peterlongo@inria.fr], Gustavo Sacomoto [EPI], Marie-France Sagot [EPI], Raluca Uricaru.

Algorithm for de-novo calling alternative splicing events from RNA-seq data.
http://alcovna.genouest.org/kissplice/

5.10. LASAGNE

Participants: Pierluigi Crescenzi [Contact, pierluigi.crescenzi@unifi.it, ext. member EPI], Roberto Grossi, Michel Habib, Claudio Imbrenda, Leonardo Lanzi, Andrea Marino.

LASAGNE is a Java application which allows the user to compute distance measures on graphs by making a clever use either of the breadth-first search or of the Dijkstra algorithm. In particular, the current version of LASAGNE can compute the exact value of the diameter of a graph: the graph can be directed or undirected and it can be weighted or unweighted. Moreover, LASAGNE can compute an approximation of the distance distribution of an undirected unweighted graph. These two features are integrated within a graphical user interface along with other features, such as computing the maximum (strongly) connected component of a graph.
http://amici.dsi.unifi.it/lasagne/

5.11. MetExplore

Participants: Michael Barrett, Hubert Charles [EPI], Ludovic Cottret [Contact, Ludovic.Cottret@toulouse.inra.fr], Fabien Jourdan, Marie-France Sagot [EPI], Florence Vinson, David Wildridge.

Web server to link metabolomic experiments and genome-scale metabolic networks.
http://metexplore.toulouse.inra.fr/metexplore/

5.12. Migal

Participants: Julien Allali [Contact, julien.allali@labri.fr], Marie-France Sagot [EPI, Contact, marie-france.sagot@inria.fr].

RNA, tree comparison
Algorithm for comparing RNA structures.
5.13. **MotusWEB**

Participants: Ludovic Cottret, Fabien Jourdan, Vincent Lacroix [EPI, Contact, vincent.lacroix@univ-lyon1.fr], Odile Rogier, Marie-France Sagot [EPI].

Algorithm for searching and inferring coloured motifs in metabolic networks (web-based version - offers different functionalities from the downloadable version).

http://pbil.univ-lyon1.fr/software/motus_web/

5.14. **Motus**

Participants: Ludovic Cottret, Fabien Jourdan, Vincent Lacroix [EPI, Contact, vincent.lacroix@univ-lyon1.fr], Odile Rogier, Marie-France Sagot [EPI].

Algorithm for searching and inferring coloured motifs in undirected graphs (downloadable version - offers different functionalities from the web-based version).

http://pbil.univ-lyon1.fr/software/motus/

5.15. **PhEVER**

Participants: Christian Gautier [EPI], Vincent Lotteau, Leonor Palmeira [Contact, mlpalmeira@ulg.ac.be], Chantal Rabourdin-Combe, Simon Penel.

Database of homologous gene families built from the complete genomes of all available viruses, prokaryotes and eukaryotes and aimed at the detection of virus/virus and virus/host lateral gene transfers.

http://pbil.univ-lyon1.fr/databases/phever/

5.16. **PepLine**

Participants: Jérôme Garin, Alain Viari [EPI, Contact, alain.viari@inria.fr].

Pipeline for the high-throughput analysis of proteomic data.

http://www.grenoble.prabi.fr/protehome/software/pepline

5.17. **Pitufo and family**

Participants: Vicente Acuña [EPI], Ludovic Cottret [Contact, Ludovic.Cottret@toulouse.inra.fr], Alberto Marchetti-Spaccamela [EPI, ext. member], Paulo Vieira Milreu [EPI, Contact, pvmilreu@gmail.com], Marie-France Sagot [EPI], Leen Stougie [EPI, ext. member], Fabio Viduani-Martinez.

Algorithms to enumerate all minimal sets of precursors of target compounds in a metabolic network.

http://sites.google.com/site/pitufosoftware/

5.18. **PSbR**

Participants: Yoan Diekmann, Marie-France Sagot [EPI, Contact, marie-france.sagot@inria.fr], Eric Tannier.

Algorithm for testing the evolution and conservation of common clusters of genes.

http://pbil.univ-lyon1.fr/members/sagot/htdocs/team/software/PSbR/

5.19. **Repseek**

Participants: Guillaume Achaz [Contact, achaz@abi.snv.jussieu.fr], Eric Coissac, Alain Viari [EPI].

Finding approximate repeats in large DNA sequences.

http://wwwabi.snv.jussieu.fr/public/RepSeek/

5.20. **Smile**

Participants: Laurent Marsan, Marie-France Sagot [EPI, Contact, marie-france.sagot@inria.fr].

Motif inference algorithm taking as input a set of biological sequences.
5.21. Tuiuiu

Participants: Alair Pereira do Lago, Pierre Peterlongo [Contact, pierre.peterlongo@inria.fr], Nadia Pisanti, Gustavo Sacomoto [EPI], Marie-France Sagot [EPI].

Multiple repeat search filter with edit distance.
http://mobyle.genouest.org/cgi-bin/Mobyle/portal.py?form=tuiuiu

5.22. UniPathway

Participants: Eric Coissac, Anne Morgat [EPI, Contact, anne.morgat@inria.fr], Alain Viari [EPI].

Database of manually curated pathways developed with the Swiss-Prot group.
http://www.unipathway.org
5. Software

5.1. aevol (artificial evolution)

Participants: Guillaume Beslon, Stephan Fischer, Carole Knibbe, David P Parsons, Bérénice Batut.

- Contact: Carole Knibbe (carole.knibbe@inria.fr).
- Aevol is a simulation software dedicated to the study of genome evolution. It allows to carry out *in silico* experimental evolution. Populations of digital organisms reproduce and mutate randomly, with both small mutations and large chromosomic rearrangements, in a steady or varying environment. A curve-fitting task is used to determine the fitness of the organisms and thus their rate of reproduction. The number of genes, their order, their sequences, their intergenic distances are all free to evolve.
- URL: http://www.aevol.fr

5.2. FluoBacTracker

Participants: Hugues Berry, David P Parsons, Magali Vangkeosay.

- Contact: Hugues Berry (hugues.berry@inria.fr)
- FluoBacTracker is a software for automated quantification of bacterial cells in microscopy movies, developed in collaboration with INSERM U1001 and Paris 5 MAP (Applied Mathematics) Labs. The development (started October 2012) is supported by is a 2-year grant (ADT) funded by Inria’s Technological Development Department (Sept 2012- July 2014, project name: “MultiPop”). We hope this software will be useful to all the experimental biology labs that tries to derive single-cell data from bacteria growth microscopy movies. Codeveloppers include Magali Vangkeosay (Beagle), David P Parsons (SED, Inria Grenoble) and Xiaohu Song (INSERM U1001).

5.3. Ancestral Genome Reconstructions

Participant: Eric Tannier.

- Contact: Eric Tannier (eric.tannier@inria.fr).
- We participated in the development of a series of softwares for genome organization analysis:
 - ANGES, for ANcestral GEnomeS maps, is a toolkit for ordering ancestral genomic markers in chromosomes. An application note has been published in *Bioinformatics* in 2012 to advertise its first release. It is hosted at SFU in Vancouver, URL: http://paleogenomics.irmacs.sfu.ca/ANGES/, under a GNU license, 2012.
 - DeCo, for Detection of Co-evolution, reconstructs neighborhood relationships between genes of ancient genomes, in the presence of gene duplications and losses. It is hosted at the PRABI, the bioinformatics platform in Lyon, URL: http://pbil.univ-lyon1.fr/software/DeCo/, under a Cecill license, 2012.
 - DCJ2HP provides bayesian samples of rearrangements scenarios between 2 genomes. It is hosted at the Renyi Institute in Budapest, URL http://www.renyi.hu/~miklos/DCJ2HP/
5. Software

5.1. CelDyn

Participants: Laurent Pujo-Menjouet, Alen Tosenberger, Vitaly Volpert [correspondant].

Software "Celdyn" is developed in order to model cell population dynamics for biological applications. Cells are represented either as soft spheres or they can have more complex structure. Cells can divide, move, interact with each other or with the surrounding medium. Different cell types can be introduced. When cells divide, the types of daughter cells are specified. A user interface is developed.
4. Software

4.1. Genetic Network Analyzer (GNA)

Participants: Hidde de Jong [Correspondent], Michel Page, François Rechenmann, Delphine Ropers.

Gene regulatory networks, qualitative simulation, model checking

GENETIC NETWORK ANALYZER (GNA) is the implementation of a method for the qualitative modeling and simulation of gene regulatory networks developed in the IBIS project. The input of GNA consists of a model of the regulatory network in the form of a system of piecewise-linear differential equations, supplemented by inequality constraints on the parameters and initial conditions. From this information, GNA generates a state transition graph summarizing the qualitative dynamics of the system. In order to analyze large graphs, GNA allows the user to specify properties of the qualitative dynamics of a network in temporal logic, using high-level query templates, and to verify these properties on the state transition graph by means of standard model-checking tools, either locally installed or accessible through a remote web server. GNA is currently distributed by the company Genostar, but remains freely available for academic research purposes. The current version is GNA 8.3. In comparison with the previously distributed versions, GNA 8.3 has the following additional functionalities. First, it supports the editing and visualization of regulatory networks, in an SBGN-compatible format, and second it semi-automatically generates a prototype model from the network structure, thus accelerating the modeling process. For more information, see http://www-helix.inrialpes.fr/gna.

4.2. WellReader

Participants: Guillaume Baptist, Johannes Geiselmann, Jérôme Izard, Hidde de Jong [Correspondent], Delphine Ropers.

Gene expression, reporter gene data

WELLREADER is a program for the analysis of gene expression data obtained by means of fluorescent and luminescent reporter genes. WELLREADER reads data files in an XML format or in a format produced by microplate readers, and allows the user to detect outliers, perform background corrections and spline fits, compute promoter activities and protein concentrations, and compare expression profiles across different conditions. WELLREADER has been written in MATLAB and is available under an LGPL licence, both as source code (M files) and compiled code (platform-specific binary files). For more information, see: http://ibis.inrialpes.fr/article957.html.
5. Software

5.1. Adaptive Grid Refinement

Participants: Laurent Debreu, Marc Honnorat.

AGRIF (Adaptive Grid Refinement In Fortran, [80],[6]) is a Fortran 90 package for the integration of full adaptive mesh refinement (AMR) features within a multidimensional finite difference model written in Fortran. Its main objective is to simplify the integration of AMR potentialities within an existing model with minimal changes. Capabilities of this package include the management of an arbitrary number of grids, horizontal and/or vertical refinements, dynamic regridding, parallelization of the grids interactions on distributed memory computers. AGRIF requires the model to be discretized on a structured grid, like it is typically done in ocean or atmosphere modelling. As an example, AGRIF is currently used in the following ocean models: MARS (a coastal model developed at IFREMER-France), ROMS (a regional model developed jointly at Rutgers and UCLA universities), OPA-NEMO ocean modelling system (a general circulation model used by the French and European scientific community) and HYCOM (a regional model developed jointly by University of Miami and the French Navy).

In 2012, a new contract has been signed with IFREMER to optimize parallel capabilities of the software. The software will be used operationally to attain a resolution of 500 meters along the French coasts. (http://www.previmer.org) AGRIF is licensed under a GNU (GPL) license and can be downloaded at its web site (http://ljk.imag.fr/MOISE/AGRIF/index.html).

5.2. NEMOVAR

NEMOVAR is a state-of-the-art multi-incremental variational data assimilation system dedicated to the European ocean modelling platform NEMO for research and operational applications. It is co-developed by MOISE, CERFACS (FR), ECMWF (EU) and MetOffice (UK) under the CeCILL license, written in Fortran and Python. It is now in use in both ECMWF and MetOffice for their operational oceanic forecasting systems. It has also been used for specific studies in collaboration with Mercator-Ocean, LPO, LOCEAN and LEGI in France and University of Namur in Belgium. It is also a likely candidate for becoming the future Black-Sea forecasting system of the Marine Hydrographical Institute of Ukraine with whom we collaborate actively. Previously part of NEMOVAR, NEMO-TAM (Tangent and adjoint models for NEMO) that have been developed by the MOISE team will be now distributed directly by the NEMO consortium. The first official tagged release including NEMO-TAM will be published early 2013.

5.3. DatIce

Participants: Bénédicte Lemieux-Dudon, Habib Toye Mahamadou Kele.

Antarctic and Greenland ice cores provide a mean to study the phase relationships of climate changes in both hemispheres. They also enable to study the timing between climate, and greenhouse gases or orbital forcings. One key step for such studies is to improve the absolute and relative precisions of ice core age scales (for ice and trapped gas), and beyond that, to try to reach the best consistency between chronologies of paleo-records of any kind.

The DatIce tool is designed to increase the consistency between pre-existing core chronologies (also called background). It formulates a variational inverse problem which aims at correcting three key quantities that uniquely define the core age scales: the accumulation rate, the total thinning function, and the close-off depth. For that purpose, it integrates paleo-data constraints of many types among which age markers (with for instance documented volcanoes eruptions), and stratigraphic links (with for instance abrupt changes in methane concentration). A cost function is built that enables to calculate new chronologies by making a trade-off between all the constraints (background chronologies and paleo-data).
DatIce enables to circumvent the limits encountered with other dating approaches, in particular because it controls the model errors, which are still large despite efforts to better describe the firn densification, the ice flow and the forcing fields (ice sheet elevation, temperature and accumulation rate histories). Controlling the model error makes it possible to assimilate large set of observations, to constrain both the gas and ice age scales, and to apply the process on several cores at the same time by including stratigraphic links between cores. This approach greatly improves the consistency of ice cores age scales.

The method presented in ([84], [85]) has already been applied simultaneously to EPICA EDML and EDC, Vostok and NGRIP drillings. The DatIce tool has aroused some interest in the glaciological and paleo-community since 2009.

The code has been recently applied in two publications [2] and [22] which aimed at the construction of a unified chronology for Antarctic ice cores. LGGE, LSCE and MOISE are partners to extend the code to marine and terrestrial cores. On going development efforts are made to ensure the robustness of the dating solution (diagnostics on the assimilation system, calibration of the background error covariance matrices).

5.4. SDM toolbox

Participant: Antoine Rousseau.

The computation of the wind at small scale and the estimation of its uncertainties is of particular importance for applications such as wind energy resource estimation. To this aim, we develop a new method based on the combination of an existing numerical weather prediction model providing a coarse prediction, and a Lagrangian Stochastic Model adapted from a pdf method introduced by S.B. Pope for turbulent flows. This Stochastic Downscaling Method (SDM http://sdm.gforge.inria.fr/) is thus aimed to be used as a refinement toolbox of large-scale numerical models. SDM requires a specific modelling of the turbulence closure, and involves various simulation techniques whose combination is totally new (such as Poisson solvers, optimal transportation mass algorithm, original Euler scheme for confined Langevin stochastic processes, and stochastic particle methods). Since 2011, we work on the comparison of the SDM model (endowed with a physical geostrophic forcing and a wall log law) with simulations obtained with a LES method (Méso-NH code) for the atmospheric boundary layer (from 0 to 750 meters in the vertical direction), in the neutral case.

5.5. CompModSA package

Alexandre Janon is a contributor of the packages CompModSA - Sensitivity Analysis for Complex Computer Models (see http://cran.r-project.org/web/packages/CompModSA/index.html), and sensitivity (see http://cran.r-project.org/web/packages/sensitivity/index.html). These packages are useful for conducting sensitivity analysis of complex computer codes.
5. Software

5.1. Zebre

Participant: Thierry Dumont [correspondant].

Thierry Dumont is currently developing a toolbox to solve stiff reaction diffusion equations using splitting methods, together with refined numerical schemes for ODEs (RADO 5).

5.2. OptimChemo

Participants: Violaine Louvet [correspondant], Emmanuel Grenier.

OptimChemo is a user-friendly software designed to study numerically the effect of multiple chemotherapies on simple models of tumour growth and to optimize chemotherapy schedules.
5. Software

5.1. TEOS: Tranus Exploration and Optimization Software

Participants: Anthony Tschirhard, Mathieu Vadon, Elise Arnaud, Emmanuel Prados.

The TEOS software offers a set of tools to help the calibration of the land use and transport integrated model TRANUS. It uses some exploration and optimization procedures of the relevant parameters.
5. Software

5.1. BitDew

Participants: Gilles Fedak [correspondant], Haiwu He, Bing Tang, José Francisco Saray Villamizar, Mircea Moca, Lu Lu.

BitDew is an open source middleware implementing a set of distributed services for large scale data management on Desktop Grids and Clouds. BitDew relies on five abstractions to manage the data: i) replication indicates how many occurrences of a data should be available at the same time on the network, ii) fault-tolerance controls the policy in presence of hardware failures, iii) lifetime is an attribute absolute or relative to the existence of other data, which decides of the life cycle of a data in the system, iv) affinity drives movement of data according to dependency rules, v) protocol gives the runtime environment hints about the protocol to distribute the data (http, ftp, or bittorrent). Programmers define for every data these simple criteria, and let the BitDew runtime environment manage operations of data creation, deletion, movement, replication, and fault-tolerance operation.

BitDew is distributed open source under the GPLv3 or Cecill licence at the user’s choice. 10 releases were produced over the last two years, and it has been downloaded approximately 6,000 times on the Inria forge. Known users are Université Paris-XI, Université Paris-XIII, University of Florida (USA), Cardiff University (UK) and University of Sfax (Tunisia). In terms of support, the development of BitDew is partly funded by the Inria ADT BitDew and by the ANR MapReduce projects. Thanks to this support, we have developed and released the first prototype of the MapReduce programming model for Desktop Grids on top of BitDew. In 2012, 8 versions of the software have been released, including the version 1.2.0 considered as a stable release of BitDew with many advanced features. Our most current work focuses on providing reliable storage on top of hybrid distributed computing infrastructures.

5.2. SBAM

Participants: Eddy Caron [correspondant], Florent Chuffart.

SBAM (http://graal.ens-lyon.fr/SBAM) is the middleware directly coming from results of the ANR project SPADES. SBAM initiates a non-intrusive, but highly dynamic environment able to take advantages of available resources without disturbing their native mechanism. SBAM federates multisite resources in order to schedule, submit and compute users’ tasks in a transparent way.

SBAM is, firstly, a decentralized grid middleware. It relies on a P2P approach, i.e., a set of agents able to discover resources and schedule computing tasks over a federation of heterogeneous computing platforms (petascale computers, data centers, clouds, ...). SBAM dynamically acquires and releases resources of computing sites according to users’ needs and conditions, to federate them into a global constantly growing or shrinking logical platform, referred to as the overlay.

5.3. DIET

Participants: Daniel Balouek, Eddy Caron [correspondant], Frédéric Desprez, Maurice Djibril Faye, Cristian Klein, Arnaud Lefray, Guillaume Mercier, Adrian Muresan, Jonathan Rouzaud-Cornabas, Lamiel Toch, Huaxi Zhang.

Huge problems can now be processed over the Internet thanks to Grid and Cloud middleware systems. The use of on-the-shelf applications is needed by scientists of other disciplines. Moreover, the computational power and memory needs of such applications may of course not be met by every workstation. Thus, the RPC paradigm seems to be a good candidate to build Problem Solving Environments on the Grid or Cloud. The aim of the DIET project (http://graal.ens-lyon.fr/DIET) is to develop a set of tools to build computational servers accessible through a GridRPC API.
Moreover, the aim of a middleware system such as DIET is to provide a transparent access to a pool of computational servers. DIET focuses on offering such a service at a very large scale. A client which has a problem to solve should be able to obtain a reference to the server that is best suited for it. DIET is designed to take into account the data location when scheduling jobs. Data are kept as long as possible on (or near to) the computational servers in order to minimize transfer times. This kind of optimization is mandatory when performing job scheduling on a wide-area network. DIET is built upon Server Daemons. The scheduler is scattered across a hierarchy of Local Agents and Master Agents. Applications targeted for the DIET platform are now able to exert a degree of control over the scheduling subsystem via plug-in schedulers. As the applications that are to be deployed on the Grid vary greatly in terms of performance demands, the DIET plug-in scheduler facility permits the application designer to express application needs and features in order that they be taken into account when application tasks are scheduled. These features are invoked at runtime after a user has submitted a service request to the MA, which broadcasts the request to its agent hierarchy.

In 2012, our objective was to extend DIET to benefit from virtualized resources such as ones coming from cloud platforms. We have designed how it can be extended to access virtualized resources. We can easily support new cloud service providers and cloud middleware systems. We have prototyped the new version of DIET which benefits from virtualized resources. As cloud resources are dynamic, we have on-going research in the field of automatic and elastic deployment for middleware systems. DIET will be able to extend and reduce the amount on aggregated resources and adjust itself when resources fail. We have started works to extend our data management software, DAGDA, to take advantage of cloud storage and the new data computing paradigms. Moreover we have upgraded the workflow engine of DIET to take advantage of cloud resources. DIET Cloud will be able to provide a large scale distributed and secured platform that spans on a pool of federated resources that range from dedicated HPC clusters and grid to public and private clouds.

In the context of the Seed4C project, we have studied how secured our platform, authenticated and secured interactions between the different parts of our middleware and between our middleware and its users. We have worked to show how to securely use public cloud storage without taking the risk of losing confidentiality of data stored on them.

5.4. Pilgrim

Participants: Eddy Caron, Matthieu Imbert [correspondant].

Pilgrim (http://pilgrim.gforge.inria.fr) is an open metrology and prediction performance framework whose goal is to provide easy and powerful tools for instrumenting computer platforms and predicting their behavior. Those tools are aimed at being used not only by humans but also by programs, in particular by resource managers and schedulers. Pilgrim is designed to be a loosely coupled integration of various custom-developed or off-the-shelf tools.

5.5. SimGrid

Participants: Georges Markomanolis, Jonathan Rouzaud-Cornabas, Frédéric Suter [correspondant].

SimGrid is a toolkit for the simulation of distributed applications in heterogeneous distributed environments. The specific goal of the project is to facilitate research in the area of parallel and distributed large scale systems, such as Grids, P2P systems and clouds. Its use cases encompass heuristic evaluation, application prototyping or even real application development and tuning. SimGrid has an active user community of more than one hundred members, and is available under GPLv3 from http://simgrid.gforge.inria.fr/.

5.6. HLCMi & L2C

HLCMI (http://hlcm.gforge.inria.fr) is an implementation of the HLCM component model. HLCM is a generic extensible component model with respect to component implementations and interaction concerns. Moreover, HLCM is abstract; it is its specialization—such as HLCM/L2C—that defines the primitive elements of the model, such as the primitive components and the primitive interactions.

HLCMI is making use of Model-driven Engineering (MDE) methodology to generate a concrete assembly from an high level description. It is based on the Eclipse Modeling Framework (EMF). HLCMI contains 700 Emfatic lines to describe its models and 7000 JAVA lines for utility and model transformation purposes. HLCMI is a general framework that supports several HLCM specializations: HLCM/CCM, HLCM/JAVA, HLCM/L2C and HLCM/Charm++ (known as Gluon++).

L2C (http://hlcm.gforge.inria.fr) is a Low Level Component model implementation targeting at use-cases where overhead matters such as High-Performance Computing. L2C does not offer network transparency neither language transparency. Instead, L2C lets the user choose between various kinds of interactions between components, some with ultra low overhead and others that support network transport. L2C is extensible as additional interaction kinds can be added quite easily. L2C currently supports C++, MPI and CORBA interactions. FORTRAN will be added in 2013.

L2C and Gluon++ are implemented in the LLCMc++ framework (http://hlcm.gforge.inria.fr). It is distributed under a LGPL licence and represents 6400 lines of C++.
DANTE Team

5. Software

5.1. Sensor Network Tools: drivers, OS and more

Participants: Éric Fleury [correspondant], Sandrine Avakian.

As a outcomes of the ANR SensLAB project and the Inria ADT SensTOOLS and SensAS, several softwares (from low level drivers to OSes) were delivered and made available to the research community. The main goal is to lower the cost of developing/deploying a large scale wireless sensor network application. All software are gathered under the SensLAB web site: http://www.senslab.info/ web page where one can find:

- low C-level drivers to all hardware components;
- ports of the main OS, mainly TinyOS, FreeRTOS and Contiki;
- ports and development of higher level library like routing, localization.

Participant: Thomas Begin [correspondant].

Queueing models, steady-state solution, online tool, web interface

This tool aims at providing a simple web based interface to promote the use of our proposed solutions to numerically solve classical queueing systems. In 2011, the tools merely implemented the solution to get the distribution for the number of customers along with customary performance parameters for a queue with multiple servers, general arrivals, exponential services and a possibly finite buffer, (i.e., $Ph/M/c/N$-like queue). The steady-state solution to this queue is based on a simple and stable recurrence [2] and was performed in collaboration with Pr. Brandwajn (UCSC). In 2012 we extended our tool so as to include the solution for a queue with a single server, Poisson arrivals, general services and a possibly finite buffer, (i.e., $M/Ph/1/N$-like queue). Our tool was presented at the conference [43] and attracts hundreds of visitors each month. Associated URL is: http://queueing-systems.ens-lyon.fr
5. Software

5.1. Tools for cluster management and software development

Participant: Olivier Richard [correspondant].

The KA-Tools is a software suite developed by MESCAL for exploitation of clusters and grids. It uses a parallelization technique based on spanning trees with a recursive starting of programs on nodes. Industrial collaborations were carried out with Mandrake, BULL, HP and Microsoft.

KA-DEPLOY is an environment deployment toolkit that provides automated software installation and reconfiguration mechanisms for large clusters and light grids. The main contribution of KA-DEPLOY toolkit is the introduction of a simple idea, aiming to be a new trend in cluster and grid exploitation: letting users concurrently deploy computing environments tailored exactly to their experimental needs on different sets of nodes. To reach this goal KA-DEPLOY must cooperate with batch schedulers, like OAR, and use a parallel launcher like TAKTUK (see below).

TAKTUK is a tool to launch or deploy efficiently parallel applications on large clusters, and simple grids. Efficiency is obtained thanks to the overlap of all independent steps of the deployment. We have shown that this problem is equivalent to the well known problem of the single message broadcast. The performance gap between the cost of a network communication and of a remote execution call enables us to use a work stealing algorithm to realize a near-optimal schedule of remote execution calls. Currently, a complete rewriting based on a high level language (precisely Perl script language) is under progress. The aim is to provide a light and robust implementation. This development is lead by the MOAIS project-team.

5.2. OAR: Batch scheduler for clusters and grids

Participant: Olivier Richard [correspondant].

The OAR project focuses on robust and highly scalable batch scheduling for clusters and grids. Its main objectives are the validation of grid administration tools such as TAKTUK, the development of new paradigms for grid scheduling and the experimentation of various scheduling algorithms and policies.

The grid development of OAR has already started with the integration of best effort jobs whose purpose is to take advantage of idle times of the resources. Managing such jobs requires a support of the whole system from the highest level (the scheduler has to know which tasks can be canceled) down to the lowest level (the execution layer has to be able to cancel awkward jobs). The OAR architecture is perfectly suited to such developments thanks to its highly modular architecture. Moreover, this development is used for the CiGri grid middleware project.

The OAR system can also be viewed as a platform for the experimentation of new scheduling algorithms. Current developments focus on the integration of theoretical batch scheduling results into the system so that they can be validated experimentally.

See also the web page http://oar.imag.fr.

5.3. CiGri: Computing resource Reaper

Participant: Olivier Richard [correspondant].

CiGri is a middleware which gather the unused computing resource from intranet infrastructure and to make it available for large set of tasks. It manages the execution of large sets of parametric tasks on lightweight grid by submitting individual jobs to each batch scheduler. It’s associated to the OAR resource management system (batch scheduler). Users can easily monitor and control their set of jobs through a web portal. System provides mechanisms to identify job error causes, to isolate faulty components and to resubmit job in a safer context. See also the web page http://cigri.imag.fr/
5.4. FTA: Failure Trace Archive

Participant: Derrick Kondo [correspondant].

The Failure Trace Archive is available at http://fta.inria.fr.

With the increasing functionality, scale, and complexity of distributed systems, resource failures are inevitable. While numerous models and algorithms for dealing with failures exist, the lack of public trace data sets and tools has prevented meaningful comparisons. To facilitate the design, validation, and comparison of fault-tolerant models and algorithms, we led the creation of the Failure Trace Archive (FTA), an on-line public repository of availability traces taken from diverse parallel and distributed systems.

While several archives exist, the FTA differs in several respects. First, it defines a standard format that facilitates the use and comparison of traces. Second, the archive contains traces in that format for over 20 diverse systems over a time span of 10 years. Third, it provides a public toolbox for failure trace interpretation, analysis, and modeling. The FTA was released in November 2009. It has received over 11,000 hits since then. The FTA has had national and international impact. Several published works have already cited and benefited from the traces and tools of the FTA. Simulation toolkits for distributed systems, such as SimGrid (CNRS, France) and GridSim (University of Melbourne, Australia), have incorporated the traces to allow for simulations with failures.

5.5. SimGrid: simulation of distributed applications

Participants: Arnaud Legrand [correspondant], Lucas Schnorr, Pierre Navarro, Degomme Augustin, Laurent Bobelin.

SimGrid is a toolkit that provides core functionalities for the simulation of distributed applications in heterogeneous distributed environments. The specific goal of the project is to facilitate research in the area of distributed and parallel application scheduling on distributed computing platforms ranging from simple network of workstations to Computational Grids.

We have released one new major version (3.6) of SimGrid (June 2011) and two minor versions (June and October 2011). These versions include our current work on visualization, analysis of large scale distributed systems, and extremely scalable simulation. See also the web page http://simgrid.gforge.inria.fr/.

5.6. TRIVA: interactive trace visualization

Participants: Lucas Schnorr [correspondant], Arnaud Legrand.

TRIVA is an open-source tool used to analyze traces (in the Pajé format) registered during the execution of parallel applications. The tool serves also as a sandbox for the development of new visualization techniques. Some features include: Temporal integration using dynamic time-intervals; Spatial aggregation through hierarchical traces; Scalable visual analysis with squarified treemaps; A Custom Graph Visualization.

See also the web page http://triva.gforge.inria.fr/.

5.7. ψ and ψ^2: perfect simulation of Markov Chain stationary distributions

Participant: Jean-Marc Vincent [correspondant].

ψ and ψ^2 are two software tools implementing perfect simulation of Markov Chain stationary distributions using coupling from the past. ψ starts from the transition kernel to derive the simulation program while ψ^2 uses a monotone constructive definition of a Markov chain. They are available at http://www-id.imag.fr/Logiciels/psi/.

5.8. GameSeer: simulation of game dynamics

Participant: Panayotis Mertikopoulos [correspondant].
Mathematica toolbox (graphical user interface and functions library) for efficient, robust and modular simulations of game dynamics.

5.9. **Kameleon: environment for experiment reproduction**

Participants: Olivier Richard [correspondant], Joseph Emeras.

Kameleon is a tool developed to facilitate the building and rebuilding of software environment. It helps experimenter to manage his experiment’s software environment which can include the operating system, libraries, runtimes, his applications and data. This tool is an element in the experimental process to obtain repeatable experiments and therefore reproducible results.
MOAIS Project-Team

5. Software

5.1. KAAPI

Participants: Thierry Gautier [correspondant], Vincent Danjean, François Broquedis, Pierre Neyron.

Kaapi (http://kaapi.gforge.inria.fr, coordinator T. Gautier) Kaapi is a middleware for high performance applications running on multi-cores/multi-processors as well as cluster or computational grid. Kaapi provides 1/ a very high level API based on macro data flow language; 2/ several scheduling algorithms for multi-threaded computations as well as for iterative applications for numerical simulation on multi-CPU / multi-GPUs; 3/ fault-tolerant protocols. Publicly available at http://kaapi.gforge.inria.fr under CeCILL licence. Kaapi has won the 2008 Plugtest organized by Grid@Works. Kaapi provides ABI compliant implementations of Quark (PLASMA, Linear Algebra, Univ. of Tennessee) and libGOMP (GCC runtime for OpenMP). Direct competitors with 1/: Quark, StarSs (UPC, BSC), OpenMP. Direct competitors with 2/: StarSs, StarPU (Inria RUNTIME), Quark, OpenACC runtimes. Direct competitors providing 3/: Charm++, MPI.

- ACM: D.1.3
- License: CeCILL
- OS/Middleware: Unix (Linux, MacOSX, ...)
- Programming language: C/C++, Fortran
- Own Contribution: DA-4 / CD-4 / MS-4 / TPM-4

5.2. FlowVR

Participant: Bruno Raffin [correspondant MOAIS].

- Own Contribution: DA-4 / CD-3 / MS-3 / TPM-4
- Additional information: FlowVR (http://flowvr.sf.net, coordinator B. Raffin) provides users with the necessary tools to develop and run high performance interactive applications on PC clusters and Grids. The main target applications include virtual reality, scientific visualization and Web3D. FlowVR enforces a modular programming that leverages software engineering issues while enabling high performance executions on distributed and parallel architectures. FlowVR is the reference API for Grimage. See also the web page http://flowvr.sf.net. The FlowVR software suite has 3 main components:
 - FlowVR : The core middleware library. FlowVR relies on the data-flow oriented programming approach that has been successfully used by other scientific visualization tools.
 - FlowVR Render : A parallel rendering library.
5.3. TakTuk - Adaptive large scale remote execution deployment

Participants: Guillaume Huard [correspondant], Pierre Neyron.

- Own Contribution: DA-4 / CD-4 / MS-4 / TPM-4
- Additional information:
 - web site: http://taktuk.gforge.inria.fr, Coordinator G. Huard
 - Objective of the software: TakTuk is a tool for deploying parallel remote executions of commands to a potentially large set of remote nodes. It spreads itself using an adaptive algorithm and sets up an interconnection network to transport commands and perform I/Os multiplexing/demultiplexing. The TakTuk mechanics dynamically adapt to environment (machine performance and current load, network contention) by using a reactive work-stealing algorithm that mixes local parallelization and work distribution.
 - Users community: TakTuk is a research open source project available in the Debian GNU/Linux distribution (package taktuk) used in lower levels of Grid5000 software architectures (nodes monitoring in OAR, environment diffusion in Kadeploy). The community is small: developers and administrators for large scale distributed platforms, but active.
 - Positioning: main competing tools are pdsh (but uses linear deployment) and gexec (not fault tolerant, requires installation), for more details: B. Claudel, G. Huard and O. Richard. TakTuk, Adaptive Deployment of Remote Executions. In Proceedings of the International Symposium on High Performance Distributed Computing (HPDC), 2009. TakTuk is the only tool to provide to deployed processes a communication layer (just like an MPIrun, but not tied to a specific environment) and synchronization capabilities.

5.4. KRASH - Kernel for Reproduction and Analysis of System Heterogeneity

Participants: Guillaume Huard [correspondant], Swann Perarnau.

- Own Contribution: DA-4 / CD-4 / MS-4 / TPM-4
- Additional information:
 - web site: http://krash.ligforge.imag.fr
 - Objective of the software: Krash is a tool to create a synthetic heterogeneity on top of a dedicated system while preserving the OS state and algorithms (no modification). It makes use of the control groups (cgroups) in Linux kernel newer than version 2.6.24 to create a dynamic CPU load enforced no matter how many applications are running in parallel.
 - Users community: Research open source project, small community: developers of parallel applications in heterogeneous contexts.
 - Positioning: Competing tool is Wreakavoc (less scalable, less precise), more details in: Swann Perarnau and Guillaume Huard. Krash: Reproducible cpu load generation on many-core machines. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2010.
5.5. Cache Control
Participants: Guillaume Huard [correspondant], Swann Perarnau.

- Own Contribution: DA-4 / CD-4 / MS-4 / TPM-4
- Additional information:
 - web site: http://ccontrol.ligforge.imag.fr/
 - Objective of the software: Cache Control is a Linux kernel module enabling user applications to restrict their memory allocations to a subset of the hardware memory cache. This module reserves and exports available physical memory as virtual devices that can be mmunap’d to. It gives to calling processes physical memory using only a subset of the cache (similarly to page coloring). It actually creates cache partitions that can be used simultaneously by a process to control how much cache a data structure can use.
 - Users community: Research open source project, small community: developers wanting to measure or tune the cache usage of their applications. Does not apply to recent NUCA caches.
 - Positioning: Competing tool is ULCC which does the same thing at the runtime level, more details in: Swann Perarnau, Marc Tchiboukdjian, and Guillaume Huard. Controlling cache utilization of hpc applications. In International Conference on Supercomputing (ICS), 2011.

5.6. GGen
Participants: Guillaume Huard [correspondant], Swann Perarnau.

- Own Contribution: DA-4 / CD-4 / MS-4 / TPM-4
- Additional information:
 - web site: http://ggen.ligforge.imag.fr/, Coordinator Swann Perarnau
 - Objective of the software: GGen is a free (GPL-compatible) command line application and library for generating and analyzing directed acyclic graphs. Designed primarily to be used in simulations of scheduling algorithms, it helps researchers understand fully the nature of the graphs generated. It implements the most known graph generation algorithms enabling comparisons between them.
 - Users community: Research open source project, task scheduling community: ggen provides a meaningful way to generate test cases.

5.7. Triva
Participants: Guillaume Huard [correspondant], Lucas Schnorr.

- Additional information:
 - web site: http://triva.gforge.inria.fr/, Coordinator, Lucas Schnorr
Objective of the software: Triva is an open-source tool used to analyze traces (in the pajé format) registered during the execution of parallel applications. The tool serves also as a sandbox to the development of new visualization techniques.

Users community: Research open source project, applications developers, especially parallel applications.

5.8. OAR

Participants: Pierre Neyron [correspondant MOAIS], Grégory Mounié.

- Own Contribution: DA-3 / CD-2 / MS-1 / TPM-1
- Additional information: OAR (http://oar.imag.fr, Coordinator O. Richard, Inria MESCAL) is a batch scheduler. The MOAIS team develops the central automata and the scheduling module that includes successive evolutions and improvements of the policy.OAR is used to schedule jobs both on the CiGri (Grenoble region) and Grid5000 (France) grids. CiGri is a production grid that federates about 500 heterogeneous resources of various Grenoble laboratories to perform computations in physics. MOAIS has also developed the distributed authentication for access to Grid5000.

5.9. SOFA

Participant: Bruno Raffin [correspondant].

Inria category: ???

- Own Contribution: DA-2 / CD-2 / MS-1 / TPM-1
- Additional information: SOFA (http://www.sofa-framework.org/, Coordinator F. Faure, Inria IMAGINE) is an Open Source framework primarily targeted at real-time simulation, with an emphasis on medical simulation. It is mostly intended for the research community to help develop newer algorithms, but can also be used as an efficient prototyping tool. Moais contributes to parallelization of kernel algorithms used in the simulation.
 - ACM: J.3
 - Programming language: C/C++

5.10. LinBox

Participants: Clément Pernet [correspondant], Thierry Gautier.

- Own Contribution: DA-4 / CD-3 / MS-3 / TPM-4
- Additional information:
 - web site: http://linalg.org
 - Objective of the software: LinBox is an open-source C++ template library for exact, high-performance linear algebra computations. It is considered as the reference library for numerous computations (such as linear system solving, rank, characteristic polynomial, Smith normal forms,...) over finite fields and integers with dense, sparse, and structured matrices.
– The LinBox group is an international collaboration (USA: NCSU, UDel; Canada: U Waterloo, U Calgary; France: LIP, LIRMM, LJK and LIG). Articles related to the library have been published in the main Conferences of the area: ISSAC, ICMS. MOAIS contributes to its development and more specifically to its parallelization in the context of ANR HPAC project. It is currently experiencing a major change of design, to better integrate parallelism.
– Users community: mostly researchers doing computational mathematics (number theory, cryptology, group theory, persistent homology. They use the library by either linking against it directly (the library is packaged in Debian, Fedora, etc) or withing the general purpose math software Sage (sagemath.org very broad diffusion) which includes LinBox as a kernel for exact linear algebra.
5. Software

5.1. ns-3

Participant: Daniel Camara [correspondant].

ns-3 is a discrete-event network simulator for Internet systems, targeted primarily for research and educational use. ns-3 is free software, licensed under the GNU GPLv2 license, and is publicly available for research, development, and use. ns-3 includes a solid event-driven simulation core as well as an object framework focused on simulation configuration and event tracing, a set of solid 802.11 MAC and PHY models, an IPv4, UDP, and TCP stack and support for nsc (integration of Linux and BSD TCP/IP network stacks).

See also the web page http://www.nsnam.org.

- Version: ns-3.7
- Keywords: networking event-driven simulation
- License: GPL (GPLv2)
- Type of human computer interaction: programmation C++/python, No GUI
- OS/Middleware: Linux, cygwin, osX
- Required library or software: standard C++ library: GPLv2
- Programming language: C++, python
- Documentation: doxygen

5.2. EphPub

Participants: Mohamed Ali Kaafar [correspondant], Claude Castelluccia.

EphPub (Ephemeral Publishing) (previously called EphCom) implements a novel key storage mechanism for time-bounded content, that relies on the caching mechanism of the Domain Name System (DNS). Features of EphPub include: EphPub exploits the fact that DNS servers temporarily cache the response to a recursive DNS query for potential further requests. EphPub provides higher security than Vanish, as it is immune to Sybil attacks. EphPub is easily deployable and does not require any additional infrastructure, such as Distributed Hash Tables. EphPub comes with high usability as it does not require users to install and execute any extra additional software. EphPub lets users define data lifetime with high granularity. We provide EphPub as an Android Application to provide ephemeral exchanged SMS, emails, etc. and as a Firefox or Thunderbird extensions so as to support ephemeral publication of any online document.

For more details about the different software products, see http://planete.inrialpes.fr/projects/ephemeral-publication/.

- Version: v0.1.2-beta
- ACM: K.4.1
- AMS: 94Axx
- Keywords: Ephemeral communications, Right to Forget, Future Internet Architecture, Privacy
- Software benefit: We provide a Firefox Extension that easily allows users to manage disappearing emails. We also provide a command-line tool to manage disappearing files.
- APP: Under APP deposit internal process
- License: GPL
- Type of human computer interaction: Firefox extension + Unix Console
- OS/Middleware: Firefox under any OS
- Required library or software: Python Ext
- Programming language: Python
- Documentation: No detailed documentation has been released so far. A detailed howto can be consulted however at: http://code.google.com/p/disappearingdata/source/browse/wiki/EphCOM_Firefox_Extension.wiki?r=77
5.3. Username Tester

Participants: Claude Castelluccia [correspondant], Mohamed Ali Kaafar, Daniele Perito.

Usernames are ubiquitous on the Internet. Almost every web site uses them to identify its users and, by design, they are unique within each service. In web services that have millions or hundreds of millions of users, it might become difficult to find a username that has not already been taken. For instance, you might have experienced that a specific username you wanted was already taken. This phenomenon drives users to choose increasingly complex and unique usernames.

We built a tool to estimate how unique and linkable usernames are and made it available on this page for you to check. For example, according to our tool, “ladygaga” or “12345678” only carry 24 and 17 bits of entropy, respectively. They are therefore not likely to be unique on the Internet. On the other hand, usernames such as “pdjkwerl” or “yourejerky” carry about 40 bits of entropy and are therefore very good identifiers.

Type your username (for example “zorro1982” or “dan.perito”) to discover how unique it is. This tool can help you to select an username that has low entropy and can’t be used to track you on the Internet.

Alternatively, try typing two usernames separated by a space. The tool will give an estimation on whether the two usernames are linkable. The tool is accessible here: http://planete.inrialpes.fr/projects/how-unique-are-your-usernames/.

5.4. DroidMonitor

Participants: Claude Castelluccia [correspondant], Mohamed Ali Kaafar.

In nowadays world the technological progress evolves very quickly. There are more and more new devices, fully equipped with the latest innovations. The question is: do we adopt our main privacy concerns according to these new technologies as quickly as they grow and become widely available for us?…

We developed a novel tool, private data leakage monitoring tool, DroidMonitor. It aims to serve as an educational tool for regular Android Smartphones users to make them aware of existing privacy threats while they are using Location-Based Services. It can be downloaded here: http://planete.inrialpes.fr/android-privacy/.

5.5. NEPI

Participants: Thierry Turletti [correspondant], Alina Quereilhac.

NEPI stands for Network Experimentation Programming Interface. NEPI implements a new experiment plane used to perform ns-3 simulations, planetlab and emulation experiments, and, more generally, any experimentation tool used for networking research. Its goal is to make it easier for experimenters to describe the network topology and the configuration parameters, to specify trace collection information, to deploy and monitor experiments, and, finally, collect experiment trace data into a central datastore. NEPI is a python API (with an implementation of that API) to perform all the above-mentioned tasks and allows users to access these features through a simple yet powerful graphical user interface called NEF.

During the year 2012 we improved support for PlanetLab experiments in NEPI, adding the ability to create customized routing overlays on top of PlanetLab. Details on these improvements can be found in [48]. We also included the ability to easily conduct CCNx [http://www.ccnx.org/] experiments using PlanetLab nodes. This work was presented at the CCNx 2012 community meeting [73], and has had a good impact on the number of NEPI users.

Additionally, ongoing work on the context of the Openlab, Fed4Fire and Simulbed projects, has lead to a number of interesting extensions to NEPI. We are currently developing support to conduct experiments on OMF wireless testbeds (http://mytestbed.net/). We are also working to support DCE enabled experimentation, using the ns-3 simulator, in NEPI. Furthermore, recent work on improving NEPI’s experiment control architecture, to enable both easier extension to new experimentation platforms and improve the user ability to control of experiment tasks, was presented at the CoNEXT’12 Students Workshop (see [61]).
For more information, see also the web page http://nepi.inria.fr.

- Version: 2.0
- ACM: C.2.2, C.2.4
- Keywords: networking experimentation
- License: GPL (2)
- Type of human computer interaction: python library, QT GUI
- OS/Middleware: Linux
- Programming language: python

5.6. Reference implementation for SFA Federation of experimental testbeds

Participants: Thierry Parmentelat [correspondant], Julien Tribino.

We are codevelopping with Princeton University a reference implementation for the Testbed-Federation architecture known as SFA for Slice-based Federation Architecture. During 2011 we have focused on the maturation of the SFA codebase, with several objectives in mind, better interoperability between the PlanetLab world and the EmuLab, a more generic shelter that other testbeds can easily leverage in order to come up with their own SFA-compliant wrapper and support for ’ reservable’ mode, which breaks the usual best-effort PlanetLab model. For more details about this contribution see section See also the web page http://planet-lab.eu

- Version: myplc-5.0-rc26
- Keywords: networking testbed virtual machines
- License: Various Open Source Licences
- Type of human computer interaction: Web-UI, XMLRPC-based API, Qt-based graphical client
- OS/Middleware: Linux-Fedora
- Required library or software: Fedora-14 for the infrastructure side; the software comes with a complete software suite for the testbed nodes
- Programming languages: primarily python, C, ocaml
- Documentation: most crucial module plcapi is self-documented using a local format & related tool. See e.g. https://www.planet-lab.eu/db/doc/PLCAPI.php
- Codebase: http://git.onelab.eu

5.7. SfaWrap

Participants: Thierry Parmentelat [correspondant], Mohamed Larabi.

The SfaWrap is a reference implementation of the Slice-based Federation Architecture (SFA), the emerging standard for networking experimental testbed federation. We are codeveloping the SfaWrap with Princeton University, and during 2012, we have focused on:

- Participating in the discussions about the future and evolutions of the architecture of SFA, as part of the architecture working group of the GENI project.
- Turning this initially Planet-Lab specific implementation into a generic one, that testbed providers can easily leverage for bringing SFA-compliance to their own testbeds.
- Supporting the allocation and provisioning of both ’Exclusive’ and ’Shared’ testbed resources.
- Enlarging the federation scheme by federating various testbeds with heterogeneous resources, in order to allow researchers to combine all available resources and run advanced networking experiments of significant scale and diversity.
5.8. MultiCast Library Version 3

Participant: Vincent Roca [correspondant].

MultiCast Library Version 3 is an implementation of the ALC (Asynchronous Layered Coding) and NORM (NACK-Oriented Reliable Multicast Protocol) content delivery Protocols, and of the FLUTE/ALC file transfer application. This software is an implementation of the large scale content distribution protocols standardized by the RMT (Reliable Multicast Transport) IETF working group and adopted by several standardization organizations, in particular 3GPP for the MBMS (Multimedia Broadcast/Multicast Service), and DVB for the CBMS (Convergence of Broadcast and Mobile Services). Our software is used in operational, commercial environments, essentially in the satellite broadcasting area and for file delivery over the DVB-H system where FLUTE/ALC has become a key component. See http://planete-bcast.inrialpes.fr/ for more information.

5.9. OpenFEC.org: because open, free AL-FEC codes and codecs matter

Participants: Vincent Roca [correspondant], Jonathan Detchart [engineer], Ferdaouss Mattoussi [PhD student].

The goals of the OpenFEC.org http://openfec.org are:
1. to share IPR-free, open, AL-FEC codes,
2. to share high performance, ready-to-use, open, free, C-language, software codecs
3. to share versatile and automated performance evaluation environments.

This project can be useful to users who do not want to know the details of AL-FEC schemes but do need to use one of them in the software they are designing, or by users who want to test new codes or new encoding or decoding techniques, and who do know what they are doing and are looking for, or by users who need to do extensive tests for certain AL-FEC schemes in a given use-case, with a well defined channel model.

5.10. BitHoc

Participants: Chadi Barakat [correspondant], Thierry Turletti.

BitHoc (BitTorrent for wireless ad hoc networks) enables content sharing among spontaneous communities of mobile users using wireless multi-hop connections. It is an open source software developed under the GPLv3 licence. A first version of BitHoc has been made public. We want BitHoc to be the real testbed over which we evaluate our solutions for the support and optimization of file sharing in a mobile wireless environment where the existence of an infrastructure is not needed. The proposed BitHoc architecture includes two principal components: a membership management service and a content sharing service. In its current form it is composed of PDAs and smartphones equipped with WIFI adapters and Windows Mobile 6 operating system.
5.11. TICP

Participant: Chadi Barakat [correspondant].

TICP is a TCP-friendly reliable transport protocol to collect information from a large number of network entities. The protocol does not impose any constraint on the nature of the collected information: availability of network entities, statistics on hosts and routers, quality of reception in a multicast session, weather monitoring, etc. TICP ensures two main things: (i) the information to collect arrives entirely and correctly to the collector where it is stored and forwarded to upper layers, and (ii) the implosion at the collector and the congestion of the network are avoided by controlling the rate of sending probes. The congestion control part of TICP is designed with the main objective to be friendly with applications using TCP. Experimental results show that TICP can achieve better performance than using parallel TCP connections for the data collection. The code of TICP is available upon request, it is an open source software under the GPLv3 licence.

See also the web page http://planete.inria.fr/ticp/

- Version: 1.0
- Keywords: Information Collection, Congestion and Error Control
- License: GPL (GPLv3)
- Type of human computer interaction: XML file
- OS/Middleware: Linux/Unix
- Required library or software: C/C++ Sockets
- Programming languages: C/C++
- Documentation: Text

5.12. Private Data Publication

Participants: Gergely Acs, Claude Castelluccia.

We are developing a set of tools to privately publish different types of datasets. For example, we are developing a software that can be used to sanitize sequential data (described in our CCS paper [41]). The code generates the set of noisy n-grams and generate a synthetic, and private, dataset. We are also developing a tool that implement the histogram sanitization algorithm described in our ICDM paper [33].

These tools are accessible here: http://planete.inrialpes.fr/projects/p-publication/
5.13. Experimentation Software

ACQUA
ACQUA stands for Application for Collaborative Estimation of the Quality of Internet Access. It has been developed within the French National project ANR CMON on Collaborative Monitoring in conjunction with Grenouille.com. ACQUA consists of a tool that lets the user have an estimation of the anomalies of the Internet based on active measurements of end-to-end delay metrics among a predefined set of landmarks (i.e. test points). When an anomaly is detected it is expressed in terms of how many destinations are affected by this anomaly, and how important in terms of delay variation is this anomaly for these affected destinations. See also http://planete.inria.fr/acqua/ for more information and for a java version of the code.

WisMon
WisMon is a Wireless Statistical Monitoring tool that generates real-time statistics from a unified list of packets, which come from possible different probes. This tool fulfills a gap on the wireless experimental field: it provides physical parameters on realtime for evaluation during the experiment, records the data for further processing and builds a single view of the whole wireless communication channel environment. WisMon is available as open source under the Cecill license, at http://planete.inria.fr/software/WisMon/.

WEX Toolbox
The Wireless Experimentation (WEX) Toolbox aims to set up, run and make easier the analysis of wireless experiments. It is a flexible and scalable open-source set of tools that covers all the experimentation steps, from the definition of the experiment scenario to the storage and analysis of results. Sources and binaries of the WEX Toolbox are available under the GPLv2 licence at https://twiki-sop.inria.fr/twiki/bin/view/Projets/Planete/WEXToolkit. WEX Toolbox includes the CrunchXML utility, which aims to make easier the running and the analysis of wireless experimentations. In a nutshell, it implements an efficient synchronization and merging algorithm, which takes XML (or PDML) input trace files generated by multiple probes, and stores only the packets fields that have been marked as relevant by the user in a MySQL database –original pcap traces should be first formatted in XML using wireshark. These operations are done in a smart way to balance the CPU resources between the central server (where the database is created) and the different probes (i.e., PC stations where the capture traces are located). CrunchXML is available under the GNU General Public License v2 at http://twiki-sop.inria.fr/twiki/bin/view/Projets/Planete/CrunchXML.

WiMAX ns-3
This simulation module for the ns-3 network simulator is based on the IEEE 802.16-2004 standard. It implements the PMP topology with TDD mode and aims to provide detailed and standard compliant implementation of the standard, supporting important features including QoS scheduling services, bandwidth management, uplink request/grant scheduling and the OFDM PHY layer. The module is available under the GNU General Public License at http://code.nsnam.org/iamine/ns-3-wimax. It will be included in the official 3.8v release of ns-3.

MonLab
Monitoring Lab is a platform for the emulation and monitoring of traffic in virtual ISP networks. It is supported by the FP7 ECODE project and is available for download at the web page of the tool http://planete.inria.fr/MonLab/ under the terms of the GPL licence. MonLab presents a new approach for the emulation of Internet traffic and for its monitoring across the different routers of the emulated ISP network. In its current version, the traffic is sampled at the packet level in each router of the platform, then monitored at the flow level. We put at the disposal of users real traffic emulation facilities coupled to a set of libraries and tools capable of Cisco NetFlow data export, collection and analysis. Our aim is to enable running and evaluating advanced applications for network wide traffic monitoring and optimization. The development of such applications is out of the scope of this research. We believe that the framework we are proposing can play a significant role in the systematic evaluation and experimentation of these applications’ algorithms. Among the direct
candidates figure algorithms for traffic engineering and distributed anomaly detection. Furthermore, methods for placing monitors, sampling traffic, coordinating monitors, and inverting sampling traffic will find in our platform a valuable tool for experimentation.

MobiTrade

MobiTrade is the ns-3 and Android implementation of our solution for trading content between wireless devices. The application provides a utility driven trading system for efficient content dissemination on top of a disruption tolerant network. While simple tit-for-tat (TFT) mechanisms can force nodes to *give one to get one*, dealing with the inherent tendency of peers to take much but give back little, they can quickly lead to deadlocks when some (or most) of interesting content must be somehow fetched across the network. To resolve this, MobiTrade proposes a trading mechanism that allows a node (*merchant*) to buy, store, and carry content for other nodes (*its clients*) so that it can later trade it for content it is personally interested in. To exploit this extra degree of freedom, MobiTrade nodes continuously profile the type of content requested and the collaboration level of encountered devices. An appropriate utility function is then used to collect an optimal inventory that maximizes the expected value of stored content for future encounters, matched to the observed mobility patterns, interest patterns, and collaboration levels of encountered nodes. See also http://planete.inria.fr/MobiTrade.
ROMA Team

4. Software

4.1. MUMPS

Participants: Patrick Amestoy, Alfredo Buttari, Jean-Yves L’Excellent [correspondent], Mohamed Sid-Lakhdar, François-Henry Rouet, Bora Uçar, Clément Weisbecker.

MUMPS (for Multifrontal Massively Parallel Solver, see http://graal.ens-lyon.fr/MUMPS) is a software package for the solution of large sparse systems of linear equations. The development of MUMPS was initiated by the European project PARASOL (Esprit 4, LTR project 20160, 1996-1999), whose results and developments were public domain. Since then, MUMPS has been supported by CERFACS, CNRS, ENS Lyon, INPT(ENSEEIHT)-IRIT (main contributor), Inria, and University of Bordeaux. In the context of an ADT project (Action of Technological Development), Maurice Brémond (“SED” service) also works part-time on MUMPS.

MUMPS implements a direct method, the multifrontal method; it is a parallel code capable of exploiting distributed-memory computers; its main originalities are its numerical robustness and the wide range of functionalities available.

The latest release is MUMPS 4.10.0 (May 2011).

4. Software

4.1. AAC_tactics
Participants: Thomas Braibant, Damien Pous [correspondant].

AAC_tactics is a plugin for the Coq proof-assistant that implements new proof tactics for rewriting modulo associativity and commutativity. It is available at http://sardes.inrialpes.fr/~braibant/aac_tactics and as part of the Coq distribution.

- ACM: D.2.4 Software/Program Verification
- Keywords: Rewriting, rewriting modulo AC, proof tactics, proof assistant
- Software benefit: AAC_tactics provides novel efficient proof tactics for rewriting modulo associativity and commutativity.
- License: LGPL
- Type of human computer interaction: N/A
- OS/Middleware: Windows, Linux, MacOS X
- Programming language: Coq

4.2. ATBR
Participants: Thomas Braibant, Damien Pous [correspondant].

ATBR (Algebraic Tools for Binary Relations) is library for the Coq proof assistant that implements new proof tactics for reasoning with binary relations. Its main tactics implements a decision procedure for inequalities in Kleene algebras. It is available at http://sardes.inrialpes.fr/~braibant/atbr and as part of the Coq distribution contributed modules.

- ACM: D.2.4 Software/Program Verification
- Keywords: Binary relations, Kleene algebras, proof tactics, proof assistant
- Software benefit: ATBR provides new proof tactics for reasoning with binary relations.
- License: LGPL
- Type of human computer interaction: N/A
- OS/Middleware: Windows, Linux, MacOS X
- Programming language: Coq

4.3. MoKa
Participant: Sara Bouchenak [correspondant].

MoKA is a software framework for the modeling and capacity planning of distributed systems. It first provides a set of tools to build analytical models that describe the behavior of distributed computing systems, in terms of performance, availability, cost. The framework allows to include several model algorithms and to compare them regarding their accuracy and their efficiency. Furthermore, MoKA provides a set of tools to build capacity planning methods. A capacity planning method allows to find a distributed system configuration that guarantee given quality-of-service objectives. MoKA is able to include different capacity planning algorithms and to compare them regarding their efficiency and the optimality of their results. MoKA is available at: http://sardes.inrialpes.fr/research/moka.

- ACM: C.2.4 Distributed Systems, C.4 Performance of Systems, D.2.9 Management
- Keywords: Caching, multi-tier systems, consistency, performance
- Software benefit: a novel end-to-end caching protocol for multi-tier services.
- License: TBD
- Type of human computer interaction: command-line interface
- OS/Middleware: Windows, Linux, MacOS X
- Programming language: Java
4.4. ConSer

Participant: Sara Bouchenak [correspondant].

ConSer is a software framework for the modeling and the concurrency and admission control of server systems. It implements a fluid-based model that exhibits the dynamics and behavior of a server system in terms of service performance and availability. ConSer implements various novel admission control laws for servers such as AM-C, PM-C, AA-PM-C and PA-AM-C. A control law produces the server concurrency level that allows to trade-off and meet given service level objectives. ConSer’s modeling and control laws algorithms are implemented following a proxy-based approach for more transparency.

- ACM: C.4 Performance of Systems; D.2.9 Management
- Keywords: System management, capacity planning, performance management
- Software benefit: MoKa provides modeling, capacity planning and performance management facilities for application server clusters. Thanks to its model-based capacity planning, MoKa is able to enforce service level objectives while minimizing the service cost.
- License: LGPL
- Type of human computer interaction: web interface
- OS/Middleware: Windows, Linux, MacOS X
- Programming language: Java, AspectJ

4.5. e-Caching

Participants: Damian Serrano-Garcia, Sara Bouchenak [correspondant].

E-Caching is a software framework for higher scalability of multi-tier Internet services through end-to-end caching of dynamic data. It provides a novel caching solution that allows to cache different types of data (e.g. Web content, database query results, etc.), at different locations of multi-tier Internet services. The framework allows to combine different caches and, thus, to provide higher scalability of Internet services. E-Caching maintains the integrity of the cached data through novel distributed caching algorithms that guarantee the consistency of the underlying data.

- ACM: C.2.4 Distributed Systems, C.4 Performance of Systems
- Keywords: Caching, multi-tier systems, consistency, performance
- Software benefit: a novel end-to-end caching protocol for multi-tier services, consistency management, performance improvement.
- License: TBD
- Type of human computer interaction: command-line interface
- OS/Middleware: Windows, Linux, MacOS X
- Programming language: Java

4.6. MRB

Participants: Amit Sangroya, Damian Serrano-Garcia, Sara Bouchenak [correspondant].

MRB is a software framework for benchmarking the performance and dependability of MapReduce distributed systems. It includes five benchmarks covering several application domains and a wide range of execution scenarios such as data-intensive vs. compute-intensive applications, or batch applications vs. interactive applications. MRB allows to characterize application workload, faultload and dataload, and it produces extensive performance and dependability statistics.

- ACM: C.2.4 Distributed Systems, C.4 Performance of Systems
- Keywords: Benchmark, performance, dependability, MapReduce, Hadoop, Cloud Computing
- Software benefit: the first performance and dependability benchmark suite for MapReduce systems.
- License: TBD
- Type of human computer interaction: GUI and command-line interface
- OS/Middleware: Windows, Linux, MacOS X
- Programming language: Java, Unix Shell scripts
4.7. BZR

Participants: Eric Rutten [correspondant], Gwenaël Delaval [POP ART team].

BZR is a reactive language, belonging to the synchronous languages family, whose main feature is to include discrete controller synthesis within its compilation. It is equipped with a behavioral contract mechanisms, where assumptions can be described, as well as an enforce property part: the semantics of the latter is that the property should be enforced by controlling the behaviour of the node equipped with the contract. This property will be enforced by an automatically built controller, which will act on free controllable variables given by the programmer.

BZR is now further developed with the Pop-Art team, where G. Delaval got a position. It has been designed and developed in the Sardes team in relation with the research topic on Model-based Control of Adaptive and Reconfigurable Systems. It is currently applied in different directions: component-based design and the Fractal framework; real-time control systems and the Orccad design environment; operating systems and administration loops in virtual machines; hardware and reconfigurable architecture (FPGAs).

See also the web page http://bzr.inria.fr.

- ACM: D.3.3 [Programming Languages]: Language Constructs and Features—Control structures; C.3 [Special-purpose and Application-based Systems]: Real-time and embedded systems; D.2.2 [Software Engineering]: Design Tools and Techniques—Computer-aided software engineering, State diagrams; D.2.4 [Software Engineering]: Software / Program Verification—Formal methods, Programming by contract
- Keywords: Discrete controller synthesis, modularity, components, contracts, reactive systems, synchronous programming, adaptive and reconfigurable systems
- Software benefit: the first integration of discrete control synthesis in a compiler, making it usable at the level of the programming language.
- License: TBD
- Type of human computer interaction: programming language and command-line interface
- OS/Middleware: Linux
- Programming language: Caml; generates C or Java or Caml executable code
5. Software

5.1. WSnet

Socrate is an active contributor to WSnet (http://wsnet.gforge.inria.fr/) a multi-hop wireless network discrete event simulator. WSnet was created in the ARES team and it is now supported by the D-NET team of Inria Rhône-Alpes.

5.2. Wiplan

Wiplan is a software including an Indoor propagation engine and a wireless LAN optimization suite, which has been registered by INSA-Lyon. The heart of this software is the propagation simulation core relying on an original method, MR-FDPF (multi-resolution frequency domain ParFlow). The discrete ParFlow equations are translated in the Fourier domain providing a wide linear system, solved in two steps taking advantage of a multi-resolution approach. The first step computes a cell-based tree structure referred to as the pyramid. In the second phase, a radiating source is simulated, taking advantage of the pre-processed pyramidal structure. Using of a full-space discrete simulator instead of classical ray-tracing techniques is a challenge due to the inherent high computation requests. However, we have shown that the use of a multi-resolution approach allows the main computation load to be restricted to a pre-processing phase. Extensive works have been done to make predictions more realistic. The network planning and optimization suite is based on a multi-criteria model relying on a Tabu solver. The development of the wiplan software is a part of the european project iPlan (IAPP-FP7 project). See also the web page http://wiplan.citi.insa-lyon.fr.
5. Software

5.1. WSNet.

UrbaNet is an active contributor to WSnet (http://wsnet.gforge.inria.fr), a discrete event simulator dedicated to large scale wireless networks developed and maintained by members of Inria and CITI lab. A major part of this contribution is represented by the implementation of state of the art protocols for medium access control and routing.

The WSNet simulation results obtained following this process are sometimes used as an input for another part of our development effort, which consists in prototype software based on the combination of CPLEX and AMPL for solving mixed integer linear programming problems with column generation.

5.2. TAPAS-Cologne vehicular mobility dataset.

Based on the data made available by the Institute of Transportation Systems at the German Aerospace Center (ITS-DLR), the dataset aims at reproducing, with a high level of realism, car traffic in the greater urban area of the city of Cologne, Germany. To that end, different state-of-art data sources and simulation tools are brought together, so to cover all of the specific aspects required for a proper characterization of vehicular traffic:

- The street layout of the Cologne urban area is obtained from the OpenStreetMap (OSM) database;
- The microscopic mobility of vehicles is simulated with the Simulation of Urban Mobility (SUMO) software;
- The traffic demand information on the macroscopic traffic flows across the Cologne urban area (i.e., the O/D matrix) is derived through the Travel and Activity Patterns Simulation (TAPAS) methodology;
- The traffic assignment of the vehicular flows described by the TAPAS-Cologne O/D matrix over the road topology is performed by means of Gawron’s dynamic user assignment algorithm.

The resulting synthetic trace of the car traffic in the city of Cologne covers a region of 400 square kilometers for a period of 24 hours, comprising more than 700,000 individual car trips. More information is available on the project website at http://kolntrace.project.citi-lab.fr/.
E-MOTION Project-Team

4. Software

4.1. PROTEUS Software

Participants: Amaury Nègre, Juan Lahera-Perez.

This toolkit offers a automatic mobile robot driver, some sensors drivers (sensors as Sick laser, GPS, motion tracker, mono or stereo camera), and a 3D Simulator.

The latest developments have been focuses on the robotics simulator. This simulator is based on the simulation and 3D rendering engine “mgEngine” (http://mgengine.sourceforge.net/) embedded with the physics engine “bullets physics” (http://bulletphysics.org) for realistic robot dynamic simulation.

We also worked on the interface with the robotics middleware “ROS” (http://www.ros.org) in order to offer interoperability with many robotics applications.

The simulator is now fully integrated with the robotics middleware "ROS" (http://www.ros.org) which allow interoperability with a large set of robotics applications and visualization tools.

This software is developed in C++ and the simulator operates with the Lua scripting language.

The simulation software is used in the ANR Proteus (http://www.anr-proteus.fr), as a simulation engine for the PROTEUS Toolkit.

- Version: 2.0
- APP: IDDN.FR.001.510040.000.S.P.2005.000.10000
- Programming language: C/C++, Lua

4.2. AROSDYN

ArosDyn (http://arosdyn.gforge.inria.fr/) is a system which integrates our recently developped techniques to provide a real-time collision risk estimation in a dynamic environment. The main features of this software are:

1. The design provides high maintainability, scalability and reuseness of the models and algorithms.
2. The software has a user interface (UI) which is user-friendly.
3. The software facilitates the parameter tuning of the models.
4. It uses the GPU to accelerate the computation.
5. Working together with the Hugr middleware (http://gforge.inria.fr/projects/cycabtk), it can run on our experimental vehicle in real-time.

Another important property of this software is a large part of the computation task executed on GPU. As the processing of stereo image and the computation in the BOF can be highly parallelized, we run these tasks on the GPU to improve the time performance. The GPU calculation is based on CUDA library and is carried out in an independent thread.

Furthermore, thanks to the design of the software, we can easily add new models to it and let them work together. The fast detection and tracking algorithm (FCTA) and the Gaussian process based collision assessment algorithm are added into this framework. The sofware is implemented on the Lexus car. In 2012, a demand for deposing the GPU BOF software to the APP is in progress.

4.3. Bayesian Occupancy Filter

The BOF toolbox is a C++ library that implements the Bayesian Occupancy Filter. It is often used for modelling dynamic environments. It contains the relevant functions for performing bayesian filtering in grid spaces. The output from the BOF toolbox are the estimated probability distributions of each cell’s occupancy and velocity. Some basic sensor models such as the laser scanner sensor model or Gaussian sensor model for gridded spaces are also included in the BOF toolbox. The sensor models and BOF mechanism in the BOF toolbox provides the necessary tools for modelling dynamic environments in most robotic applications. This toolbox is patented under two patents: “Procédé d’assistance à la conduite d’un véhicule et dispositif associé” n. 0552735 (9 september 2005) and “Procédé d’assistance à la conduite d’un véhicule et dispositif associé amélioré” n. 0552736 (9 september 2005) and commercialized by ProBayes.

- Version: 1
- Programming language: C/C++

4.4. PROBT

People involved: Juan-Manuel Ahuactzin, Kamel Mekhnacha, Pierre Bessière, Emmanuel Mazer, Manuel Yguel, Christian Laugier.

ProBT is both available as a commercial product (ProBAYES.com) and as a free library for public research and academic purposes (http://emotion.inrialpes.fr/BP/spip.php?rubrique6). Formerly known as OPL, ProBT is a C++ library for developing efficient Bayesian software. It is available for Linux, Unix, PC Windows (Visual C++), MacOS9, MacOSX and Irix systems. The ProBT library (http://www.probayes.com/) has two main components: (i) a friendly Application Program Interface (API) for building Bayesian models, and (ii) a high-performance Bayesian Inference Engine (BIE) allowing to execute all the probability calculus in exact or approximate way. ProBT is now commercialized by our start-up Probayes; it represents the main Bayesian programming tool of the e-Motion project-team, and it is currently used in a variety of external projects both in the academic and industrial field (e.g., for the European project BACS and for some industrial applications such as Toyota or Denso future driving assistance systems).
5. Software

5.1. Alignment API

We have designed a format for expressing alignments in a uniform way [1]. The goal of this format is to be able to share available alignments on the web. It should help systems using alignments, e.g., mediators, translators, to take advantage of any alignment algorithm and it will help alignment algorithms to be used in many different tasks. This format is expressed in RDF, so it is freely extensible, and has been defined by a DTD (Document Type Description for RDF/XML), an OWL ontology and an RDF Schema.

The API itself [1] is a JAVA description of tools for accessing the common format. It defines five main interfaces (OntologyNetwork, Alignment, Cell, Relation and Evaluator) and proposes the following services:

- Storing, finding, and sharing alignments;
- Piping matching algorithms (improving an existing alignment);
- Manipulating alignments (thresholding and hardening);
- Generating processing output (transformations, axioms, rules);
- Comparing alignments.

We provide an implementation for this API which can be used for producing transformations, rules or bridge axioms independently from the algorithm which produced the alignment. The proposed implementation features:

- a base implementation of the interfaces with all useful facilities;
- a library of sample matchers;
- a library of renderers (XSLT, SWRL, OWL, C-OWL, SEKT mapping language, SPARQL);
- a library of evaluators (various generalisation of precision/recall, precision/recall graphs);
- a flexible test generation framework which allows for generating evaluation datasets;
- a library of wrapper for several ontology API;
- a parser for the format.

To instanciate the API, it is sufficient to refine the base implementation by implementing the align() method. Doing so, the new implementation will benefit from all the services already implemented in the base implementation.

We have developed on top of the Alignment API an Alignment server that can be used by remote clients for matching ontologies and for storing and sharing alignments. It is developed as an extensible platform which allows to plug-in new interfaces. The Alignment server can be accessed through HTML, web service (SOAP and REST) and agent communication interfaces.

The Alignment API is used in the Ontology Alignment Evaluation Initiative data and result processing (§6.1.1). It is also used by more than 30 other teams worldwide.

The Alignment API is freely available since december 2003, under the LGPL licence, at http://alignapi.gforge.inria.fr.

5.2. The OntoSim library

OntoSim is a library offering similarity and distance measures between ontology entities as well as between ontologies themselves. It materialises our work towards better ontology proximity measures.
There are many reasons for measuring a distance between ontologies. For example, in semantic social networks, when a peer looks for a particular information, it could be more appropriate to send queries to peers having closer ontologies because it will be easier to translate them and it is more likely that such a peer has the information of interest [12]. OntoSim provides a framework for designing various kinds of similarities. In particular, we differentiate similarities in the ontology space from those in the alignment space. The latter ones make use of available alignments in an ontology network while the former only rely on ontology data. OntoSim is provided with 4 entity measures which can be combined using various aggregation schemes (average linkage, Hausdorff, maximum weight coupling, etc.), 2 kinds of vector space measures (boolean and TF.IDF), and 4 alignment space measures. It also features original comparison methods such as agreement/disagreement measures. In addition, the framework embeds external similarity libraries which can be combined to our own.

OntoSim is based on an ontology interface allowing for using ontology parsed with different APIs. OntoSim is written in Java and is available, under the LGPL licence, at http://ontosim.gforge.inria.fr.

In the continuation of our previous work, in 2012, we developed our work on evaluation of ontology matching and especially in running new experiments and generating new tests (§6.1.1). We introduced a new semantics for weighted correspondences (§6.1.2). We also continued our work on ontology matching for linking data (§6.2) and the use of the μ-calculus for evaluating RDF path queries (§6.3.1).
IMAGINE Team

5. Software

5.1. MyCorporisFabrica

Participants: Ali-Hamadi Dicko, François Faure, Olivier Palombi.

Figure 1. My Corporis Fabrica is an anatomical knowledge database developed in our team.

My Corporis Fabrica (MyCF) is an anatomical knowledge database (see fig. 1). During 2011, we have added new anatomical entities and improved some parts of FMA (Foundational Model of Anatomy). The FMA's license is now under Creative Commons licenses (CC-by: Licensees may copy, distribute, display and perform the work and make derivative works based on it only if they give the author or licensor the credits in the manner specified by these). The license of MyCF is not yet defined. Our new contribution this year, is the creation of a brand new ontology about human functions. Based on the International Classification of Functioning, Disability and Health, also known as ICF, we have organized human functions through a tree of 4330 items. A original journal paper must be submitted soon. MyCF browser is now available on line: http://www.mycorporisfabrica.org/. The MyCF’s generic programming framework can be used for other domains. The link with semantic and 3D models matches research activities of IMAGINE towards interactive digital creation media. Anatomy can be seen as a study case.

5.2. SOFA

Participants: Guillaume Bousquet, Ali Hamadi Dicko, François Faure, François Jourdes.

SOFA is a C++ library primarily targeted at medical simulation research. Based on an advanced software architecture, it allows to (1) create complex and evolving simulations by combining new algorithms with algorithms already included in SOFA; (2) modify most parameters of the simulation – deformable behavior, surface representation, solver, constraints, collision algorithm, etc. – by simply editing an XML file; (3) build complex models from simpler ones using a scene-graph description; (4) efficiently simulate the dynamics of interacting objects using abstract equation solvers; and (5) reuse and easily compare a variety of available methods.

5.3. Convol

Participants: Marie-Paule Cani, Amaury Jung, Galel Koraa, Maxime Quiblier, Cédric Zanni.
Figure 2. SOFA is an open source simulator for physically based modeling.

Figure 3. Example of implicit surface and the GUI proposed in the Convol software.
Convol is a new C++ library we develop for easing our work on implicit surfaces – and more particularly on the sub-class of convolution surfaces. It enables us to make our latest research results soon available to the rest of the group and easily usable in our industrial partnerships. Convol incorporates all the necessary material for constructive implicit modeling: skeleton-based distance and convolution primitives, with closed form solution for the field values and gradient whenever possible; a variety of blending operators; and several methods for tessellating an implicit surface into a mesh, and for refining the later in highly curved regions. The creation of new geometry can be performed by direct manipulation of skeleton or through sketch based modeling. This development is funded by Inria as support to our research group.
LEAR Project-Team

5. Software

5.1. Face recognition

Participants: Guillaume Fortier [correspondant], Jakob Verbeek.

In a collaboration with Technosens (a start-up based in Grenoble) we are developing an efficient face recognition library. During 18 months Guillaume Fortier, financed by Inria’s technology transfer program, had streamlined code developed by different former team members on various platforms. This encompasses detection of characteristic points on the face (eyes, nose, mouth), computing appearance features on these points, and learning metrics on the face descriptors that are useful for face verification (faces of the same person are close, faces of different people are far away). See http://lear.inrialpes.fr/~fortier/software.php.

5.2. Large-scale image classification

Participants: Matthijs Douze [correspondant], Zaid Harchaoui, Florent Perronnin [XRCE], Cordelia Schmid.

JSGD is the implementation of a Stochastic Gradient Descent algorithm used to train linear multiclass classifiers. It is biased towards large classification problems (many classes, many examples, high dimensional data). It can be used to reproduce the results from [19] on the ImageNet large scale classification challenge. It uses several optimization techniques, both algorithmic (scale factors to spare vector multiplications, vector compression with product quantizers) and technical (vector operations, multithreading, improved cache locality). It has Python and Matlab interfaces. It is distributed under a Cecill licence. Project page: http://lear.inrialpes.fr/src/jsgd.

5.3. Fisher vector image representation

Participants: Matthijs Douze [correspondant], Hervé Jégou [TEXMEX Team Inria Rennes], Cordelia Schmid.

We developed a package that computes Fisher vectors on sparse or dense local SIFT features. The dense feature extraction was optimized, so that they can be computed in real time on video data. The implementation was used for several publications [6], [16] and in our submission to the Trecvid 2012 MED task [31]. We provide a binary version of the local descriptor implementation, and the Fisher implementation is integrated in the Yael library, with Python and Matlab interface, see http://lear.inrialpes.fr/src/inria_fisher.

5.4. Video descriptors

Participants: Dan Oneata, Cordelia Schmid [correspondant], Heng Wang.

We have developed and made on-line available software for video description based on dense trajectories and motion boundary histograms [28]. The trajectories capture the local motion information of the video. A state-of-the-art optical flow algorithm enables a robust and efficient extraction of the dense trajectories. Descriptors are aligned with the trajectories and based on motion boundary histograms (MBH) which are robust to camera motion. This year we have further developed this software to increase its scalability to large datasets. On the one hand we explored the effect of sub-sampling the video input both spatially and temporally, and evaluated the impact on the quality of the descriptors. On the other hand we avoid writing the raw MBH descriptors to disk, but rather aggregate them directly into a signature for the complete video using Fisher vectors, or bag-of-word descriptors. This allowed us to use these descriptors on the 4,000 hour video dataset of the TrecVid 2012 MED task.
MAVERICK Team

5. Software

5.1. Introduction

Maverick insists on sharing the software that is developed for internal use. These are all listed in a dedicated section on the web site http://artis.imag.fr/Software.

5.2. PlantRad

Participant: Cyril Soler [contact].

PlantRad is a software program for computing solutions to the equation of light equilibrium in a complex scene including vegetation. The technology used is hierarchical radiosity with clustering and instantiation. Thanks to the latter, PlantRad is capable of treating scenes with a very high geometric complexity (up to millions of polygons) such as plants or any kind of vegetation scene where a high degree of approximate self-similarity permits a significant gain in memory requirements. Its main domains of applications are urban simulation, remote sensing simulation (See the collaboration with Noveltis, Toulouse) and plant growth simulation, as previously demonstrated during our collaboration with the LIAMA, Beijing.

5.3. High Quality Renderer

Participant: Cyril Soler [contact].

In the context of the European project RealReflect, the Maverick team has developed the HQR software based on the photon mapping method which is capable of solving the light balance equation and of giving a high quality solution. Through a graphical user interface, it reads X3D scenes using the X3DToolKit package developed at Maverick, it allows the user to tune several parameters, computes photon maps, and reconstructs information to obtain a high quality solution. HQR also accepts plugins which considerably eases the development of new algorithms for global illumination, those benefiting from the existing algorithms for handling materials, geometry and light sources. HQR is freely available for download at http://artis.imag.fr/~Cyril.Soler/HQR.

5.4. MobiNet

Participants: Fabrice Neyret [contact], Joëlle Thollot.

The MobiNet software allows for the creation of simple applications such as video games, virtual physics experiments or pedagogical math illustrations. It relies on an intuitive graphical interface and language which allows the user to program a set of mobile objects (possibly through a network). It is available in public domain at http://mobinet.inrialpes.fr for Linux, Windows and MacOS, and originated in a collaboration with the EVASION project-team.

The main aim of MobiNet is to allow young students at high school level with no programming skills to experiment, with the notions they learn in math and physics, by modeling and simulating simple practical problems, and even simple video games. This platform has been massively used during the Grenoble INP "engineer weeks" since 2002: 150 senior high school pupils per year, doing a 3 hour practice. This work is partly funded by Grenoble INP. Various contacts are currently developed in the educational world. Besides "engineer weeks", several groups of "monitors" PhD students conducts experimentations based on MobiNet with a high school class in the frame of the courses. Moreover, presentation in workshops and institutes are done, and a web site repository is maintained.
5.5. Freestyle

Freestyle is a software for Non-Photorealistic Line Drawing rendering from 3D scenes (Figure 2). It is designed as a programmable interface to allow maximum control over the style of the final drawing: the user "programs" how the silhouettes and other feature lines from the 3D model should be turned into stylized strokes using a set of programmable operators dedicated to style description. This programmable approach, inspired by the shading languages available in photorealistic renderers such as Pixar’s RenderMan, overcomes the limitations of integrated software with access to a limited number of parameters and permits the design of an infinite variety of rich and complex styles. The system currently focuses on pure line drawing as a first step. The style description language is Python augmented with our set of operators. Freestyle was developed in the framework of a research project dedicated to the study of stylized line drawing rendering from 3D scenes. This research has lead to two publications [23], [24].

Figure 2. Stylized plane using Freestyle.

In 2008, Freestyle get a new life, completely outside Maverick or Inria: it was the basis of one of the 6 Google Summer of Code projects awarded to the Blender Foundation ¹. The goal of the project was to integrate Freestyle to the well known free 3D modeler Blender, as its standard NPR line-drawing renderer. Maxime Curioni (under the mentoring of Jean-Luc Peurière from the Blender Foundation), is currently making the integration. First beta versions are publicly available, and tested by enthusiasts around the web.

5.6. Diffusion Curves

Participant: Joëlle Thollot [contact].

We provide an implementation of the vector drawing tool described in the 2008 Diffusion Curves Siggraph paper (Figure 3). This prototype is composed of the Windows binary, along with the required shader programs (ie. in source code). The software is available for download at http://artis.imag.fr/Publications/2008/OBWBTS08 for free, for non-commercial research purposes.

5.7. VRender: vector figures

Participant: Cyril Soler [contact].

¹http://www.blender.org/
The VRender library is a simple tool to render the content of an OpenGL window to a vectorial device such as Postscript, XFig, and soon SVG. The main usage of such a library is to make clean vectorial drawings for publications, books, etc.

In practice, VRender replaces the z-buffer based hidden surface removal of OpenGL by sorting the geometric primitives so that they can be rendered in a back-to-front order, possibly cutting them into pieces to solve cycles.

VRender is also responsible for the vectorial snapshot feature of the QGLViewer library. VRender is released under the LGPL licence and is freely available for download at http://artis.imag.fr/Software/VRender.

5.8. ProLand

Participants: Fabrice Neyret [contact], Eric Bruneton.

ProLand (for procedural landscape) is a software platform originally developed at the Evasion team-project by Eric Bruneton, and currently funded by the ANR-JCJC SimOne. The goal of this platform is the real-time quality rendering and editing of large landscapes. All features can work with planet-sized terrains, for all viewpoints from ground to space. Most of the work published by Eric Bruneton and Fabrice Neyret has been done within ProLand, and a large part has been integrated in the main branch. Several licences have been transferred to companies. Eric Bruneton was hired by Google-Zürich in september 2011, but will be able to keep some participation in the project.

5.9. GigaVoxel

Participants: Fabrice Neyret [contact], Morgan Armand, Eric Bruneton, Cyril Crassin, Pascal Guehl, Eric Heitz.

Gigavoxels is a software platform initiated from the PhD work of Cyril Crassin, and currently funded by the ANR CONTINT RTIGE (Figure 4). The goal of this platform is the real-time rendering of very large very detailed scenes. Performances permit showing details over deep zooms and walk through very crowdly scenes (which are rigid, for the moment). The principle is GPU ray-tracing of volumetric-encoded multiscale data with minimal just-in time generation of data (accounting visibility and needed resolution) kept in a cache on GPU. The representation eases the cheap management of soft shadows, depth of field, anti-aliasing and geometric LOD. Beside the representation, data management and base rendering algorithm themself, we also worked on realtime light transport, and on quality prefiltering of complex data. This work led to numerous publications ([22], [21], [20]). Several licences have been sold to companies. we also did a technical presentation of the GigaVoxels tool during Afig conference [17] in order to invite the community to use the tool.

Figure 4. GigaVoxels freely downloadable demo.
5. Software

5.1. Platforms

5.1.1. The Grimage platform

The Grimage platform is an experimental multi-camera platform dedicated to spatio-temporal modeling including immersive and interactive applications. It hosts a multiple-camera system connected to a PC cluster, as well as visualization facilities including head mounted displays. This platform is shared by several research groups, most prominently Moais, Morpheo and Perception. In particular, Grimage allows challenging real-time immersive applications based on computer vision and interactions between real and virtual objects, Figure 1. Note that the Grimage platform will be replaced by the Kinovis platform that will exhibit a larger acquisition space and better acquisition facilities.

5.1.2. Virtualization Gate

Vgate is an immersive environment that allows full-body immersion and interaction with virtual worlds. It is a joint initiative of computer scientists from computer vision, parallel computing and computer graphics from several research groups at Inria Grenoble Rhône-Alpes, and in collaboration with the company 4D View Solutions. The Morpheo team is leading this project.

![Figure 1. Platforms: on the left the Grimage acquisition; on the right the vgate immersive environment.](image)

5.1.3. Multicamera platform for video analysis of mice behavior

This project is a follow-up of the experimental set-up developed for a CNES project with Mathieu Beraneck from the CESeM laboratory (centre for the study of sensorimotor control, CNRS UMR 8194) at the Paris-Descartes University. The goal of this project was to analyze the 3D body postures of mice with various vestibular deficiencies in low gravity condition (3D posturography) during a parabolic flight campaign. The set-up has been now adapted for new experiments on motor-control disorders for other mice models. This experimental platform is currently under development for a broader deployment for high throughput phenotyping with the technology transfer project ETHOMICE. This project involves a close relationship with the CESeM laboratory and the European Mouse Clinical Institute in Strasbourg (Institut Clinique de la Souris, ICS).
5.2. Software packages

5.2.1. LucyViewer

Lucy Viewer http://4drepository.inrialpes.fr/lucy_viewer/ is an interactive viewing software for 4D models, i.e., dynamic three-dimensional scenes that evolve over time. Each 4D model is a sequence of meshes with associated texture information, in terms of images captured from multiple cameras at each frame. Such data is available from various websites over the world including the 4D repository website hosted by Inria Grenoble http://4drepository.inrialpes.fr/. The software was developed in the context of the European project iGlance, it is available as an open source software under the GNU LGP Licence.

5.2.2. Ethomice

Ethomice http://morpheo.inrialpes.fr/people/reveret/ethomice/ is a motion analysis software to characterize motor behavior of small vertebrates such as mice or rats. From a multiple views video input, a biomechanical model of the skeleton is registered. Study on animal model is the first important step in Biology and Clinical research. In this context, the analysis of the neuro-motor behaviour is a frequent cue to test the effect of a gene or a drug. Ethomice is a platform for simulation and analysis of the small laboratory animal, such as rat or mouse. This platform links the internal skeletal structure with 3D measurements of the external appearance of the animal under study. From a stream of multiple views video, the platform aims at delivering a three-dimensional analysis of the body posture and the behaviour of the animal. The software was developed by Lionel Reveret and Estelle Duveau.

5.3. Databases

5.3.1. 4D repository (http://4drepository.inrialpes.fr/)

This website hosts dynamic mesh sequences reconstructed from images captured using a multi-camera set up. Such mesh-sequences offer a new promising vision of virtual reality, by capturing real actors and their interactions. The texture information is trivially mapped to the reconstructed geometry, by back-projecting from the images. These sequences can be seen from arbitrary viewing angles as the user navigates in 4D (3D geometry + time). Different sequences of human / non-human interaction can be browsed and downloaded from the data section. A software to visualize and navigate these sequences is also available for download.
PERCEPTION Team

5. Software

5.1. Mixed camera platform

We started to develop a multiple camera platform composed of both high-definition color cameras and low-resolution depth cameras. This platform combines the advantages of the two camera types. On one side, depth (time-of-flight) cameras provide relatively accurate 3D scene information. On the other side, color cameras provide information allowing for high-quality rendering. The software package developed during the year 2011 contains the calibration of TOF cameras, alignment between TOF and color cameras, and image-based rendering. These software developments are performed in collaboration with the Samsung Advanced Institute of Technology. The multi-camera platform and the basic software modules are products of 4D Views Solutions SAS, a start-up company issued from the PERCEPTION group.

![Figure 3. The mixed multi-camera system composed of four TOF-stereo sensor units.](image)

5.2. Audiovisual robot head

We have developed two audiovisual (AV) robot heads: the POPEYE head and the NAO stereo head. Both are equipped with a binocular vision system and four microphones. The software modules comprise stereo matching and reconstruction, sound-source localization and audio-visual fusion. POPEYE has been developed within the European project POP (http://perception.inrialpes.fr/POP) in collaboration with the project-team MISTIS and with two other POP partners: the Speech and Hearing group of the University of Sheffield and the Institute for Systems and Robotics of the University of Coimbra. The NAO stereo head is being developed under the European project HUMAVIPS (http://humavips.inrialpes.fr) in collaboration with Aldebaran Robotics (which manufactures the humanoid robot NAO) and with the University of Bielefeld, the Czech Technical Institute, and IDIAP. The software modules that we develop are compatible with both these robot heads.
Figure 4. Left: The consumer humanoid robot *NAO* is equipped with a binocular-binaural head specially designed for human-humanoid interaction; Right: The binocular-binaural robot head *POPEYE* equipped with a four degrees of freedom stereo camera pair and with a dummy head.
5. Software

5.1. OMiSCID Middleware for Distributed Multimodal Perception

Participants: Rémi Barraquand, Amaury Nègre, Patrick Reignier, Dominique Vaufreydaz [correspondant].

Middleware, Distributed perceptual systems

OMiSCID is a lightweight middleware for dynamic integration of perceptual services in interactive environments. This middleware abstracts network communications and provides service introspection and discovery using DNS-SD ([DNS-based Service Discovery][31]). Services can declare simplex or duplex communication channels and variables. The middleware supports the low-latency, high-bandwidth communications required in interactive perceptual applications. It is designed to allow independently developed perceptual components to be integrated to construct user services. Thus our system has been designed to be cross-language, cross-platform, and easy to learn. It provides low latency communications suitable for audio and visual perception for interactive services.

OMiSCID has been designed to be easy to learn in order to stimulate software reuse in research teams and is revealing to have a high adoption rate. To maximize this adoption and have it usable in projects involving external partners, the OMiSCID middleware has been released under an open source licence. To maximize its target audience, OMiSCID is available from a wide variety of programming languages: C++, Java, Python and Matlab. A website containing informations and documentations about OMiSCID has been set up to improve the visibility and promote the use of this middleware.

The OMiSCID graphical user interface (GUI) is an extensible graphical application that facilitates analysis and debugging of service oriented applications. The core functionality of this GUI is to list running services, their communication channels and their variables. This GUI is highly extensible and many modules (i.e. plugins) have been created by different members of the team: figure 2 shows an example of some of these modules. OMiSCID GUI is based on the Netbeans platform and thus inherits from its dynamic installation and update of modules.

5.2. Detection and Tracking of Pedestrians in INRETS Intelligent Urban Spaces Platform

Participants: Claudine Combe, James Crowley [correspondant], Lukas Rummelhard.

Visual detection and tracking of pedestrians, Intelligent Urban Space

The project ANR-07-TSFA-009-01 CIPEBUS (“Carrefour Intelligent - Pole d’Échange - Bus) has been proposed by INRETS-IFSTTAR, in collaboration with Inria, Citilog, Fareco, and the city of Versaille. The Objective of the CIPEBUS project is to develop an experimental platform for observing activity in a network of urban streets in order to experiment with techniques for optimizing circulation by context aware control of traffic lights.

Within CipeBus, Inria has developed a real time multi-camera computer vision system to detect and track people using a network of surveillance cameras. The CipeBus combines real time pedestrian detection with 2D and 3D Bayesian tracking to record the current position and trajectory of pedestrians in an urban environment under natural view conditions. The system extends the sliding window approach to use a half-octave Gaussian Pyramid to explore hypotheses of pedestrians at different positions and scales. A cascade classifier is used to determine the probability that a pedestrian can be found at a particular position and scale. Detected pedestrians are then tracked using a particle filter.
Figure 2. OMiSCID GUI showing a list of running services and some modules for service interconnections, variable plotting, live video stream display and variable control
Figure 3. Cipebus: pedestrian tracking system.
The resulting software system has been installed and tested at the INRETS CipeBus platform and is currently used for experiments in controlling the traffic lights to optimize the flow of pedestrians and public transportation while minimizing the delay imposed on private automobiles.

5.3. Multisensor observation of human activity for integrated energy and comfort management

Participants: Claudine Combe, James Crowley [correspondant], Lucas Nacsa, Amaury Nège, Lukas Rummelhard.

multimodal tracking of human activity

As part of Inria’s contribution of ICTLabs Action TSES - Smart Energy Systems, we have constructed a system that integrates information from multiple environmental sensor to detect and track people in indoor environments. This system, constructed as part of activity 11831 Open SES Experience Labs for Prosumers and New Services, has been released to ICTLabs partners in June 2012. It has also been used for construction of a smart spaces testbed at Schneider Electric.

This software, named MultiSensor activity tracker, integrates information from multiple environmental sensors to keep track of the location and activity of people in a smart environment. This model is designed to be used by a home energy broker that would work in conjunction with a smart grid to manage the energy consumption of home appliances, balancing the needs of inhabitants with opportunities for savings offered by electricity rates. This database will also be used for by advisor services that will offer advice to inhabitants on the consequences to energy consumption and energy cost that could potentially result from changes to lifestyle or home energy use.

Work in this task draws from earlier result from a number of development projects at Inria. In the ANR Casper project Inria created Bayesian tracking system for human activity using a voxel based occupancy grid. Within the INRA ADT PAL project, Inria is creating methods for plug and play installation of visual and acoustic sensors for tracking human activity within indoor environments.
While a voxel based Bayesian tracker has served well for a number of applications, a number of limitations have been observed. For example, under certain circumstances, the sensor data can provide contradictory or ambiguous data about the location and activities of people. Resolving such cases required the Bayesian tracker to choose between a number of competing hypotheses, potentially resulting in errors. Several members of our group have argued that an alternative integration approach based on the use of a Particle filter would solve these problems and provide a more reliable tracking system. This task has been undertaken to evaluate this hypothesis. The system configured and optimized for detecting and tracking people within rooms using multiple calibrated cameras. The system currently uses corner mounted cartesian cameras, ceiling mounted cameras with wide angle lenses and panoramic cameras placed on tables. Cameras may be connected and disconnected while the component is running, but they must be pre-calibrated to a common room reference frame. We are currently experimenting with techniques for Bayesian estimation of camera parameters for auto-calibration. Cameras may be connected dynamically.

The original system 3DBT has been declared with the APP "Agence pour la Protection des Programmes" under the Interdeposit Digital number IDDN.FR.001.490023.000.S.P.2006.000.10000. A revised declaration for the latest version of the system is currently being prepared.

5.4. Stereo Viewfinder

Participants: Frédéric Devernay [correspondant], Loïc Lefort, Elise Mansilla, Sergi Pujades-Rocamora.

Stereoscopy, Auto-calibration, Real-time video processing, Feature matching

This software has been filed with the APP "Agence pour la Protection des Programmes" under the Interdeposit Digital number IDDN.FR.001.370083.000.S.P.2007.000.10000

5.5. Tracking Focus of Attention for Large Screen Interaction

Participants: Rémi Barraquand, Claudine Combe, James Crowley [correspondant], Varun Jain, Sergi Pujades-Rocamora, Lukas Rummelhard.

Embedded Detection and Tracking of Faces for Attention Estimation.

Large multi-touch screens may potentially provide a revolution in the way people can interact with information in public spaces. Technologies now exist to allow inexpensive interactive displays to be installed in shopping areas, subways and urban areas. Thesis displays can provide location aware access to information including maps and navigation guidance, information about local businesses and commercial activities. While location information is an important component of a user's context, information about the age and gender of a user, as well as information about the number of users present can greatly enhance the value of such interaction for both the user and for local commerce and other activities.

The objective of this task is to leverage recent technological advances in real time face detection developed for cell phones and mobile computing to provide a low-cost real time visual sensor for observing users of large multi-touch interactive displays installed in public spaces.

People generally look at things that attract their attention. Thus it is possible to estimate the subject of attention by estimating where people look. The location of visual attention is manifested by a region of space known as the horopter where the optical axis of the two eyes intersect. However estimating the location of attention from human eyes is notoriously difficult, both because the eyes are small relative to the size of the face, and because eyes can rotate in their socket with very high accelerations. Fortunately, when a human attends to something, visual fixation tends to remain at or near that subject of attention, and the eyes are relaxed to a symmetric configuration by turning the face towards the subject of attention. Thus it is possible to estimate human attention by estimating the orientation of the human face.

We have constructed an embedded software system for detecting, tracking and estimating the orientation of human faces. This software has been designed to be embedded on mobile computing devices such as laptop computers, tablets and interactive display panels equipped with a camera that observes the user. Noting the face orientation with respect to the camera makes it possible to estimate the region of the display screen to which the user is attending.
The system uses a Bayesian Particle filter tracker operating on a Scale invariant Gaussian pyramid to provide integrated tracking and estimation of face orientation. The use of Bayesian tracking greatly improves both the reliability and the efficiency for face detection and orientation estimation. The scale invariant Gaussian pyramid provides automatic adaptation to image scale (as occurs with a change in camera optics) and makes it possible to detect and track faces over a large range of distances. Equally important the Gaussian Pyramid provides a very fast computation of a large number of image features that can be used by a variety of image analysis algorithms.

The software developed for this activity builds on face detections software that has recently been developed by Inria for the French OSEO project MinImage. MinImage was a five year, multi-million euro project to develop next generation technologies for integrated digital imaging devices to be used in cellphones, mobile and laptop computing devices, and digital cameras, that has begun in February of 2007. The project scope included research on new forms of retinas, integrated optics, image formation and embedded image processing. Inria was responsible for embedded algorithms for real time applications of computer vision.

Within MinImage, Inria developed embedded image analysis algorithms using image descriptors that are invariant to position, orientation and scale and robust to changes in viewing angle and illumination intensity. Inria proposed use of a simple hardware circuit to compute a scale invariant Gaussian pyramid as images acquired by the retina. Sums and differences of image samples from the pyramid provide invariant image descriptors that can be used for a wide variety of computer vision applications including detection, tracking and recognition of visual landmarks, physical objects, commercial logos, human bodies and human faces. Detection and tracking of human faces was selected as benchmark test case.

This work has been continued with support from EIT ICTlabs, to provide context information for interaction with large multi-touch interactive displays installed in public spaces.

Multitouch interactive displays are increasingly used in outdoor and public spaces. This objective of this task is to provide a visual observation system that can detect and count users of a multitouch display and to estimate information such as the gender, and age category of each user, us rendering the system sensitive to environmental context.

A revised software package has recently been released to our ICTlab partners for face detection, face tracking, gender and age estimation, and orientation estimation, as part of ICTlabs Smart Spaces action line, Activity 11547 : Pervasive Information interfaces and interaction. With Task 1207 of this activity we have constructed and released an "Attention Recognition Module". This software has been protected with an APP declaration.

An similar software was released in 2007 using face color rather than appearance. The system SuiviDeCiblesCouleur located individuals in a scene for video communications. FaceStabilisationSystem renormalised the position and scale of images to provide a stabilised video stream. SuiviDeCiblesCouleur has been declared with the APP "Agence pour la Protection des Programmes" under the Interdeposit Digital number IDDN.FR.001.370003.000.S.P.2007.000.21000.

Participants: Rémi Barraquand, Claudine Combe, James Crowley [correspondant], Varun Jain, Sergi Pujades-Rocamora, Lukas Rummelhard.

Visual Emotion Recognition

People express and feel emotions with their face. Because the face is the both externally visible and the seat of emotional expression, facial expression of emotion plays a central role in social interaction between humans. Thus visual recognition of emotions from facial expressions is a core enabling technology for any effort to adapt ICT to improve Health and Wellbeing.

Constructing a technology for automatic visual recognition of emotions requires solutions to a number of hard challenges. Emotions are expressed by coordinated temporal activations of 21 different facial muscles assisted by a number of additional muscles. Activations of these muscles are visible through subtle deformations in the surface structure of the face. Unfortunately, this facial structure can be masked by facial markings, makeup,
facial hair, glasses and other obstructions. The exact facial geometry, as well as the coordinated expression of muscles is unique to each individual. In additions, these deformations must be observed and measured under a large variety of illumination conditions as well as a variety of observation angles. Thus the visual recognition of emotions from facial expression remains a challenging open problem in computer vision.

Despite the difficulty of this challenge, important progress has been made in the area of automatic recognition of emotions from face expressions. The systematic cataloging of facial muscle groups as facial action units by Ekman [45] has let a number of research groups to develop libraries of techniques for recognizing the elements of the FACS coding system [33]. Unfortunately, experiments with that system have revealed that the system is very sensitive to both illumination and viewing conditions, as well as the difficulty in interpreting the resulting activation levels as emotions. In particular, this approach requires a high-resolution image with a high signal-to-noise ratio obtained under strong ambient illumination. Such restrictions are not compatible with the mobile imaging system used on tablet computers and mobile phones that are the target of this effort.

As an alternative to detecting activation of facial action units by tracking individual face muscles, we propose to measure physiological parameters that underlie emotions with a global approach. Most human emotions can be expressed as trajectories in a three dimensional space whose features are the physiological parameters of Pleasure-Displeasure, Arousal-Passivity and Dominance-Submission. These three physiological parameters can be measured in a variety of manners including on-body accelerometers, prosody, heart-rate, head movement and global face expression.

The PRIMA Group at Inria has developed robust fast algorithms for detection and recognition of human faces suitable for use in embedded visual systems for mobile devices and telephones. The objective of the work described in this report is to employ these techniques to construct a software system for measuring the physiological parameters commonly associated with emotions that can be embedded in mobile computing devices such as cell phones and tablets.

As part of Inria’s contribution to ICT labs Action THWB Health and Wellbeing, Inria has participated in Activity 12100 “Affective Computing”. In this activity we have provided a software system for detection, tracking of faces, and for visual measurement of Valence, Arousal and Dominance.

A software library, named PrimaCV has been designed, debugged and tested, and released to ICTLabs partners for real time image acquisition, robust invariant multi-scale image description, highly optimized face detection, and face tracking. This software has been substantially modified so as to run on an mobile computing device using the Tegra 3 GPU.
5. Software

5.1. XML Reasoning Solver

The XML Reasoning Solver is a tool for the static analysis of XPath queries and XML schemas based on the latest theoretical advances. It allows automated verification of properties that are expressed as logical formulas over trees. A logical formula may for instance express structural constraints or navigation properties (like e.g. path existence and node selection) in finite trees.

The tool can solve many fundamental XML problems such as satisfiability of XPath expressions in the presence of XML schemas, containment and equivalence of XPath expressions, and many other problems that can be formulated with XPath expressions and schemas (DTDs, XML Schemas, Relax-NG).

The system is implemented in Java and uses symbolic techniques (binary decision diagrams) in order to enhance its performance. It is capable of comparing path expressions in the presence of real-world DTDs (such as the W3C SMIL and XHTML language recommendations, for instance). The cost ranges from several milliseconds for comparison of XPath queries without tree types, to several seconds for queries under very large, heavily recursive, type constraints, such as the XHTML DTD. These measurements shed light for the first time on the cost of solving static analysis problems in practice. Furthermore, the analyzer generates XML counter-examples that allow program defects to be reproduced independently from the analyzer.

5.1.1. Extensions for CSS

We have introduced the first system capable of statically verifying properties of a given cascading style sheet (CSS) over the whole set of documents to which this stylesheet applies [5]. The system is composed of a set of parsers for reading the CSS and schema files (XML Schema, Relax NG, or DTD) together with a text file corresponding to problem description as a logical formula. We have developed a compiler that translates CSS files into their logical representations. Then, the solver takes the overall problem formulation and checks it for satisfiability.

5.1.2. XQuery IDE

We have started the development of an XQuery IDE with a web interface. This prototype integrates static analyses performed by the solver inside a development environment suited for XQuery programmers.

5.2. Timesheets Library

Participants: Nicolas Hairon, Cécile Roisin.

The goal of the Timesheets library is to synchronize HTML5 content using declarative synchronization languages defined by W3C standards (namely SMIL Timing and Synchronization and SMIL Timesheets).

With the raise of HTML5 which natively supports continuous content (audio, video) there is a dramatic need for handling synchronization, animation and user interaction in an efficient and homogeneous way. As web browsers do not support SMIL, except for SVG Animation (which is based on the SMIL BasicAnimation module), multimedia web authoring remains difficult and relies on code-based, non-standard solutions.

Therefore we are developing a generic, cross-browser JavaScript implementation for scheduling the dynamic behavior of HTML5 content that can be described with declarative SMIL markup. Using a declarative language makes sense for the most common tasks, which currently require JavaScript programming:

- it is much easier for web authors and for web authoring tool developers;
- it is a much better way to achieve good accessibility and indexability;
- it is easier to maintain, since no specific JavaScript code is used.
This open source library is now deployed and used by external users. As far as we know, ENS Lyon was the first user: its site html5.ens-lyon contains several dozens of scientific conferences where the video capture of each conference is synchronized with the slides, a structured timeline and a table of contents. This web site was demonstrated in May at the WWW 2012 conference. University of Evry makes also an important use of the Timesheets library as a tool for teaching multimedia concepts at master level.

5.3. Mobile Audio Language

Participants: Yohan Lasorsa, Jacques Lemordant.

5.3.1. MAUDL library

The MAUDL library (Mobile AUDio Language) is an evolution of the ARIA library whose primary target was games on mobile devices.

Augmented Reality Audio applications use sound objects to create a soundscape. A sound object is a time structure of audio chunks whose duration is on the time scale of 100 ms to several seconds. These sound objects have heterogeneous and time-varying properties. In order to describe Interactive Audio (IA) contents, we created MAUDL, an XML language inspired by iXMF that is well adapted to the design of dynamic soundtracks for navigation systems.

MAUDL prevents audio information overwhelming through categorization at the declarative level and the use of priority queues at the execution level. This allows to take account of speed when walking, and rapid hand gestures when interrogating the environment for example. MAUDL can be used as an authoring time interchange file format for interactive mobile applications or as a runtime file format that is actually loaded through the web and played directly in the mobile. MAUDL is a cue-oriented interactive audio system, audio services being requested using named events and the systems response to each event being determined by the audio artist. The current version of the API supports iOS and further support for other mobile platforms (Android) is planned.

5.3.2. 3D Audio Pointer

A virtual 3D audio pointer provides an intuitive guide to the user of a mobile navigation application, reducing the need for cognitive work when compared to vocal instructions. We have built such a pointer using the MAUDL language. It gives the user the azimuth using HRTF spatialized audio cues, with additional hints taking the form of variations in the sound used. It allows to superpose other kinds of audio contents, such as voice while the pointer is active, to indicate distance for example. This audio object is suitable for different sorts of navigation systems, such as POIs browsers, self-guided audio tours, or applications for following predefined routes.

5.4. Mixed Reality Browser (MRB)

Participants: Yohan Lasorsa, Jacques Lemordant, David Liodenot, Thibaud Michel, Mathieu Razafimahazo.

The concept of Mixed Reality comes from the fact that the real/virtual dichotomy is not sharp, but interpolatively smooth over a virtuality continuum. Idealized notions of reality and virtuality can be thought of as endpoints on a continuum, an instance of the former approach corresponding for example to a see-through display with natural sounds, an instance of the latter to texture-mapped image-based rendering (panoramas) with synthetic sound objects.

Augmented Reality (AR) mode refers to all cases in which the auditory or visual display of an otherwise real environment is augmented by means of virtual sound or graphic objects. The converse case on the virtuality continuum is Augmented Virtuality (AV), where a virtual world, one that is generated primarily by computer, like with synthetic 3D graphic or synthetic panoramic, is being augmented with the audio-visual content of points of interest (POIs).
The Mixed Reality Browser (MRB) is a geolocalized web browser running on mobile devices. It uses standard and open XML formats for content authoring (HTML5, OSM and MAUDL) to allow anyone to create an augmented or virtual reality city tour that can be used with this application.

The introduction of mobile augmented reality browsers has forced a rethink on what kind of reality should be offered. Mobility induces a need for telepresence and simulation to free the user or the developer of the necessity to go every time in the real world. Mobility is the main reason behind the concept of the Mixed Reality Browser. By its intrinsic characteristics, MRB supports advance MR applications like mobile remote maintenance and assisted navigation.

5.5. Interactive eXtensible Engine (IXE)

Participants: Yohan Lasorsa, Jacques Lemordant, David Liodenot, Thibaud Michel, Mathieu Razafimahazo.

GPS navigation systems when used in an urban environment are limited in precision and can only give instructions at the level of the street and not of the sidewalk. GPS is limited to outdoor navigation and requires some delicate transitioning system when switching to another positioning system to perform indoor navigation.

IXE is an open source urban pedestrian navigation system based on Inertial Measurement Unit (IMU) and running on mobile phones with onboard geographic data and a routing engine. With IXE, the distinction between indoor and outdoor is blurred as an IMU-based location engine can run indoor and outdoor. IXE allows augmented reality queries on customized embedded geographical data. Queries on route nodes or POIs, on ways and relations are predefined for efficiency and quality of information.

Following the web paradigm, IXE is a browser for XML documents describing navigation networks: by using the micro-format concept, one can define inside OpenStreetMap a complex format for pedestrian navigation networks allowing navigation at the level of sidewalks or corridors. The big advantage of doing this instead of defining new XML languages is that we can use the standard OpenStreetMap editor JOSM to create navigation networks in a short amount of time.

The purpose of the IXE browser is to read these OSM documents and to generate from them visible or audible navigation information. IXE works on any mobile phone running under iOS or Android. Its heart is composed of three engines, one for dead-reckoning navigation, one for interactive audio and the last one for Augmented Reality visual information, allowing quick reconfiguration for extremely varied applications.

IXE can be used for accessible navigation allowing independent living for people with disabilities.