Activity Report 2012

Section Application Domains

Algorithmics, Programming, Software and Architecture - Application Domains - Project-Team ALF

Algorithmics, Programming, Software and Architecture

1. ALF Project-Team ... 4
2. CAIRN Project-Team .. 5
3. CELTIQUE Project-Team (section vide) 6
4. ESPRESSO Project-Team .. 7
5. S4 Project-Team .. 8
6. TASC Project-Team ... 10
7. VERTECS Project-Team ... 11

Applied Mathematics, Computation and Simulation

8. ASPI Project-Team ... 12
9. I4S Team .. 13
10. IPSO Project-Team .. 16

Computational Sciences for Biology, Medicine and the Environment

11. DYLISS Team ... 18
12. FLUMINANCE Project-Team ... 19
13. GENSCALE Team .. 20
14. SAGE Project-Team .. 21
15. SERPICO Team ... 22
16. VISAGES Project-Team ... 24

Networks, Systems and Services, Distributed Computing

17. ACES Project-Team (section vide) 26
18. ASAP Project-Team .. 27
19. ASCOLA Project-Team ... 28
20. ATLANMOD Team ... 30
21. CIDRE Project-Team ... 33
22. DIONYSOS Project-Team (section vide) 34
23. DISTRIBCOM Project-Team .. 35
24. KERDATA Project-Team .. 37
25. MYRIADS Project-Team .. 39
26. TRISKELL Project-Team .. 40

Perception, Cognition, Interaction

27. DREAM Project-Team ... 41
28. LAGADIC Project-Team .. 43
29. METISS Project-Team .. 44
30. MIMETIC Team .. 48
31. SIROCCO Project-Team .. 51
32. TEXMEX Project-Team .. 54
33. VR4I Team .. 56
4. Application Domains

4.1. Application Domains

Performance, processor architecture, compilers, telecommunications, multimedia, biology, health, engineering, environment, transportation

The ALF team is working on the fundamental technologies for computer science: processor architecture and performance-oriented compilation. The research results have impacts on any application domain that requires high performance executions (telecommunication, multimedia, biology, health, engineering, environment ...), but also on many embedded applications that exhibit other constraints such as power consumption, code size and guaranteed response time. Our research activity implies the development of software prototypes.
CAIRN Project-Team

4. Application Domains

4.1. Panorama

keywords: telecommunications, wireless communications, wireless sensor networks, content-based image retrieval, video coding, intelligent transportation systems, automotive, security

Our research is based on realistic applications, in order to both discover the main needs created by these applications and to invent realistic and interesting solutions.

The high complexity of the **Next-Generation (4G) Wireless Communication Systems** leads to the design of real-time high-performance specific architectures. The study of these techniques is one of the main field of applications for our research, based on our experience on WCDMA for 3G implementation.

In **Wireless Sensor Networks (WSN)**, where each wireless node has to operate without battery replacement for a long time, energy consumption is the most important constraint. In this domain, we mainly study energy-efficient architectures and wireless cooperative techniques for WSN.

Intelligent Transportation Systems (ITS), and especially Automotive Systems, more and more apply technology advances. While wireless transmissions allow a car to communicate with another or even with road infrastructure, **automotive industry** can also propose driver assistance and more secure vehicles thanks to improvements in computation accuracy for embedded systems.

Other important fields will also be considered: hardware cryptographic and security modules, specialized hardware systems for the filtering of the network traffic at high-speed, high-speed true-random number generation for security, content-based image retrieval and video processing.

4.2. 4G Wireless Communication Systems

With the advent of the next generation (4G) broadband wireless communications, the combination of MIMO (Multiple-Input Multiple-Output) wireless technology with Multi-Carrier CDMA (MC-CDMA) has been recognized as one of the most promising techniques to support high data rate and high performance. Moreover, future mobile devices will have to propose interoperability between wireless communication standards (4G, WiMax ...) and then implement MIMO pre-coding, already used by WiMax standard. Finally, in order to maximize mobile devices lifetime and guarantee quality of services to consumers, 4G systems will certainly use cooperative MIMO schemes or MIMO relays. Our research activity focuses on MIMO precoding and MIMO cooperative communications with the aim of algorithmic optimization and implementation prototyping.

4.3. Wireless Sensor Networks

Sensor networks are a very dynamic domain of research due, on the one hand, to the opportunity to develop innovative applications that are linked to a specific environment, and on the other hand to the challenge of designing totally autonomous communicating objects. Cross-layer optimizations lead to energy-efficient architectures and cooperative techniques dedicated to sensor networks applications. In particular, cooperative MIMO techniques are used to decrease the energy consumption of the communications.

4.4. Multimedia processing

In multimedia applications, audio and video processing is the major challenge embedded systems have to face. It is computationally intensive with power requirements to meet. Video or image processing at pixel level, like image filtering, edge detection and pixel correlation or at block-level such as transforms, quantization, entropy coding and motion estimation have to be accelerated. We investigate the potential of reconfigurable architectures for the design of efficient and flexible accelerators in the context of multimedia applications.
CELTIQUE Project-Team (section vide)
4. Application Domains

4.1. Embedded systems

The application domains covered by the Polychrony toolbox are engineering areas where a system design-flow requires high-level model transformations and verifications to be applied during the development-cycle. The project-team has focused on developing such integrated design methods in the context of avionics applications, through the European IST projects Sacres, Syrf, Safeair, Speeds, and through the national ANR projects Topcased, OpenEmbeDD, Spacify. In this context, Polychrony is seen as a platform on which the architecture of an embedded system can be specified from the earliest design stages until the late deployment stages through a number of formally verifiable design refinements.

Along the way, the project adopted the policy proposed with project Topcased and continued with OpenEmbeDD to make its developments available to a large community in open-source. The Polychrony environment is now integrated in the OPEES/Polarsys platform and distributed under EPL and GPL v2.0 license for the benefits of a growing community of users and contributors, among which the most active are Virginia Tech’s Fermat laboratory and Inria’s project-teams Aoste, Dart.
4. Application Domains

4.1. Modular design of embedded systems with interface theories

In 2006, with the opportunity of the SPEEDS European project on embedded system design, we decided to open a new research track on contract-/interface-based design. Our objective was to provide theory, methods and tools to support the design of embedded software in transport system industries. According to our understanding of industrial needs, gained during the SPEEDS European project, the following requirements apply to the notions of contract and interface and have been used to guide our research on this topic:

- Complex embedded and reactive systems are generally developed under a multi-layered OEM-supplier chain. Hence, a contract-based methodology should offer provision for formalizing the technical part of contractual relations. This should be achieved by formalizing, for a considered subsystem: 1/ its context of use (assumptions), and 2/ what is expected from the subsystem (guarantees). Assumptions and guarantees can be specified separately, or in a single automata-theoretic structure called interface.

- When developed under a contract-/interface-based methodology, subsystems or components should be designable in isolation, by including the needed information regarding possible future contexts of use. Subsystems or components should be substitutable to their specifications, meaning that their integration should raise no problem.

- Large systems are concurrently developed for their different aspects or viewpoints by different teams using different frameworks and tools. Examples of such aspects include the functional, reliability, timing, memory and power aspects. Each of these aspects requires specific frameworks and tools for their analysis and design. Yet, they are not totally independent but rather interact. The issue of dealing with multiple aspects or multiple viewpoints is thus essential. This implies that several contracts or interfaces are associated with a same system, sub-system, or component, namely at least one per viewpoint. These contracts/interfaces are to be interpreted in a conjunctive way and modular reasoning methods have to be developed to support large sets of contracts.

- The need for supporting conjunctive contracts/interfaces also follows from the current practice in which early requirement capture results in many elementary requirements. These requirements typically consist of English text, semi-formal languages whose sentences are translatable into predefined behavioral patterns, or even graphical scenario languages.

- It is highly desirable that designing by contracts and interfaces has the mildest possible impact on the design process, a key proprietary asset to all major companies.

4.2. Opacity, Supervision, and Petri Nets

Our activities on components emerged from a larger basis of competences developed in the past of S4 on supervisory control and Petri net synthesis. Components and their interfaces are intimately tied to supervisory control, and Petri net synthesis is a possible approach to controller synthesis. In the last four years, we have carried on work on both themes, but refocussed our research on fresh topics. A major contribution has been to study supervisory control for secrecy objectives, with promising results. Another contribution has been to study supervisory control for finite abstractions of services. The fusion of both topics, that would increase the interest of the results for Web applications, is not yet done. A different topic that we continued to investigate is the synthesis of distributed controllers based on the synthesis of distributed Petri nets. Our progress on this difficult topic is limited, but we feel we should pursue the effort.
Opacity is an abstract property that includes non-interference and that can cover confidentiality, authenticity and many other specific security concepts. Our project-team has inaugurated research on supervisory control of discrete event systems for opacity, which became soon a theme of cooperation with project-team Vertecs and subsequently attracted concurrent researches at Wayne State U., Kyoto Inst. of Tech., and U. Illinois. We have some advance over these concurrent teams.

The rest of our work on supervision focusses on minimizing communication between decentralized controllers, on asynchronous and distributed control, and on the enforcement of modal specifications. Decreasing communication between decentralized controllers was studied at Michigan U. but we could further show that minimizing communication reduces to a classical optimization problem. As regards asynchronously communicating control, the only current attempts we are aware of are those of project-teams S4 and Vertecs. As regards supervisory control w.r.t. modal specifications, the closest work is Lohmann and Wolf’s synthesis of communication partners for Web services.

The approach which we propose towards distributed control relies upon the synthesis of distributed Petri nets. We have been leaders for fifteen years on the synthesis of P/T nets, on a par with the Petrify team focussed on Elementary (or safe) net synthesis. The algorithms which we have defined have been reused or adapted by many other researchers in Europe, in the US, and in China, to respond to three types of problems: controller synthesis, process mining, and concise representation of services. We are currently writing a book covering all aspects of the theory and applications of Petri net synthesis. We also pursue research on structure theory of Petri nets, in cooperation with U. Oldenburg, with focus set recently on non-interference.

4.3. Hybrid Systems Modelers

This is an opportunistic objective, not part of the plans stated when the team was formed. It results from a series of events: in 2008, Benoît Caillaud was part of the Synchronics large scale initiative (see section 7.1.1), dedicated to “embedded systems programming in 2020”. Hybrid Systems Modelers were part of the research program. Such tools are nowadays absolutely central in the development of Cyber Physical Systems (CPS), which are physical systems in closed loop with embedded control. Hybrid Systems Modelers support the modeling of physical systems (with Ordinary Differential Equations, ODE, and Differential Algebraic Equations, DAE): Matlab-Simulink and Modelica are the main players. Our vision was that these tools should deserve similar effort in theory as synchronous languages did for the programming of embedded systems. About one year after Synchronics started (focusing mostly on other topics), the PhD thesis of Simon Bliudze came to our knowledge. This thesis contained a long chapter on the use of non-standard analysis as a semantic framework for hybrid systems. The exposure relied on a recent presentation of non-standard analysis, not axiomatic in style, due to the mathematician Lindström. That attracted the attention of Albert Benveniste, so he joined the group of Synchronics working on hybrid systems. This was the beginning of a deeply novel and exciting research track.

The computer science community has devoted significant efforts to the analysis and verification of hybrid automata. The framework of hybrid automata is, however, much less flexible than what actual Hybrid Systems Modelers offer. The only ongoing effort towards modeling has been developed by Edward Lee and his team as part of the Ptolemy II project. This has led to the proposal of super-dense time semantics, in which cascades of successive instants can occur in zero time by using $R_+ \times N$ as a time index. It turns out that the set $T = \{n\partial \mid n \in N^*\}$, where ∂ is an infinitesimal and N^* is the set of non-standard integers is such that $1/T$ is dense in R_+, making it “continuous”, and $2/e$ every $t \in T$ has a predecessor in T and a successor in T, making it “discrete” (le beurre et l’argent du beurre, as we say in French). Although non-effective from the operational point of view, the non-standard semantics of hybrid systems provides a framework that is very familiar to the computer scientist (who is afraid of continuous time) and at the same time efficient as a symbolic abstraction. This makes it an excellent candidate for the development of compilation schemes.
4. Application Domains

4.1. Introduction

Constraint programming deals with the resolution of decision problems by means of rational, logical and computational techniques. Above all, constraint programming is founded on a clear distinction between, on the one hand the description of the constraints intervening in a problem, and on the other hand the techniques used for the resolution. The ability of constraint programming to handle in a flexible way heterogeneous constraints has raised the commercial interest for this paradigm in the early nighties. Among his fields of predilection, one finds traditional applications such as computer aided decision-making, scheduling, planning, placement, logistics or finance, as well as applications such as electronic circuits design (simulation, checking and test), DNA sequencing and phylogeny in biology, configuration of manufacturing products or web sites, formal verification of code.

4.2. Panorama

In 2012 the TASC team was involved in the following application domains:

- *Planning and replanning* in Data Centres (*SelfXL* project).
- *Packing complex shapes* in the context of a warehouse (*NetWMS2* project).
- Building decision support system for *city development planning with evaluation of energy impacts* (*SUSTAINS* project).
- *Optimizing electricity production* in the context of the *Gaspard Monge call program for Optimisation and Operation Research*. We extract global constraints from daily energy production temporal series issued from all productions plants of *EDF* over a period of several years.
4. Application Domains

4.1. Overview

The methods and tools developed by the VERTECS project-team for test generation and control synthesis of reactive systems are intended to be as generic as possible. This allows us to apply them in many application domains where the presence of software is predominant and its correctness is essential. In particular, we apply our research in the context of telecommunication systems, for embedded systems, for smart-cards application, and control-command systems.

4.2. Telecommunication systems

Our research on test generation was initially proposed for conformance testing of telecommunication protocols. In this domain, testing is a normalized process [21], and formal specification languages are widely used (SDL in particular). Our test generation techniques have already proved useful in this context, going up to industrial transfer. New standardized component-based design methodologies such as UML and OMG’s MDE increase the need for formal techniques in order to ensure the compositionality of components, by verification and testing. Our techniques, by their genericity and adaptativity, have also proved useful at different levels of these methodologies, from component testing to system testing. The telecommunication industry now also tries to provide more and more services to the users. These services must be validated.

4.3. Software embedded systems

In the context of transport, software embedded systems are increasingly predominant. This is particularly important in automotive systems, where software replaces electronics for power train, chassis (e.g. engine control, steering, brakes) and cabin (e.g. wiper, windows, air conditioning) or new services to passengers are increasing (e.g. telematics, entertainment). Car manufacturers have to integrate software components provided by many different suppliers, according to specifications. One of the problems is that testing is done late in the life cycle, when the complete system is available. Faced with these problems, but also with the complexity of systems, compositionality of components, distribution, etc, car manufacturers now try to promote standardized interfaces and component-based design methodologies. They also develop virtual platforms which allow for testing components before the system is complete. It is clear that software quality and trust are one of the problems that have to be tackled in this context. This is why we believe that our techniques (testing and control) can be useful.

4.4. Control-command systems

The main application domain for our techniques is control-command systems. In general, such systems control costly machines (see, e.g., robotic systems, flexible manufacturing systems), that are connected to an environment (e.g., a human operator). Such systems are often critical systems and errors occurring during their execution may have dramatic economical or human consequences. In this field, the controller synthesis methodology (CSM) is useful to ensure by construction the interaction between 1) the different components, and 2) the environment and the system itself. For the first point, the CSM is often used as a safe scheduler, whereas for the second one, the supervisor can be interpreted as a safe discrete tele-operation system. Also in the context of the Vacsim ANR project, we investigate the testing, monitoring and verification of control-command systems.
4. Application Domains

4.1. Localisation, navigation and tracking

See 5.9.

Among the many application domains of particle methods, or interacting Monte Carlo methods, ASPI has decided to focus on applications in localisation (or positioning), navigation and tracking [53], [47], which already covers a very broad spectrum of application domains. The objective here is to estimate the position (and also velocity, attitude, etc.) of a mobile object, from the combination of different sources of information, including

- a prior dynamical model of typical evolutions of the mobile, such as inertial estimates and prior model for inertial errors,
- measurements provided by sensors,
- and possibly a digital map providing some useful feature (terrain altitude, power attenuation, etc.) at each possible position.

In some applications, another useful source of information is provided by

- a map of constrained admissible displacements, for instance in the form of an indoor building map, which particle methods can easily handle (map-matching). This Bayesian dynamical estimation problem is also called filtering, and its numerical implementation using particle methods, known as particle filtering, has been introduced by the target tracking community [52], [67], which has already contributed to many of the most interesting algorithmic improvements and is still very active, and has found applications in
 - target tracking, integrated navigation, points and / or objects tracking in video sequences,
 - mobile robotics, wireless communications, ubiquitous computing and ambient intelligence,
 - sensor networks, etc.

ASPI is contributing (or has contributed recently) to several applications of particle filtering in positioning, navigation and tracking, such as geolocalisation and tracking in a wireless network, terrain–aided navigation, and data fusion for indoor localisation.

4.2. Rare event simulation

See 3.3, and 5.1, 5.6, 5.10 and 5.11.

Another application domain of particle methods, or interacting Monte Carlo methods, that ASPI has decided to focus on is the estimation of the small probability of a rare but critical event, in complex dynamical systems. This is a crucial issue in industrial areas such as

- nuclear power plants, food industry, telecommunication networks, finance and insurance industry, air traffic management, etc.

In such complex systems, analytical methods cannot be used, and naive Monte Carlo methods are clearly inefficient to estimate accurately very small probabilities. Besides importance sampling, an alternate widespread technique consists in multilevel splitting [60], where trajectories going towards the critical set are given offsprings, thus increasing the number of trajectories that eventually reach the critical set. This approach not only makes it possible to estimate the probability of the rare event, but also provides realizations of the random trajectory, given that it reaches the critical set, i.e. provides realizations of typical critical trajectories, an important feature that methods based on importance sampling usually miss.

ASPI is contributing (or has contributed recently) to several applications of multilevel splitting for rare event simulation, such as risk assessment in air traffic management, detection in sensor networks, and protection of digital documents.
4. Application Domains

4.1. Introduction

In this section, the problems we are faced with vibration-based monitoring and within our two major application domains are briefly described.

4.2. Vibrations-based monitoring

Detecting and localizing damages for monitoring the integrity of structural and mechanical systems is a topic of growing interest, due to the aging of many engineering constructions and machines and to increased safety norms. Many current approaches still rely on visual inspections or local non-destructive evaluations performed manually. This includes acoustic, ultrasonic, radiographic or eddy-current methods; magnet or thermal field techniques, ... These experimental approaches assume an a priori knowledge and the accessibility of a neighborhood of the damage location. Automatic global vibration-based monitoring techniques have been recognized to be useful alternatives to those local evaluations [33]. However this has led to actual damage monitoring systems only in the field of rotating machines.

A common feature of the structures to be monitored (e.g. civil engineering structures subject to hurricanes or earthquakes, but also swell, wind and rain; aircrafts subject to strength and turbulences, ...) is the following. These systems are subject to both fast and unmeasured variations in their environment and small slow variations in their vibrating characteristics. The available data (measurements from e.g. strain gauges or accelerometers) do not separate the effects of the external forces from the effect of the structure. The external forces vary more rapidly than the structure itself (fortunately!), damages or fatigues on the structure are of interest, while any change in the excitation is meaningless. Expert systems based on a human-like exploitation of recorded spectra can hardly work in such a case: the changes of interest (1% in eigenfrequencies) are visible neither on the signals nor on their spectra. A global health monitoring method must rather rely on a model that will help in discriminating between the two mixed causes of the changes that are contained in the measurements.

Classical modal analysis and vibration monitoring methods basically process data registered either on test beds or under specific excitation or rotation speed conditions. However there is a need for vibration monitoring algorithms devoted to the processing of data recorded in-operation, namely during the actual functioning of the considered structure or machine, without artificial excitation, speeding down or stopping.

Health monitoring techniques based on processing vibration measurements basically handle two types of characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the modal parameters (modal frequencies, and associated damping values and mode-shapes); see [37] and references therein. A central question for monitoring is to compute changes in those characteristics and to assess their significance. For the frequencies, crucial issues are then: how to compute the changes, to assess that the changes are significant, to handle correlations among individual changes. A related issue is how to compare the changes in the frequencies obtained from experimental data with the sensitivity of modal parameters obtained from an analytical model. Furthermore, it has been widely acknowledged that, whereas changes in frequencies bear useful information for damage detection, information on changes in (the curvature of) mode-shapes is mandatory for performing damage localization. Then, similar issues arise for the computation and the significance of the changes. In particular, assessing the significance of (usually small) changes in the mode-shapes, and handling the (usually high) correlations among individual mode-shape changes are still considered as open questions [37], [33].
Controlling the computational complexity of the processing of the collected data is another standard monitoring requirement, which includes a limited use of an analytical model of the structure. Moreover, the reduction from the analytical model to the experimental model (truncated modal space) is known to play a key role in the success of model-based damage detection and localization. The approach which we have been developing, based on the foundations in modules 3.2–3.5, aims at addressing all the issues and overcoming the limitations above.

4.3. Civil engineering

Civil engineering is a currently renewing scientific research area, which can no longer be restricted to the single mechanical domain, with numerical codes as its central focus. Recent and significant advances in physics and physical chemistry have improved the understanding of the detailed mechanisms of the constitution and the behavior of various materials (see e.g. the multi-disciplinary general agreement CNRS-Lafarge). Moreover, because of major economical and societal issues, such as durability and safety of infrastructures, buildings and networks, civil engineering is evolving towards a multi-disciplinary field, involving in particular information sciences and technologies and environmental sciences.

These last ten years, monitoring the integrity of the civil infrastructure has been an active research topic, including in connected areas such as automatic control, for mastering either the aging of the bridges, as in America (US, Canada) and Great Britain, or the resistance to seismic events and the protection of the cultural heritage, as in Italy and Greece. The research effort in France seems to be more recent, maybe because a tendency of long term design without fatigue oriented inspections, as opposite to less severe design with planned mid-term inspections. One of the current thematic priorities of the Réseau de Génie Civil et Urbain (RGCU) is devoted to constructions monitoring and diagnostics. The picture in Asia (Japan, and also China) is somewhat different, in that the demand for automatic data processing for global SHM systems is much higher, because recent or currently built bridges are equipped with hundreds if not thousands of sensors, in particular the Hong Kong-Shenzen Western Corridor and Stonecutter Bridge projects.

Among the challenges for vibration-based bridges health monitoring, two major issues are the different kinds of (non measured) excitation sources and the environmental effects [38]. Typically the traffic on and under the bridge, the wind and also the rain, contribute to excite the structure, and influence the measured dynamics. Moreover, the temperature is also known to affect the eigenfrequencies and mode-shapes, to an extent which is significant w.r.t. the deviations to be monitored.

4.4. Aeronautics

The aging of aerospace structures is a major current concern of civilian and military aircraft operators. Another key driving factor for SHM is to increase the operation and support efficiency of an air vehicle fleet. A SHM system is viewed as a component of a global integrated vehicle health management (IVHM) system. An overview of the users needs can be found in [30].

Improved safety and performance and reduced aircraft development and operating costs are other major concerns. One of the critical design objectives is to clear the aircraft from unstable aero-elastic vibrations (flutter) in all flight conditions. This requires a careful exploration of the dynamical behavior of the structure subject to vibration and aero-servo-elastic forces. This is achieved via a combination of ground vibration tests and in-flight tests. For both types of tests, various sensors data are recorded, and modal analyses are performed. Important challenges of the in-flight modal analyses are the limited choices for measured excitation inputs, and the presence of unmeasured natural excitation inputs (turbulence). A better exploitation of flight test data can be achieved by using output-only system identification methods, which exploits data recorded under natural excitation conditions (e.g., turbulent), without resorting to artificial control surface excitation and other types of excitation inputs [10].
A crucial issue is to ensure that the newly designed airplane is stable throughout its operating range. A critical instability phenomenon, known under the name of “aero-elastic flutter, involves the unfavorable interaction of aerodynamic, elastic, and inertia forces on structures to produce an unstable oscillation that often results in structural failure” [35]. For preventing from this phenomenon, the airplane is submitted to a flight flutter testing procedure, with incrementally increasing altitude and airspeed. The problem of predicting the speed at which flutter can occur is usually addressed with the aid of identification methods achieving modal analysis from the in-flight data recorded during these tests. The rationale is that the damping coefficient reflects the rate of increase or decrease in energy in the aero-servo-elastic system, and thus is a relevant measure of stability. Therefore, while frequencies and mode-shapes are usually the most important parameters in structural analysis, the most critical ones in flutter analysis are the damping factors, for some critical modes. The mode-shapes are usually not estimated for flutter testing.

Until the late nineties, most approaches to flutter clearance have led to data-based methods, processing different types of data. A combined data-based and model-based method has been introduced recently under the name of flutterometer. Based on an aero-elastic state-space model and on frequency-domain transfer functions extracted from sensor data under controlled excitation, the flutterometer computes on-line a robust flutter margin using the μ-method for analyzing the worst case effects of model uncertainty. In recent comparative evaluations using simulated and real data [32], [36], several data-based methods are shown to fail in accurately predicting flutter when using data from low speed tests, whereas the flutterometer turns out not to converge to the true flutter speed during envelope expansion, due to inherent conservative predictions.

Algorithms achieving the on-line in-flight exploitation of flight test data are expected to allow a more direct exploration of the flight domain, with improved confidence and reduced costs. Among other challenges, one important issue to be addressed on-line is the flight flutter monitoring problem, stated as the problem of monitoring some specific damping coefficients. On the other hand, it is known, e.g. from Cramer-Rao bounds, that damping factors are difficult to estimate accurately. For improving the estimation of damping factors, and moreover for achieving this in real-time during flight tests, one possible although unexpected route is to rely on detection algorithms able to decide whether some damping factor decreases below some critical value or not. The rationale is that detection algorithms usually have a much shorter response time than identification algorithms.
4. Application Domains

4.1. Laser physics

Laser physics considers the propagation over long space (or time) scales of high frequency waves. Typically, one has to deal with the propagation of a wave having a wavelength of the order of 10^{-6}m, over distances of the order 10^{-2}m to 10^{4}m. In these situations, the propagation produces both a short-scale oscillation and exhibits a long term trend (drift, dispersion, nonlinear interaction with the medium, or so), which contains the physically important feature. For this reason, one needs to develop ways of filtering the irrelevant high-oscillations, and to build up models and/or numerical schemes that do give information on the long-term behavior. In other terms, one needs to develop high-frequency models and/or high-frequency schemes.

Generally speaking, the demand in developing such models or schemes in the context of laser physics, or laser/matter interaction, is large. It involves both modeling and numerics (description of oscillations, structure preserving algorithms to capture the long-time behaviour, etc).

In a very similar spirit, but at a different level of modelling, one would like to understand the very coupling between a laser propagating in, say, a fiber, and the atoms that build up the fiber itself.

The standard, quantum, model in this direction is called the Bloch model: it is a Schrödinger like equation that describes the evolution of the atoms, when coupled to the laser field. Here the laser field induces a potential that acts directly on the atom, and the link between this potential and the laser itself is given by the so-called dipolar matrix, a matrix made up of physical coefficients that describe the polarization of the atom under the applied field.

The scientific objective here is twofold. First, one wishes to obtain tractable asymptotic models that average out the high oscillations of the atomic system and of the laser field. A typical phenomenon here is the resonance between the field and the energy levels of the atomic system. Second, one wishes to obtain good numerical schemes in order to solve the Bloch equation, beyond the oscillatory phenomena entailed by this model.

4.2. Molecular Dynamics

In classical molecular dynamics, the equations describe the evolution of atoms or molecules under the action of forces deriving from several interaction potentials. These potentials may be short-range or long-range and are treated differently in most molecular simulation codes. In fact, long-range potentials are computed at only a fraction of the number of steps. By doing so, one replaces the vector field by an approximate one and alternates steps with the exact field and steps with the approximate one. Although such methods have been known and used with success for years, very little is known on how the “space” approximation (of the vector field) and the time discretization should be combined in order to optimize the convergence. Also, the fraction of steps where the exact field is used for the computation is mainly determined by heuristic reasons and a more precise analysis seems necessary. Finally, let us mention that similar questions arise when dealing with constrained differential equations, which are a by-product of many simplified models in molecular dynamics (this is the case for instance if one replaces the highly-oscillatory components by constraints).

4.3. Plasma physics

The development of efficient numerical methods is essential for the simulation of plasmas and beams at the kinetic level of description (Vlasov type equations). It is well known that plasmas or beams give rise to small scales (Debye length, Larmor radius, gyroperiod, mean free path...) which make numerical simulations challenging. Instead of solving the limit or averaged models by considering these small scales equal to zero, our aim is to explore a different strategy, which consists in using the original kinetic equation. Specific numerical scheme called ‘Asymptotic Preserving” scheme is then built to discretize the original kinetic
equation. Such a scheme allows to pass to the limit with no stability problems, and provide in the limit a consistent approximation of the limit or average model. A systematic and robust way to design such a scheme is the micro-macro decomposition in which the solution of the original model is decomposed into an averaged part and a remainder.
4. Application Domains

4.1. Formal models in molecular biology

As mentioned before, our main goal in biology is to characterize groups of genetic actors that control the response of living species capable of facing extreme environments. To focus our developments, applications and collaborations, we have identified three biological questions which deserve integrative studies. Each axis may be considered independently from the others although their combination, a mid-term challenge, will have the best impact in practice towards the long-term perspective of identifying proteins controlling the production of a metabolite of industrial interest. It is illustrated in our presentation for a major algae product: polyunsaturated fatty acids (PUFAs) and their derivatives.

4.2. Biological data integration

Axis 1 (data integration) aims at identifying who is involved in the specific response of a biological system to an environmental stress. Targeted actors will mainly consist in groups of genetic products or biological pathways. For instance, which pathways are implied in the specific production of PUFAs in brown algae? The main work is to represent in a system of logical constraints the full knowledge at hand concerning the genetic or metabolic actors, the available observations and the effects of the system dynamics. To this aim, we focus on the use of Answer Set Programming as we are experienced in modeling with this paradigm and we have a strong partnership with a computer science team leader in the development of dedicated grounders and solvers (Potsdam university).

4.3. Asymptotic dynamics of a biological system

Once a model is built and its main actors are identified, the next step is to clarify how they combine to control the system (Axis 2). Roughly, the fine tuning of the system response may be of two types. Either it results from the discrete combinatorics of the actors, as the result of a genetic adaptation to extreme environmental conditions or the difference between species is rather at the enzyme-efficiency level. For instance, if Pufa’s are found to be produced using a set of pathways specific to brown algae, the work in axis 2 will consist to apply constraint-based combinatorial approaches to select consistent combinations of pathways controlling the metabolite production. Otherwise, if enzymes controlling the production of Pufa’s are found to be expressed in other algae, it suggests that the response of the system is rather governed by a fine quantitative tuning of pathways. In this case, we use symbolic dynamics and average-case analysis of algorithms to weight the respective importance of interactions in observed phenotypes (see Fig. 2). This specific approach is motivated by the quite restricted spectrum of available physiological observations over the asymptotic dynamics of the biological system.

4.4. Biological sequence annotation

In order to check the accuracy of in-silico predictions, a last step (Axis 3) is to extract genetic actors responsible of biological pathways of interest in the targeted organism and locate them in the genome. In our guiding example, active proteins implied in Pufa’s controlling pathways have to be precisely identified. Actors structures are represented by syntactic models (see figure 4). We use knowledge-based induction on far instances for the recognition of new members of a given sequence family within non-model genomes (see figure 3). A main objective is to model enzyme specificity with highly expressive syntactic structures - context-free model - in order to take into account constraints imposed by local domains or long-distance interactions within a protein sequence.
4. ApplicationDomains

4.1. Introduction
By designing new approaches for the analysis of fluid-image sequences the FLUMINANCE group aims at contributing to several application domains of great interest for the community and in which the analysis of complex fluid flows plays a central role. The group focuses mainly on two broad application domains:

- Environmental sciences;
- Experimental fluid mechanics and industrial flows.

4.2. Environmental sciences
The first huge application domain concerns all the sciences that aim at observing the biosphere evolution such as meteorology, climatology or oceanography but also remote sensing study for the monitoring of meteorological events or human activities consequences. For all these domains image analysis is a practical and unique tool to observe, detect, measure, characterize or analyze the evolution of physical parameters over a large domain. The design of generic image processing technique for all these domains might offer practical software tools to measure precisely the evolution of fluid flows for weather forecasting or climatology studies. It might also offer possibilities of closed surveillance of human and natural activities in sensible areas such as forests, river edges, and valley in order to monitor pollution, floods or fire. The need in terms of local weather forecasting, risk prevention, or local climate change is becoming crucial for our tomorrow’s life. At a more local scale, image sensors may also be of major utility to analyze precisely the effect of air curtains for safe packaging in agro-industrial.

4.3. Experimental fluid mechanics and industrial flows
In the domain of experimental fluid mechanics, the visualization of fluid flows plays a major role, especially for turbulence study since high frequency imaging has been made currently available. Together with analysis of turbulence at different scales, one of the major goals pursued at the moment by lot of scientists and engineers consists in studying the ability to manipulate a flow to induce a desired change. This is of huge technological importance to enhance or inhibit mixing in shear flows, improve energetic efficiency or control the physical effects of strain and stresses. This is for instance of particular interest for:

- military applications, for example to limit the infra-red signatures of fighter aircraft;
- aeronautics and transportation, to limit fuel consumption by controlling drag and lift effects of turbulence and boundary layer behavior;
- industrial applications, for example to monitor flowing, melting, mixing or swelling of processed materials, or preserve manufactured products from contamination by airborne pollutants, or in industrial chemistry to increase chemical reactions by acting on turbulence phenomena.

...
4. Application Domains

4.1. Sequence comparison

Historically, sequence comparison has been one of the most important topics in bioinformatics. BLAST is a famous software tool particularly designed for solving problems related to sequence comparisons. Initially conceived to perform searches in databases, it has mostly been used as a general-purpose sequence comparison tool. Nowadays, together with the inflation of genomic data, other software comparison tools that are able to provide better quality solutions (w.r.t the ones provided by BLAST) have been developed. They generally target specific comparison demands, such as read mapping, bank-to-bank comparison, meta-genomic sample analysis, etc. Today, sequence comparison algorithms must clearly be revisited to scale up with the very large number of sequence objects that new NGS problems have to handle.

4.2. Genome comparison

This application domain aims at providing a global relationship between genomes. The problem lies in the different structures that genomes can have: segments of genome can be rearranged, duplicated or deleted (the alignment can no longer be done in one piece). Therefore one major aim is the study of chromosomal rearrangements, breaking points, structural variation between individuals of the same species, etc. However, even analyses focused on smaller variations such as Single Nucleotide Polymorphisms (SNP) at the whole genome scale are different from the sequence comparison problem, since one needs first to identify common (orthologous) parts between whole genome sequences and thus obtain this global relationship (or map) between genomes. New challenges in genome comparison are emerging with the evolution of sequencing techniques. Nowadays, they allow for comparing genomes at intra-species level, and to deal simultaneously with hundreds or thousands of complete genomes. New methods are needed to find the sequence and structural variants between such a large number of non-assembled genomes. Even for the comparison of more distant species, classical methods must be revisited to deal with the increasing number of genomes but more importantly their decreasing quality: genomes are no longer fully assembled nor annotated.

4.3. Protein comparison

Comparing protein is important for understanding their evolutionary relationships and for predicting their structures and their functions. While annotating functions for new proteins, such as those solved in structural genomics projects, protein structural alignment methods may be able to identify functionally related proteins when the sequence identity between a given query protein and the related proteins are low (i.e. lower than 20%). Moreover, protein comparison allows for solving the so-called protein family identification problem. Given an unclassified protein structure (query), the comparison of protein structures can be used for assigning a score measuring the "similarity" between the query and the proteins belonging to a set of families. Based on this score, the query is assigned to one of the families of the set. The knowledge acquired by performing such analyses can then be exploited in methods for protein structure prediction that are based on a homology modeling approach.
4. Application Domains

4.1. Geophysics

The team has chosen a particular domain of application, which is geophysics. In this domain, many problems require solving large scale systems of equations, arising from the discretization of coupled models. Emphasis is put on hydrogeology, but the team also investigates geodesy, heat and mass transfer in soil, and granular materials. One of the objectives is to use high performance computing in order to tackle 3D large scale computational domains with complex physical models.

4.2. Hydrogeology

This is joint work with Geosciences Rennes, University of Poitiers and CDCSP at University of Lyon. It is also done in the context of the group Momas and Andra grant.

Many environmental studies rely on modelling geo-chemical and hydrodynamic processes. Some issues concern water resources, aquifer contamination, underground waste disposal, clean-up of former waste deposits, acid mine drainage remediation. Other issues, also related to energy, concern geothermy, unconventional gas, enhanced oil recovery, underground storage of CO2, underground storage of nuclear waste.

Simulation of contaminant transport in groundwater is a highly complex problem, governed by coupled linear or nonlinear PDAEs. Moreover, due to the lack of experimental data, stochastic models are used for dealing with heterogeneity. The main objective of the team is to design and to implement efficient and robust numerical models, including Uncertainty Quantification methods.

Recent research showed that rock solid masses are in general fractured and that fluids can percolate through networks of inter-connected fractures. Fractured media are by nature very heterogeneous and multi-scale, so that homogenisation approaches are not relevant. The team develops a numerical model for fluid flow and contaminant transport in three-dimensional porous fractured media.

An important output is the parallel scientific platform H2OLab, running on clusters, grids and machines available in supercomputing centers.
4. Application Domains

4.1. Biological pilot models: Birbeck granule and Melanosome biogenesis

In the past recent years, research carried at UMR 144 CNRS Institut Curie contributed to a better understanding of the intracellular compartmentation of specialized model cells such as melanocytes and Langerhans cells, the components and structural events involved in the biogenesis of their specialized organelles: melanosomes and Birbeck granules, respectively. These studies have started to highlight:

- multiple sorting and structural events involved in the biogenesis of these organelles;
- complexity of the endo-melanosomal network of these highly specialized cells;
- complex molecular architecture organizing and coordinating their dynamics;
- intracellular transport steps affected in genetic diseases, among which the Hermansky Pudlak syndrome (HPS) or involved in viral infection (HIV and Langerin in Langerhans cells).

In this context, the central aim of SERPICO is to understand how the different machineries of molecular components involved are interconnected and coordinated to generate such specialized structures. We need to address the following topics:

1. developing new bioimaging approaches to observe and statistically analyze such coordinated dynamics in live material;
2. correlating this statistically relevant spatiotemporal organization of protein networks with the biological architectures and within the overall biological environment as seen at the ultrastructural level;
3. modeling intracellular transport of those reference biological complex systems and proposing new experimental plans in an iterative and virtuous circle;
4. managing and analyzing the workflow of image data obtained along different multidimensional microscopy modalities.

These studies are essential to unravel the complexity of the endomembrane system and how different machineries evolve together (e.g. see Fig. 1). They help to control cell organization and function at different scales through an integrative workflow of methodological and technological developments.

At long term, these studies will shed light on the cellular and molecular mechanisms underlying antigen presentation, viral infection or defense mechanisms, skin pigmentation, the pathogenesis of hereditary genetic disorders (lysosomal diseases, immune disorders) and on the mechanisms underlying cell transformation. Our methodological goal is also to link in a single workflow, dynamics information obtained through diffraction limited light microscopy, eventually at a time regime compatible with live cell imaging. The overview of ultrastructural organization will be achieved by complementary electron microscopical methods. Image visualization and quantitative analysis are of course important and essential issues in this context.
Figure 1. Rab11/Langerin (TIRF) and Birbeck granules: from interactions and trafficking to membrane biogenesis.
4. Application Domains

4.1. Neuroimaging

One research objective in neuroimaging is the construction of anatomical and functional cerebral maps under normal and pathological conditions. Many researches are currently performed to find correlations between anatomical structures, essentially sulci and gyri, where neuronal activation takes place, and cerebral functions, as assessed by recordings obtained by the means of various neuroimaging modalities, such as PET (Positron Emission Tomography), fMRI (Functional Magnetic resonance Imaging), EEG (Electro-EncephaloGraphy) and MEG (Magneto-EncephaloGraphy). Then, a central problem inherent to the formation of such maps is to put together recordings obtained from different modalities and from different subjects. This mapping can be greatly facilitated by the use of MR anatomical brain scans with high spatial resolution that allows a proper visualization of fine anatomical structures (sulci and gyri). Recent improvements in image processing techniques, such as segmentation, registration, delineation of the cortical ribbon, modelling of anatomical structures and multi-modality fusion, make possible this ambitious goal in neuroimaging. This problem is very rich in terms of applications since both clinical and neuroscience applications share similar problems. Since this domain is very generic by nature, our major contributions are directed towards clinical needs even though our work can address some specific aspects related to the neuroscience domain.

4.2. Multiple sclerosis

Over the past years, a discrepancy became apparent between clinical Multiple sclerosis (MS) classification describing on the one hand MS according to four different disease courses and, on the other hand, the description of two different disease stages (an early inflammatory and a subsequently neurodegenerative phase). It is to be expected that neuroimaging will play a critical role to define in vivo those four different MS lesion patterns. An in vivo distinction between the four MS lesion patterns, and also between early and late stages of MS will have an important impact in the future for a better understanding of the natural history of MS and even more for the appropriate selection and monitoring of drug treatment in MS patients. Since MRI has a low specificity for defining in more detail the pathological changes which could discriminate between the different lesion types, but a high sensitivity to detect focal and also widespread, diffuse pathology of the normal appearing white and grey matter, our major objective within this application domain is to define new neuroimaging markers for tracking the evolution of the pathology from high dimensional data (e.g. nD+t MRI). In addition, in order to complement MR neuroimaging data, we ambition to perform also cell labelling neuroimaging (e.g. MRI or PET) and to compare MR and PET data using standard and experimental MR contrast agents and radiolabeled PET tracers for activated microglia (e.g. USPIO or PK 11195). The goal is to define and develop, for routine purposes, cell specific and also quantitative imaging markers for the improved in vivo characterization of MS pathology.

4.3. Modelling of anatomical and anatomo-functional neurological patterns

The major objective within this application domain is to build anatomical and functional brain atlases in the context of functional mapping and for the study of developmental, neurodegenerative or even psychiatric brain diseases (Multiple sclerosis, Epilepsy, Parkinson, Dysphasia, Depression or even Alzheimer). This is a very competitive research domain; our contribution is based on our previous works in this field [52], [54], [53], [55], and by continuing our local and wider collaborations.
An additional objective within this application domain is to find new descriptors to study the brain anatomy and/or function (e.g. variation of brain perfusion, evolution in shape and size of an anatomical structure in relation with pathology or functional patterns, computation of asymmetries ...). This is also a very critical research domain, especially for many developmental or neurodegenerative brain diseases.
ACES Project-Team (section vide)
4. Application Domains

4.1. Overview

The results of the research targeted in ASAP span a wide range of applications. Below are a few examples.

- Personalized Web Search.
- Recommendation.
- Social Networks.
- Notification Systems.
- Distributed Storage.
- Video Streaming.
4. Application Domains

4.1. Enterprise Information Systems and Services

Large IT infrastructures typically evolve by adding new third-party or internally-developed components, but also frequently by integrating already existing information systems. Integration frequently requires the addition of glue code that mediates between different software components and infrastructures but may also consist in more invasive modifications to implementations, in particular to implement crosscutting functionalities. In more abstract terms, enterprise information systems are subject to structuring problems involving horizontal composition (composition of top-level functionalities) as well as vertical composition (reuse and sharing of implementations among several top-level functionalities). Moreover, information systems have to be more and more dynamic.

Service-Oriented Computing (SOC) that is frequently used for solving some of the integration problems discussed above. Indeed, service-oriented computing has two main advantages:
- **Loose-coupling**: services are autonomous, in that they do not require other services to be executed;
- **Ease of integration**: Services communicate over standard protocols.

Our current work is based on the following observation: similar to other compositional structuring mechanisms, SOAs are subject to the problem of crosscutting functionalities, that is, functionalities that are scattered and tangled over large parts of the architecture and the underlying implementation. Security functionalities, such as access control and monitoring for intrusion detection, are a prime example of such a functionality in that it is not possible to modularize security issues in a well-separated module. Aspect-Oriented Software Development is precisely an application-structuring method that addresses in a systemic way the problem of the lack of modularization facilities for crosscutting functionalities.

We are considering solutions to secure SOAs by providing an aspect-oriented structuring and programming model that allows security functionalities to be modularized. Two levels of research have been identified:
- **Service level**: as services can be composed to build processes, aspect weaving will deal with the orchestration and the choreography of services.
- **Implementation level**: as services are abstractly specified, aspect weaving will require to extend service interfaces in order to describe the effects of the executed services on the sensitive resources they control.

In 2012, we have developed techniques for the Service-Level Agreement (SLA) management for Cloud elasticity, see Sec. 6.3, as well as models and type systems for service-oriented systems, see Sec. 6.1. Furthermore, we take part in a starting new European project A4Cloud on accountability challenges, that is, the responsible stewardship of third-party data and computations, see Sec. 8.2.

4.2. Cluster, Grid and Cloud Computing

Cluster, Grid and more recently Cloud computing platforms aim at delivering a larger capacity of computing power compared to a single computer configuration. This capacity can be used to improve performance (for scientific applications) or availability (e.g., for Internet services hosted by a data center). These distributed infrastructures consist of a group of coupled computers that work together. This group can be spread across a LAN (cluster), across a WAN (Grid), and across the Internet (Clouds). Due to their large scale, these architectures require permanent adaptation, from the application to the system level and calls for automation of the adaptation process. We focus on self-configuration and self-optimization functionalities across the whole software stack: from the lower levels (systems mechanisms such as distributed file systems for instance) to the higher ones (i.e. the applications themselves such as J2EE clustered servers or scientific grid applications).
In 2012, we have developed the DVMS system, which contains one of the most highly scalable scheduling algorithm for virtual machines; we have also generated several results on the energy efficient management of Cloud applications and infrastructures, see Sec. 6.3.

4.3. Pervasive Systems

Pervasive systems are another class of systems raising interesting challenges in terms of software structuring. Such systems are highly concurrent and distributed. Moreover, they assume a high-level of mobility and context-aware interactions between numerous and heterogeneous devices (laptops, PDAs, smartphones, cameras, electronic appliances...). Programming such systems requires proper support for handling various interfering concerns like software customization and evolution, security, privacy, context-awareness... Additionally, service composition occurs spontaneously at runtime.

In 2012, we have developed the language EScala, which integrates reactive programming through events with aspect-oriented and object-oriented mechanisms, see Sec. 6.1.
ATLANMOD Team

4. Application Domains

4.1. Introduction

By definition, MDE can be applied to any software domain. Core MDE techniques developed by the team have been successfully applied to a large variety of industrial domains from information systems to embedded systems. MDE is not even restricted to software engineering, but also applies to data engineering [50] and to system engineering [41]. There are a lot of problems in these application domains that may be addressed by means of modeling and model transformation techniques. For the core techniques, we are now focusing on solving the scalability problem to make sure they can be successfully adopted by our industrial partners in the context of large and complex software systems.

Nevertheless, the team has indeed selected a set of vertical and horizontal domains that AtlanMod finds specially interesting. In what follows we describe three of them.

4.2. Reverse Engineering

One important and original domain that is being investigated by the AtlanMod team is the reverse engineering of existing IT systems. We do believe that efficiently dealing with such legacy systems is one of the main challenges in Software Engineering and related industry today. Having a better understanding of these systems in order to document, maintain, improve or migrate them is thus a key requirement for both academic and industrial actors in this area. However, it is not an easy task and it still raises interesting challenging issues to be explored [49].

We have shown how reverse engineering practices may be advantageously revisited with the help of the MDE approach and techniques, applying (as base principle) the systematic representation as models of the required information discovered from the legacy software artifacts (e.g.; source code, configuration files, documentation, metadata, etc). The rise in abstraction allowed by MDE can bring new hopes that reverse engineering is now able to move beyond more traditional ad-hoc practices. For instance, an ongoing industrial PhD in partnership with IBM France aims to investigate the possibilities of conceptualizing a generic framework enabling the extraction of business rules from a legacy application, as much as possible, independently of the language used to code it. Moreover, different pragmatic solutions for improving the overall scalability when dealing with large-scale legacy systems (handling huge data volumes) are intensively studied by the team.

In this context, AtlanMod has set up and is developing accordingly the open source Eclipse-MDT MoDisco project (see 5.2). MoDisco is notably being referenced by the OMG ADM (Architecture Driven Modernization) normalization task force as the reference implementation for several of its standard metamodels.

We have also opened a novel research line focused on integration of APIs into MDE. In the application of reverse engineering processes while modernizing software system it is very common to face the need of integrating Application Programming Interfaces (APIs). Indeed, building any application usually involves managing a plethora of APIs to access different software assets such as: basic infrastructures (e.g., operating system, databases, or middleware), general-purpose or domain specific libraries, frameworks, software components, web services, and even other applications. Thus, to promote the interoperability between the API and model technical spaces, we have developed API2MoL, which is an approach aimed at automating the implementation of API-MDE bridges. This new language allows defining mappings between the artefacts of a given API (e.g., API classes in object-oriented APIs) and the elements of a metamodel that represents this API in the MDE technical space. A mapping definition provides the information which is necessary to build a bridge for a concrete API specification and metamodel. Thanks to the API-MDE bridges automatically created, developers are liberated from having to manually implement the tasks of obtaining models from API objects and generating such objects from models. Therefore, API2MoL may improve the productivity and quality of the part of the MDE application that deals with the APIs.
4.3. Security Engineering

Several components are required to build up a system security architecture, such as firewalls, database user access control, intrusion detection systems, and VPN (Virtual Private Network) routers. These components must be properly configured to provide an appropriate degree of security to the system. The configuration process is highly complex and error-prone. In most organizations, security components are either manually configured based on security administrators expertise and flair; or simply recycled from existing configurations already deployed in other systems (even if they may not be appropriated for the current one). These practices put at risk the security of the whole organization.

We have started a PhD thesis in this domain intended to investigate the construction of a model-driven automatic reverse engineering mechanism (implemented as an extension of the MoDisco project) capable of analyzing deployed security aspects of components (e.g., concrete firewall configurations) to derive the abstract model (e.g., network security global policy) that is actually enforced over the system. Once the model is obtained, it can be reconciled with the expected security directives, to check its compliance, can be queried to test consistency or used in a process of forward engineering to generate validated security configurations.

As a first step we intend to apply model-driven techniques for the extraction of high level model representations of security policies enforced by firewalls. Firewalls, core components in network security systems, are generally configured by using very low level vendor specific rule-based languages, difficult to understand and to maintain. As a consequence, as the configuration files grow, understanding which security policy is being actually enforced or checking if inconsistencies has been introduced becomes a very complex and time consuming task. We propose to raise the level of abstraction so that the user can deal directly with the high level policies. Once a model representation of the enforced policy is available, model-driven techniques will ease some of the tasks we need to perform, like consistency checking, validation, querying and visualization. Easy migration between different firewall vendors will be also enabled.

4.4. Software Quality

As with any type of production, an essential part of software production is determining the quality of the software. The level of quality associated to a software product is inevitably tied to properties such as how well it was developed and how useful it is to its users. The AtlanMod team is considering software quality aspects in two areas that are described in the following paragraphs: formal verification of models and corpus-based domain-specific language (DSL) analysis.

In the context of MDE, models are expressions of a conceptualization (metamodel) of their respective domain. Therefore precise definitions of our metamodels are important to get the subsequent MDE activities right, such as testing, concrete syntax definition, model interchange, code generation, and any more. In this sense, metamodels establish a single point of truth. The Object Constraint Language (OCL) of the OMG is widely accepted as a standard language to provide such precise definitions.

However, precise metamodels are complex artifacts. To get them right, systematic approaches to quality assurance are required. As a solution to this problem, we propose formal checking of model satisfiability (can we express the desired things), and formal checking of unsatisfiability (does the metamodel not have models with undesirable properties). As both activities constitute NP-hard problems, they have to be put carefully into algorithms. The team maintains the tool EMFtoCSP which translates the problem into the domain of constrain logic programming (CLP) for which sophisticated decision procedures exist. The tool integrates the described functionality in the Eclipse Modeling Framework (EMF) and the Eclipse Modeling Tools (MDT), making the functionality available for MDE in practice.

In terms of DSLs, an equally important aspect of software language engineering other than the initial development process is the identification of quality characteristics of the language. We are currently investigating the use of corpus-based analysis to identify language characteristics. A corpus in this case consists of artifacts or models of the DSL that have been generated by its users. We aim to extract information based on the corpus of a DSL to identify various characteristics that can potentially prove useful for the language engineer in his or her efforts to improve the language. Such information can complement other quality measurements including
the formal verification method described in the previous paragraph and user feedback-based evaluations. In addition to an initial investigation of cloning in DSLs, our corpus-based analysis is also investigating metamodel element instance and relationship analyses.
4. Application Domains

4.1. Application Domains

With the infiltration of computers and software in almost all aspects of our modern life, security can nowadays be seen as an absolutely general concern. As such, the results of the research targeted by CIDRE apply to a wide range of domains. It is clear that critical systems, where security (and safety) is a major concern, may benefit from ideas such as dynamic security policy monitoring. On the other hand, systems used by general public (basically, the internet and services such as web services, social networks, etc.) can also benefit from results obtained by CIDRE, especially with regards to privacy. Systems are getting more and more complex, decentralized, distributed, or spontaneous. The emergence of cloud computing brings many challenges that could benefit from ideas, approaches and solutions studied by CIDRE in the context of distributed systems.
DIONYSOS Project-Team (section vide)
4. Application Domains

4.1. Telecommunication network management

The management of telecommunication networks is traditionally a human performed activity that covers the five FCAPS functions: Fault management, network Configuration, Accounting, Performances and Security. This simple classification has exploded in the last decade, under the pressure of several phenomena. The first one concerns the growth in size and complexity of networks, with the emergence of new (possibly virtual) operators, the multiplication of vendors, new core and (wireless) access technologies, the variety of terminal devices, the convergence of phone/computer/radio/TV networks, the multiplication of services over the top, the necessity to provide QoS for a wide variety of traffic demands, etc. As a consequence, the management task is reaching the limits of human operators and demands automation. It is estimated that telecommunication companies spend over 50% of their manpower on management tasks. They naturally want to reduce it and dedicate their effort to the design and offer of innovative services, where the added value is more important (as witnessed by the success of some over-the-top companies). The result of these trends is that network management now covers a much wider variety of problems, for which automatic solutions are requested. This takes the name of self-management, or autonomic management: one wishes to manage networks by high-level objectives, and networks should be able to adapt themselves automatically to fulfill these objectives. DistribCom is contributing to this field with its background on the modeling of distributed/concurrent systems, and its expertise in distributed algorithms. Networks are perfect examples of large distributed and concurrent systems, with specific features like the dynamicity (their structure evolves) and a hierarchical structure (multiple layers, multiple description granularities). We have proposed model-based distributed algorithms to solve problems like failure diagnosis, negotiation of QoS (quality of service) parameters, parameter optimization, graceful shutdown of OSPF routers for maintenance operations... The present activities in this domain are related to the joint diagnosis for access network + core network + services, within the European IP UniverSelf. The challenges cover self-modelling methods (how to obtain the network model that is used by the management algorithms), active diagnosis methods that both adapt the scope of their network model and perform tests to explain a fault situation, and self-healing methods.

4.2. Web services and active structured documents

Keywords: Active documents, Web services, choreographies, orchestrations, QoS.

Web services architectures are usually composed of distant services, assembled in a composite framework. This raises several practical issues: one of them is how to choose services, assemble them, and coordinate their executions in a composite framework. Another issue is to guarantee good properties of a composite framework (safety but also QoS properties). All this has to be done in a context where a distant service provided by a subcontractor is only perceived as an interface, specifying legal inputs and outputs, and possibly a quality contract. The standard in industry for Web-services is now BPEL [43] but most of the problems listed above are untractable for this language. Composition of services can also be performed using choreography languages such as ORC [55]. The implementation of orchestration and choreography description languages raises a number of difficulties related to efficiency, clean semantics, and reproducibility of executions, issues of composite QoS associated with orchestrations. We develop studies in these areas, with the aim of proposing service composition frameworks equipped with tools to specify, but also to monitor and analyze the specified architectures. Another issue is the convergence between data and workflows. Web Service architectures are frequently considered exclusively as workflows, or as information systems. Many approaches to Web Service orchestration and choreography abstract data away. Symmetrically, modern approaches to Web data management typically based on XML and Xqueries rely on too simplistic forms of control. We develop a line of research on Active documents. Active documents are structured data embedding references to services,
which allow for the definitions of complex workflows involving data aspects. The original model was proposed by S. Abiteboul (see for instance [42]), but the concept of active document goes beyond AXML, and offers a document oriented alternative to Web services orchestrations and choreographies. This approach is in particular well adapted to the modeling of E-business processes, or information processing in organizations, etc. Our aim is to extend and promote the concept of active document. This means developing verification and composition tools for document-based architectures, considered not only as theoretical models but also as effectively running systems. To this extend, we develop an active document platform.
4. Application Domains

4.1. Application Domains

Below are three examples which illustrate the needs of large-scale data-intensive applications with respect to storage, I/O and data analysis. They illustrate the classes of applications that can benefit from our research activities.

4.1.1. Joint genetic and neuroimaging data analysis on Azure clouds

Joint acquisition of neuroimaging and genetic data on large cohorts of subjects is a new approach used to assess and understand the variability that exists between individuals, and that has remained poorly understood so far. As both neuroimaging- and genetic-domain observations represent a huge amount of variables (of the order of millions), performing statistically rigorous analyses on such amounts of data is a major computational challenge that cannot be addressed with conventional computational techniques only. On the one hand, sophisticated regression techniques need to be used in order to perform significant analysis on these large datasets; on the other hand, the cost entailed by parameter optimization and statistical validation procedures (e.g. permutation tests) is very high.

The A-Brain (AzureBrain) Project started in October 2010 within the Microsoft Research-Inria Joint Research Center. It is co-led by the KerData (Rennes) and Parietal (Saclay) Inria teams. They jointly address this computational problem using cloud related techniques on Microsoft Azure cloud infrastructure. The two teams bring together their complementary expertise: KerData in the area of scalable cloud data management, and Parietal in the field of neuroimaging and genetics data analysis.

In particular, KerData brings its expertise in designing solutions for optimized data storage and management for the Map-Reduce programming model. This model has recently arisen as a very effective approach to develop high-performance applications over very large distributed systems such as grids and now clouds. The computations involved in the statistical analysis designed by the Parietal team fit particularly well with this model.

4.1.2. Structural protein analysis on Nimbus clouds

Proteins are major components of the life. They are involved in lots of biochemical reactions and vital mechanisms for the living organisms. The three-dimensional (3D) structure of a protein is essential for its function and for its participation to the whole metabolism of a living organism. However, due to experimental limitations, only few protein structures (roughly, 60,000) have been experimentally determined, compared to the millions of proteins sequences which are known. In the case of structural genomics, the knowledge of the 3D structure may be not sufficient to infer the function. Thus, an usual way to make a structural analysis of a protein or to infer its function is to compare its known, or potential, structure to the whole set of structures referenced in the Protein Data Bank (PDB).

In the framework of the MapReduce ANR project led by KerData, we focus on the SuMo application (Surf the Molecules) proposed by Institute for Biology and Chemistry of the Proteins from Lyon (IBCP, a partner in the MapReduce project). This application performs structural protein analysis by comparing a set of protein structures against a very large set of structures stored in a huge database. This is a typical data-intensive application that can leverage the Map-Reduce model for a scalable execution on large-scale distributed platforms. Our goal is to explore storage-level concurrency-oriented optimizations to make the SuMo application scalable for large-scale experiments of protein structures comparison on cloud infrastructures managed using the Nimbus IaaS toolkit developed at Argonne National Lab (USA).
If the results are convincing, then they can immediately be applied to the derived version of this application for drug design in an industrial context, called MED-SuMo, a software managed by the MEDIT SME (also a partner in this project). For pharmaceutical and biotech industries, such an implementation run over a cloud computing facility opens several new applications for drug design. Rather than searching for 3D similarity into biostructural data, it will become possible to classify the entire biostructural space and to periodically update all derivative predictive models with new experimental data. The applications in that complete chemoproteomic vision concern the identification of new druggable protein targets and thereby the generation of new drug candidates.

4.1.3. I/O intensive climate simulations for the Blue Waters post-Petascale machine

A major research topic in the context of HPC simulations running on post-Petascale supercomputers is to explore how to efficiently record and visualize data during the simulation without impacting the performance of the computation generating that data. Conventional practice consists in storing data on disk, moving it off-site, reading it into a workflow, and analyzing it. It becomes increasingly harder to use because of the large data volumes generated at fast rates, in contrast to limited back-end speeds. Scalable approaches to deal with these I/O limitations are thus of utmost importance. This is one of the main challenges explicitly stated in the roadmap of the Blue Waters Project (http://www.ncsa.illinois.edu/BlueWaters/), which aims to build one of the most powerful supercomputers in the world when it comes online in 2012.

In this context, the KerData project-team started to explore ways to remove the limitations mentioned above through a collaborative work in the framework of the Joint Inria-UIUC Lab for Petascale Computing (JLPC, Urbana-Champaign, Illinois, USA), whose research activity focuses on the Blue Waters project. As a starting point, we are focusing on a particular tornado simulation code called CM1 (Cloud Model 1), which is intended to be run on the Blue Waters machine. Preliminary investigation demonstrated the inefficiency of the current I/O approaches, which typically consists in periodically writing a very large number of small files. This causes burst of I/O in the parallel file system, leading to poor performance and extreme variability (jitter) compared to what could be expected from the underlying hardware. The challenge here is to investigate how to make an efficient use of the underlying file system by avoiding synchronization and contention as much as possible. In collaboration with the JLPC, we started to address those challenges through an approach based on dedicated I/O cores.
4. Application Domains

4.1. Application Domains

The MYRIADS research activities address a broad range of applications domains. We validate our research results with selected use cases from the following application domains:

- Web services, Service oriented Applications,
- Business applications,
- Bio-informatics applications,
- Computational science applications,
- Numerical simulation.
4. Application Domains

4.1. Application Domains

SOA, telecommunication, distributed systems, Embedded Systems, software engineering, test, UML

From small embedded systems such as home automation products or automotive systems to medium sized systems such as medical equipment, office equipment, household appliances, smart phones; up to large Service Oriented Architectures (SOA), building a new application from scratch is no longer possible. Such applications reside in (group of) machines that are expected to run continuously for years without unrecoverable errors. Special care has then to be taken to design and validate embedded software, making the appropriate trade-off between various extra-functional properties such as reliability, timeliness, safety and security but also development and production cost, including resource usage of processor, memory, bandwidth, power, etc.

Leveraging ongoing advances in hardware, embedded software is playing an evermore crucial role in our society, bound to increase even more when embedded systems get interconnected to deliver ubiquitous SOA. For this reason, embedded software has been growing in size and complexity at an exponential rate for the past 20 years, pleading for a component based approach to embedded software development. There is a real need for flexible solutions allowing to deal at the same time with a wide range of needs (product lines modeling and methodologies for managing them), while preserving quality and reducing the time to market (such as derivation and validation tools).

We believe that building flexible, reliable and efficient embedded software will be achieved by reducing the gap between executable programs, their models, and the platform on which they execute, and by developing new composition mechanisms as well as transformation techniques with a sound formal basis for mapping between the different levels.

Reliability is an essential requirement in a context where a huge number of softwares (and sometimes several versions of the same program) may coexist in a large system. On one hand, software should be able to evolve very fast, as new features or services are frequently added to existing ones, but on the other hand, the occurrence of a fault in a system can be very costly, and time consuming. While we think that formal methods may help solving this kind of problems, we develop approaches where they are kept “behind the scene” in a global process taking into account constraints and objectives coming from user requirements.

Software testing is another aspect of reliable development. Testing activities mostly consist in trying to exhibit cases where a system implementation does not conform to its specifications. Whatever the efforts spent for development, this phase is of real importance to raise the confidence level in the fact that a system behaves properly in a complex environment. We also put a particular emphasis on on-line approaches, in which test and observation are dynamically computed during execution.
4. Application Domains

4.1. Introduction

The DREAM research applications have been oriented towards surveillance of large networks as telecommunication networks and more recently of web services. During the past few years, we have focused more and more on agricultural and environmental applications by means of research collaborations with INRA and Agrocampus Ouest.

4.2. Software components monitoring

software components, web services, distributed diagnosis

Web-services, i.e., services that are provided, controlled and managed through Internet, cover nowadays more and more application areas, from travel booking to goods supplying in supermarkets or the management of an e-learning platform. Such applications need to process requests from users and other services on line, and respond accurately in real time. Anyway, errors may occur, which need to be addressed in order to still be able to provide the correct response with a satisfactory quality of service (QoS): on-line monitoring, especially diagnosis and repair capabilities, become then a crucial concern.

We have been working on this problem within the WS-DIAMOND project [68], a large European funded project involving eight partners in Italy, France, Austria and Netherlands http://wsdiamond.di.unito.it/. Our own work consisted in two distinct contributions.

The first issue has been to extend the decentralized component-oriented approach, initially developed for monitoring telecommunication networks [4] to this new domain. To this end we have proposed the concept of distributed chronicles, with synchronization events, and the design of an architecture consisting of distributed CRSs (Chronicle Recognition Systems) communicating their local diagnoses to a broker agent which is in charge of merging them to compute a global diagnosis.

Our current work aims at coupling diagnosing and repair, in order to implement adaptive web services. We started this study by proposing an architecture inspired from the one developed during the WS-DIAMOND project and dedicated to the adaptive process of a request event when faults occur and propagate through the orchestration.

4.3. Environmental decision making

environment, decision methods

The need of decision support systems in the environmental domain is now well-recognized. It is especially true in the domain of water quality. For instance the program, named “Bretagne Eau Pure”, was launched a few years ago in order to help regional managers to protect this important resource in Brittany. The challenge is to preserve the water quality from pollutants as nitrates and herbicides, when these pollutants are massively used by farmers to weed their agricultural plots and improve the quality and increase the quantity of their crops. The difficulty is then to find solutions which satisfy contradictory interests and to get a better knowledge on pollutant transfer.

In this context, we are cooperating with INRA (Institut National de Recherche Agronomique) and developing decision support systems to help regional managers in preserving the river water quality. The approach we advocate is to rely on a qualitative modeling, in order to model biophysical processes in an explicative and understandable way. The SACADEAU model associates a qualitative biophysical model, able to simulate the biophysical process, and a management model, able to simulate the farmer decisions. One of our main contribution is the use of qualitative spatial modeling, based on runoff trees, to simulate the pollutant transfer through agricultural catchments.
The second issue is the use of learning/data mining techniques to discover, from model simulation results, the discriminant variables and automatically acquire rules relating these variables. One of the main challenges is that we are faced with spatiotemporal data. The learned rules are then analyzed in order to recommend actions to improve a current situation.

This work has been done in the framework of the APPEAU project, funded by ANR and of the ACASSYA project, funded by ANR, having started at the beginning of 2009 and ended at the end of 2012. We were also involved in the PSDR GO CLIMASTER project, that started in September 2008 and end in 2011. CLIMASTER stands for “Changement climatique, systèmes agricoles, ressources naturelles et développement territorial” and is dedicated to the impact of climate changes on the agronomical behaviors in west of France (“Grand Ouest”). PSDR GO stands for “Programme Pour et Sur le Développement Régional Grand Ouest”.

Our main partners are the SAS INRA research group, located in Rennes and the BIA INRA and AGIR INRA research groups in Toulouse.
4. Application Domains

4.1. Overview

The natural applications of our research are obviously in robotics. In fact, researches undertaken in the Lagadic group can apply to all the fields of robotics implying a vision sensor. They are indeed conceived to be independent of the system considered (and the robot and the vision sensor can even be virtual for some applications).

Currently, we are mostly interested in using visual servoing for aerial and space application, micromanipulation, autonomous vehicle navigation in large urban environments or for disabled or elderly people.

We also address the field of medical robotics. The applications we consider turn around new functionalities of assistance to the clinician during a medical examination: visual servoing on echographic images, needle insertion, compensation of organ motions, etc.

Robotics is not the only possible application field to our researches. In the past, we were interested in applying visual servoing in computer animation, either for controlling the motions of virtual humanoids according to their pseudo-perception, or for controlling the point of view of visual restitution of an animation. In both cases, potential applications are in the field of virtual reality, for example for the design of video games, or virtual cinematography.

Applications also exist in computer vision and augmented reality. It is then a question of carrying out a virtual visual servoing for the 3D localization of a tool with respect to the vision sensor, or for the estimation of its 3D motion. This field of application is very promising, because it is in full rise for the realization of special effects in the multi-media field or for the design and the inspection of objects manufactured in the industrial world.
METISS Project-Team

4. Application Domains

4.1. Introduction

This section reviews a number of applicative tasks in which the METISS project-team is particularly active:

- spoken content processing
- description of audio streams
- audio scene analysis
- advanced processing for music information retrieval

The main applicative fields targeted by these tasks are:

- multimedia indexing
- audio and audio-visual content repurposing
- description and exploitation of musical databases
- ambient intelligence
- education and leisure

4.2. Spoken content processing

Speaker recognition, user authentication, voice signature, speaker adaptation, spoken document, speech modeling, speech recognition, rich transcription, beam-search, broadcast news indexing, audio-based multimodal structuring

A number of audio signals contain speech, which conveys important information concerning the document origin, content and semantics. The field of speaker characterisation and verification covers a variety of tasks that consist in using a speech signal to determine some information concerning the identity of the speaker who uttered it.

In parallel, METISS maintains some know-how and develops new research in the area of acoustic modeling of speech signals and automatic speech transcription, mainly in the framework of the semantic analysis of audio and multimedia documents.

4.2.1. Robustness issues in speaker recognition

Speaker recognition and verification has made significant progress with the systematical use of probabilistic models, in particular Hidden Markov Models (for text-dependent applications) and Gaussian Mixture Models (for text-independent applications). As presented in the fundamentals of this report, the current state-of-the-art approaches rely on bayesian decision theory.

However, robustness issues are still pending: when speaker characteristics are learned on small quantities of data, the trained model has very poor performance, because it lacks generalisation capabilities. This problem can partly be overcome by adaptation techniques (following the MAP viewpoint), using either a speaker-independent model as general knowledge, or some structural information, for instance a dependency model between local distributions.

METISS also addresses a number of topics related to speaker characterisation, in particular speaker selection (i.e. how to select a representative subset of speakers from a larger population), speaker representation (namely how to represent a new speaker in reference to a given speaker population), speaker adaptation for speech recognition, and more recently, speaker’s emotion detection.
4.2.2. Speech recognition for multimedia analysis

In multimodal documents, the audio track is generally a major source of information and, when it contains speech, it conveys a high level of semantic content. In this context, speech recognition functionalities are essential for the extraction of information relevant to the tasks of content indexing.

As of today, there is no perfect technology able to provide an error-free speech retranscription and operating for any type of speech input. A current challenge is to be able to exploit the imperfect output of an Automatic Speech Recognition (ASR) system, using for instance Natural Language Processing (NLP) techniques, in order to extract structural (topic segmentation) and semantic (topic detection) information from the audio track.

Along the same line, another scientific challenge is to combine the ASR output with other sources of information coming from various modalities, in order to extract robust multi-modal indexes from a multimedia content (video, audio, textual metadata, etc...).

4.3. Description and structuration of audio streams

audio stream, audio detection, audio tracking, audio segmentation, audio descriptors, multimedia indexing, audiovisual integration, multimodality, information fusion, audio-visual descriptors,

Automatic tools to locate events in audio documents, structure them and browse through them as in textual documents are key issues in order to fully exploit most of the available audio documents (radio and television programmes and broadcasts, conference recordings, etc).

In this respect, defining and extracting meaningful characteristics from an audio stream aim at obtaining a structured representation of the document, thus facilitating content-based access or search by similarity.

Activities in METISS focus on sound class and event characterisation and tracking in audio contents for a wide variety of features and documents.

4.3.1. Detecting and tracking sound classes and events

Locating various sounds or broad classes of sounds, such as silence, music or specific events like ball hits or a jingle, in an audio document is a key issue as far as automatic annotation of sound tracks is concerned. Indeed, specific audio events are crucial landmarks in a broadcast. Thus, locating automatically such events enables to answer a query by focusing on the portion of interest in the document or to structure a document for further processing. Typical sound tracks come from radio or TV broadcasts, or even movies.

In the continuity of research carried out at IRISA for many years (especially by Benveniste, Basseville, André-Obrecht, Delyon, Seck, ...) the statistical test approach can be applied to abrupt changes detection and sound class tracking, the latter provided a statistical model for each class to be detected or tracked was previously estimated. For example, detecting speech segments in the signal can be carried out by comparing the segment likelihoods using a speech and a “non-speech” statistical model respectively. The statistical models commonly used typically represent the distribution of the power spectral density, possibly including some temporal constraints if the audio events to look for show a specific time structure, as is the case with jingles or words. As an alternative to statistical tests, hidden Markov models can be used to simultaneously segment and classify an audio stream. In this case, each state (or group of states) of the automaton represent one of the audio event to be detected. As for the statistical test approach, the hidden Markov model approach requires that models, typically Gaussian mixture models, are estimated for each type of event to be tracked.

In the area of automatic detection and tracking of audio events, there are three main bottlenecks. The first one is the detection of simultaneous events, typically speech with music in a speech/music/noise segmentation problem since it is nearly impossible to estimate a model for each event combination. The second one is the not so uncommon problem of detecting very short events for which only a small amount of training data is available. In this case, the traditional 100 Hz frame analysis of the waveform and Gaussian mixture modeling suffer serious limitations. Finally, typical approaches require a preliminary step of manual annotation of a training corpus in order to estimate some model parameters. There is therefore a need for efficient machine learning and statistical parameter estimation techniques to avoid this tedious and costly annotation step.
4.3.2. Describing multi-modal information

Applied to the sound track of a video, detecting and tracking audio events can provide useful information about the video structure. Such information is by definition only partial and can seldom be exploited by itself for multimedia document structuring or abstracting. To achieve these goals, partial information from the various media must be combined. By nature, pieces of information extracted from different media or modalities are heterogeneous (text, topic, symbolic audio events, shot change, dominant color, etc.) thus making their integration difficult. Only recently approaches to combine audio and visual information in a generic framework for video structuring have appeared, most of them using very basic audio information.

Combining multimedia information can be performed at various level of abstraction. Currently, most approaches in video structuring rely on the combination of structuring events detected independently in each media. A popular way to combine information is the hierarchical approach which consists in using the results of the event detection of one media to provide cues for event detection in the other media. Application specific heuristics for decision fusions are also widely employed. The Bayes detection theory provides a powerful theoretical framework for a more integrated processing of heterogeneous information, in particular because this framework is already extensively exploited to detect structuring events in each media. Hidden Markov models with multiple observation streams have been used in various studies on video analysis over the last three years.

The main research topics in this field are the definition of structuring events that should be detected on the one hand and the definition of statistical models to combine or to jointly model low-level heterogeneous information on the other hand. In particular, defining statistical models on low-level features is a promising idea as it avoids defining and detecting structuring elements independently for each media and enables an early integration of all the possible sources of information in the structuring process.

4.3.3. Recurrent audio pattern detection

A new emerging topic is that of motif discovery in large volumes of audio data, i.e. discovering similar units in an audio stream in an unsupervised fashion. These motifs can constitute some form of audio “miniatures” which characterize some potentially salient part of the audio content: key-word, jingle, etc...

This problem naturally requires the definition of a robust metric between audio segments, but a key issue relies in an efficient search strategy able to handle the combinatorial complexity stemming from the competition between all possible motif hypotheses. An additional issue is that of being able to model adequately the collection of instances corresponding to a same motif (in this respect, the HMM framework certainly offers a reasonable paradigm).

4.4. Advanced processing for music information retrieval

audio object, music description, music language modeling, multi-level representations

4.4.1. Music content modeling

Music pieces constitute a large part of the vast family of audio data for which the design of description and search techniques remain a challenge. But while there exist some well-established formats for synthetic music (such as MIDI), there is still no efficient approach that provide a compact, searchable representation of music recordings.

In this context, the METISS research group dedicates some investigative efforts in high level modeling of music content along several tracks. The first one is the acoustic modeling of music recordings by deformable probabilistic sound objects so as to represent variants of a same note as several realisations of a common underlying process. The second track is music language modeling, i.e. the symbolic modeling of combinations and sequences of notes by statistical models, such as n-grams.

4.4.2. Multi-level representations for music information retrieval

New search and retrieval technologies focused on music recordings are of great interest to amateur and professional applications in different kinds of audio data repositories, like on-line music stores or personal music collections.
The METISS research group is devoting increasing effort on the fine modeling of multi-instrument/multi-track music recordings. In this context we are developing new methods of automatic metadata generation from music recordings, based on Bayesian modeling of the signal for multilevel representations of its content. We also investigate uncertainty representation and multiple alternative hypotheses inference.

4.5. Audio scene analysis

source separation, multi-channel audio, source characterization, source localization, compressive sensing

Audio signals are commonly the result of the superimposition of various sources mixed together: speech and surrounding noise, multiple speakers, instruments playing simultaneously, etc...

Source separation aims at recovering (approximations of) the various sources participating to the audio mixture, using spatial and spectral criteria, which can be based either on a priori knowledge or on property learned from the mixture itself.

4.5.1. Audio source separation

The general problem of “source separation” consists in recovering a set of unknown sources from the observation of one or several of their mixtures, which may correspond to as many microphones. In the special case of speaker separation, the problem is to recover two speech signals contributed by two separate speakers that are recorded on the same media. The former issue can be extended to channel separation, which deals with the problem of isolating various simultaneous components in an audio recording (speech, music, singing voice, individual instruments, etc.). In the case of noise removal, one tries to isolate the “meaningful” signal, holding relevant information, from parasite noise.

It can even be appropriate to view audio compression as a special case of source separation, one source being the compressed signal, the other being the residue of the compression process. The former examples illustrate how the general source separation problem spans many different problems and implies many foreseeable applications.

While in some cases –such as multichannel audio recording and processing– the source separation problem arises with a number of mixtures which is at least the number of unknown sources, the research on audio source separation within the METISS project-team rather focusses on the so-called under-determined case. More precisely, we consider the cases of one sensor (mono recording) for two or more sources, or two sensors (stereo recording) for $n > 2$ sources.

We address the problem of source separation by combining spatial information and spectral properties of the sources. However, as we want to resort to as little prior information as possible we have designed self-learning schemes which adapt their behaviour to the properties of the mixture itself [1].

4.5.2. Compressive sensing of acoustic fields

Complex audio scene may also be dealt with at the acquisition stage, by using “intelligent” sampling schemes. This is the concept behind a new field of scientific investigation: compressive sensing of acoustic fields.

The challenge of this research is to design, implement and evaluate sensing architectures and signal processing algorithms which would enable to acquire a reasonably accurate map of an acoustic field, so as to be able to locate, characterize and manipulate the various sources in the audio scene.
4. Application Domains

4.1. Motion Sensing

Recording human activity is a key point of many applications and fundamental works. Numerous sensors and systems have been proposed to measure positions, angles or accelerations of the user’s body parts. Whatever the system is, one of the main is to be able to automatically recognize and analyze the user’s performance according to poor and noisy signals. Human activity and motion are subject to variability: intra-variability due to space and time variations of a given motion, but also inter-variability due to different styles and anthropometric dimensions. MimeTIC has addressed the above problems in two main directions.

Firstly, we have studied how to recognize and quantify motions performed by a user when using accurate systems such as Vicon (product of Oxford Metrics) or Optitrack (product of Natural Point) motion capture systems. These systems provide large vectors of accurate information. Due to the size of the state vector (all the degrees of freedom) the challenge is to find the compact information (named features) that enables the automatic system to recognize the performance of the user. Whatever the method is used, finding these relevant features that are not sensitive to intra-individual and inter-individual variability is a challenge. Some researchers have propose to manually edit these features (such as a Boolean value stating if the arm is moving forward or backward) so that the expertise of the designer is directly linked with the success ratio. Many proposals for generic features have been proposed, such as using Laban notation which was introduced to encode dancing motions. Other approaches tend to use machine learning to automatically extract these features. However most of these approaches were used to seek a database for motions which properties correspond to the features of the user’s performance (named motion retrieval approaches). This does not ensure the retrieval of the exact performance of the user but a set of motions with similar properties.

Secondly, we wish to find alternatives to the above approach which is based on analyzing accurate and complete knowledge on joint angles and positions. Hence new sensors, such as depth-cameras (Kinect, product of Microsoft) provide us with very noisy joint information but also with the surface of the user. Classical approaches would try to fit a skeleton into the surface in order to compute joint angles which, again, lead to large state vectors. An alternative would be to extract relevant information directly from the raw data, such as the surface provided by depth cameras. The key problem is that the nature of these data may be very different from classical representation of human performance. In MimeTIC, we try to address this problem in specific application domains that require picking specific information, such as gait asymmetry or regularity for clinical analysis of human walking.

4.2. VR and Sports

Sport is characterized by complex displacements and motions. These motions are dependent on visual information that the athlete can pick up in his environment, including the opponent’s actions. The perception is thus fundamental to the performance. Indeed, a sportive action, as unique, complex and often limited in time, requires a selective gathering of information. This perception is often seen as a prerogative for action, it then takes the role of a passive collector of information. However, as mentioned by Gibson in 1979, the perception-action relationship should not be considered sequential but rather as a coupling: we perceive to act but we must act to perceive. There would thus be laws of coupling between the informational variables available in the environment and the motor responses of a subject. In other words, athletes have the ability to directly perceive the opportunities of action directly from the environment. Whichever school of thought considered, VR offers new perspectives to address these concepts by complementary using real time motion capture of the immersed athlete.
In addition to better understanding sports and interaction between athletes, VR can also be used as a training environment as it can provide complementary tools to coaches. It is indeed possible to add visual or auditory information to better train an athlete. The knowledge found in perceptual experiments can be for example used to highlight the body parts that are important to look at to correctly anticipate the opponent’s action.

4.3. Biomechanics and Motion Analysis

Biomechanics is obviously a very large domain. This large set can be divided regarding to the scale at which the analysis is performed going from microscopic evaluation of biological tissues’ mechanical properties to macroscopic analysis and modeling of whole body motion. Our topics in the domain of biomechanics mainly lie within this last scope.

The first goal of such kind of research projects is a better understanding of human motion. The MimeTic team addresses three different situations: everyday motions of a lambda subject, locomotion of pathological subjects and sports gesture.

In the first set, Mimetic is interested in studying how subjects maintain their balance in highly dynamic conditions. Until now, balance havec nearly always been considered in static or quasi-static conditions. The knowledge of much more dynamic cases still has to be improved. Our approach has demonstrated that first of all, the question of the parameter that will allow to do this is still open. We have also taken interest into collision avoidance between two pedestrian. This topic includes the research of the parameters that are interactively controlled and the study of each one’s role within this interaction.

When patients, in particular those suffering from central nervous system affection, cannot have an efficient walking it becomes very useful for practicians to benefit from an objective evaluation of their capacities. To propose such help to patients following, we have developed two complementary indices, one based on kinematics and the other one on muscles activations. One major point of our research is that such indices are usually only developed for children whereas adults with these affections are much more numerous.

Finally, in sports, where gesture can be considered, in some way, as abnormal, the goal is more precisely to understand the determinants of performance. This could then be used to improve training programs or devices. Two different sports have been studied: the tennis serve, where the goal was to understand the contribution of each segments of the body in ball’s speed and the influence of the mechanical characteristics of the fin in fin swimming.

After having improved the knowledge of these different gestures a second goal is then to propose modeling solutions that can be used in VR environments for other research topics within MimeTic. This has been the case, for example, for the collision avoidance.

4.4. Crowds

Crowd simulation is a very active and concurrent domain. Various disciplines are interested in crowds modeling and simulation: Mathematics, Cognitive Sciences, Physics, Computer Graphics, etc. The reason for this large interest is that crowd simulation raise fascinating challenges.

At first, crowd can be first seen as a complex system: numerous local interactions occur between its elements and results into macroscopic emergent phenomena. Interactions are of various nature and are undergoing various factors as well. Physical factors are crucial as a crowd gathers by definition numerous moving people with a certain level of density. But sociological, cultural and psychological factors are important as well, since crowd behavior is deeply changed from country to country, or depending on the considered situations.

On the computational point of view, crowd push traditional simulation algorithms to their limit. An element of a crowd is subject to interact with any other element belonging the same crowd, a naive simulation algorithm has a quadratic complexity. Specific strategies are set to face such a difficulty: level-of-detail techniques enable scaling large crowd simulation and reach real-time solutions.
MimeTIC is an international key contributor in the domain of crowd simulation. Our approach is specific and based on three axis. First, our modeling approach is founded on human movement science: we conducted challenging experiment on the motion of groups. Second: we developed high-performance solutions for crowd simulation. Third, we develop solutions for realistic navigation in virtual world to enable interaction with crowds in Virtual Reality.

4.5. Interactive Digital Storytelling

Interactive digital storytelling, including novel forms of edutainment and serious games, provides access to social and human themes through stories which can take various forms and contains opportunities for massively enhancing the possibilities of interactive entertainment, computer games and digital applications. It provides chances for redefining the experience of narrative through interactive simulations of computer-generated story worlds and opens many challenging questions at the overlap between computational narratives, autonomous behaviours, interactive control, content generation and authoring tools.

Of particular interest for the Mimetic research team, virtual storytelling triggers challenging opportunities in providing effective models for enforcing autonomous behaviours for characters in complex 3D environments. Offering both low-level capacities to characters such as perceiving the environments, interacting with the environment and reacting to changes in the topology, on which to build higher-levels such as modelling abstract representations for efficient reasoning, planning paths and activities, modelling cognitive states and behaviours requires the provision of expressive, multi-level and efficient computational models. Furthermore virtual storytelling requires the seamless control of the balance between the autonomy of characters and the unfolding of the story story through the narrative discourse. Virtual storytelling also raises challenging questions on the conveyance of a narrative through interactive or automated control of the cinematography (how to stage the characters, the lights and the cameras). For example, estimating visibility of key subjects, or performing motion planning for cameras and lights are central issues for which have not received satisfactory answers in the literature.

4.6. Autonomous characters

Autonomous characters are becoming more and more popular has they are used in an increasing number of application domains. In the field of special effects, virtual characters are used to replace secondary actors and generate highly populated scenes that would be hard and costly to produce with real actors. In video games and virtual storytelling, autonomous characters play the role of actors that are driven by a scenario. Their autonomy allows them to react to unpredictable user interactions and adapt their behavior accordingly. In the field of simulation, autonomous characters are used to simulate the behavior of humans in different kind of situations. They enable to study new situations and their possible outcomes.

One of the main challenges in the field of autonomous characters is to provide a unified architecture for the modeling of their behavior. This architecture includes perception, action and decisional parts. This decisional part needs to mix different kinds of models, acting at different time scale and working with different nature of data, ranging from numerical (motion control, reactive behaviors) to symbolic (goal oriented behaviors, reasoning about actions and changes).

In the MimeTIC team, we focus on autonomous virtual humans. Our problem is not to reproduce the human intelligence but to propose an architecture making it possible to model credible behaviors of anthropomorphic virtual actors evolving/moving in real time in virtual worlds. The latter can represent particular situations studied by psychologists of the behavior or to correspond to an imaginary universe described by a scenario writer. The proposed architecture should mimic all the human intellectual and physical functions.
4. Application Domains

4.1. Introduction

The application domains addressed by the project are:

- Compression with advanced functionalities of various image modalities (including multi-view, medical images such as MRI, CT, WSI, or satellite images)
- Networked multimedia applications via their various needs in terms of image and 2D and 3D video compression, or in terms of network adaptation (e.g., resilience to channel noise)
- Content editing and post-production

4.2. Compression with advanced functionalities

Compression of images and of 2D video (including High Definition and Ultra High Definition) remains a widely-sought capability for a large number of applications. The continuous increase of access network bandwidth leads to increasing numbers of networked digital content users and consumers which in turn triggers needs for higher core bandwidth and higher compression efficiencies. This is particularly true for mobile applications, as the need for wireless transmission capacity will significantly increase during the years to come. Hence, efficient compression tools are required to satisfy the trend towards mobile access to larger image resolutions and higher quality. A new impulse to research in video compression is also brought by the emergence of new formats beyond High Definition TV (HDTV) towards high dynamic range (higher bit depth, extended colorimetric space), super-resolution, formats for immersive displays allowing panoramic viewing and 3D TV.

Different video data formats and technologies are envisaged for interactive and immersive 3D video applications using omni-directional videos, stereoscopic or multi-view videos. The "omni-directional video" set-up refers to 360-degree view from one single viewpoint or spherical video. Stereoscopic video is composed of two-view videos, the right and left images of the scene which, when combined, can recreate the depth aspect of the scene. A multi-view video refers to multiple video sequences captured by multiple video cameras and possibly by depth cameras. Associated with a view synthesis method, a multi-view video allows the generation of virtual views of the scene from any viewpoint. This property can be used in a large diversity of applications, including Three-Dimensional TV (3DTV), and Free Viewpoint Video (FTV). The notion of "free viewpoint video" refers to the possibility for the user to choose an arbitrary viewpoint and/or view direction within a visual scene, creating an immersive environment. Multi-view video generates a huge amount of redundant data which need to be compressed for storage and transmission. In parallel, the advent of a variety of heterogeneous delivery infrastructures has given momentum to extensive work on optimizing the end-to-end delivery QoS (Quality of Service). This encompasses compression capability but also capability for adapting the compressed streams to varying network conditions. The scalability of the video content compressed representation, its robustness to transmission impairments, are thus important features for seamless adaptation to varying network conditions and to terminal capabilities.

In medical imaging, the large increase of medical analysis using various image sources for clinical purposes and the necessity to transmit or store these image data with improved performances related to transmission delay or storage capacities, command to develop new coding algorithms with lossless compression algorithms or almost lossless compression characteristics with respect to the medical diagnosis.
4.3. Networked visual applications

3D and Free Viewpoint TV: The emergence of multi-view auto-stereoscopic displays has spurred a recent interest for broadcast or Internet delivery of 3D video to the home. Multiview video, with the help of depth information on the scene, allows scene rendering on immersive stereo or auto-stereoscopic displays for 3DTV applications. It also allows visualizing the scene from any viewpoint, for scene navigation and free-viewpoint TV (FTV) applications. However, the large volumes of data associated to multi-view video plus depth content raise new challenges in terms of compression and communication.

Internet and mobile video: Broadband fixed (ADSL, ADSL2+) and mobile access networks with different radio access technologies (RAT) (e.g. 3G/4G, GERAN, UTRAN, DVB-H), have enabled not only IPTV and Internet TV but also the emergence of mobile TV and mobile devices with internet capability. A major challenge for next internet TV or internet video remains to be able to deliver the increasing variety of media (including more and more bandwidth demanding media) with a sufficient end-to-end QoS (Quality of Service) and QoE (Quality of Experience).

Mobile video retrieval: The Internet has changed the ways of interacting with content. The user is shifting its media consumption from a passive to a more interactive mode, from linear broadcast (TV) to on demand content (YouTubes, iTunes, VoD), and to user-generated, searching for relevant, personalized content. New mobility and ubiquitous usage has also emerged. The increased power of mobile devices is making content search and retrieval applications using mobile phones possible. Quick access to content in mobile environments with restricted bandwidth resources will benefit from rate-efficient feature extraction and description.

Wireless multi-camera vision systems: Our activities on scene modelling, on rate-efficient feature description, distributed coding and compressed sensing should also lead to algorithmic building blocks relevant for wireless multi-camera vision systems, for applications such as visual surveillance and security.

4.4. Medical Imaging (CT, MRI, Virtual Microscopy)

The use of medical imaging has greatly increased in recent years, especially with magnetic resonance images (MRI) and computed tomography (CT). In the medical sector, lossless compression schemes are in general used to avoid any signal degradation which could mask a pathology and hence disturb the medical diagnosis. Nevertheless, some discussions are on-going to use near-lossless coding of medical images, coupled with a detection and segmentation of region-of interest (ROIs) guided by a modeling stage of the image sensor, a precise knowledge of the medical imaging modalities and by the diagnosis and expertise of practitioners. New application domains using these new approaches of telemedecine will surely increase in the future. The second aspect deals with the legal need of biomedical images storage. The legacy rules of such archives are changing and it could be interesting to propose adaptive compression strategies, i.e to explore reversible lossy-to-lossless coding algorithms and new storage modalities which use, in a first stage, the lossless representation and continuously introduce controlled lossy degradations for the next stages of archives. Finally, it seems promising to explore new representation and coding approaches for 3D biological tissue imaging captured by 3D virtual microscopy. These fields of interest and scientific application domains commonly generate terabytes of data. Lossless schemes but also lossy approaches have to be explored and optimized, and interactive tools supporting scalable and interactive access to large-sized images such as these virtual microscopy slides need to be developed.

4.5. Editing and post-production

Video editing and post-production are critical aspects in the audio-visual production process. Increased ways of “consuming” video content also highlight the need for content repurposing as well as for higher interaction and editing capabilities. Content captured at very high resolutions may need to be repurposed in order to be adapted to the requirements of actual users, to the transmission channel or to the terminal. Content repurposing encompasses format conversion (retargeting), content summarization, and content editing. This processing requires powerful methods for extracting condensed video representations as well as powerful inpainting techniques. By providing advanced models, advanced video processing and image analysis tools,
more visual effects, with more realism become possible. Other applications such as video annotation/retrieval, video restoration/stabilization, augmented reality, can also benefit from the proposed research.
4. Application Domains

4.1. Copyright protection of images and videos

With the proliferation of high-speed Internet access, piracy of multimedia data has developed into a major problem and media distributors, such as photo agencies, are making strong efforts to protect their digital property. Today, many photo agencies expose their collections on the web with a view to selling access to the images. They typically create web pages of thumbnails, from which it is possible to purchase high-resolution images that can be used for professional publications. Enforcing intellectual property rights and fighting against copyright violations is particularly important for these agencies, as these images are a key source of revenue. The most problematic cases, and the ones that induce the largest losses, occur when “pirates” steal the images that are available on the Web and then make money by illegally reselling those images.

This applies to photo agencies, and also to producers of videos and movies. Despite the poor image quality, thousands of (low-resolution) videos are uploaded every day to video-sharing sites such as YouTube, eDonkey or BitTorrent. In 2005, a study conducted by the Motion Picture Association of America was published, which estimated that their members lost 2.3 billion US$ in sales due to video piracy over the Internet. Due to the high risk of piracy, movie producers have tried many means to restrict illegal distribution of their material, albeit with very limited success.

Photo and video pirates have found many ways to circumvent even the protection mechanisms. In order to cover up their tracks, stolen photos are typically cropped, scaled, their colors are slightly modified; videos, once ripped, are typically compressed, modified and re-encoded, making them more suitable for easy downloading. Another very popular method for stealing videos is cam-cording, where pirates smuggle digital camcorders into a movie theater and record what is projected on the screen. Once back home, that goes to the web.

Clearly, this environment calls for an automatic content-based copyright enforcement system, for images, videos, and also audio as music gets heavily pirated. Such a system needs to be effective as it must cope with often severe attacks against the contents to protect, and efficient as it must rapidly spot the original contents from a huge reference collection.

4.2. Video database management

The existing video databases are generally little digitized. The progressive migration to digital television should quickly change this point. As a matter of fact, the French TV channel TF1 switched to an entirely digitized production, the cameras remaining the only analogical spot. Treatment, assembly and diffusion are digital. In addition, domestic digital decoders can, from now on, be equipped with hard disks allowing a storage initially modest, of ten hours of video, but larger in the long term, of a thousand of hours.

One can distinguish two types of digital files: private and professional files. On one hand, the files of private individuals include recordings of broadcasted programs and films recorded using digital camcorders. It is unlikely that users will rigorously manage such collections; thus, there is a need for tools to help the user: Automatic creation of summaries and synopses to allow finding information easily or to have within few minutes a general idea of a program. Even if the service is rustic, it is initially evaluated according to the added value brought to a system (video tape recorder, decoder), must remain not very expensive, but will benefit from a large diffusion.

On the other hand, these are professional files: TV channel archives, cineclubs, producers... These files are of a much larger size, but benefit from the attentive care of professionals of documentation and archiving. In this field, the systems can be much more expensive and are judged according to the profits of productivity and the assistance which they bring to archivists, journalists and users.
A crucial problem for many professionals is the need to produce documents in many formats for various terminals from the same raw material without multiplying the editing costs. The aim of such a repurposing is, for example, to produce a DVD, a website, or an alert service by mobile phone from a TV program at the minimum cost. The basic idea is to describe the documents in such a way that they can be easily manipulated and reconfigured easily.

4.3. Textual database management

Searching in large textual corpora has already been the topic of many researches. The current stakes are the management of very large volumes of data, the possibility to answer requests relating more on concepts than on simple inclusions of words in the texts, and the characterization of sets of texts.

We work on the exploitation of scientific bibliographical bases. The explosion of the number of scientific publications makes the retrieval of relevant data for a researcher a very difficult task. The generalization of document indexing in data banks did not solve the problem. The main difficulty is to choose the keywords, which will encircle a domain of interest. The statistical method used, the factorial analysis of correspondences, makes it possible to index the documents or a whole set of documents and to provide the list of the most discriminating keywords for these documents. The index validation is carried out by searching information in a database more general than the one used to build the index and by studying the retrieved documents. That in general makes it possible to still reduce the subset of words characterizing a field.

We also explore scientific documentary corpora to solve two different problems: to index the publications with the help of meta-keys and to identify the relevant publications in a large textual database. For that, we use factorial data analysis, which allows us to find the minimal sets of relevant words that we call meta-keys and to free the bibliographical search from the problems of noise and silence. The performances of factorial correspondence analysis are sharply greater than classic search by logical equation.
VR4I Team

4. Application Domains

4.1. Panorama

The research topics of the VR4i team are related to applications of the industrial, training and education domains.

The applications to the industrial domain are very promising. For instance, the PSA Automotive Design Network, which is a new design center, groups all the tools used for automotive design, from classical CAD systems to Virtual Reality applications. The coupling of virtual reality and simulation algorithms is a key point and is the core of VR4i simulation activities. Major issues in which industrials are strongly involved are focussing on collaborative tasks between multiple users in digital mockups and for scientific visualization (ANR Part@ge and ANR Collaviz 7.1.2), tackling the challenging problem of training in Virtual Reality by providing interactive scenario languages with realists actions and reactions within the environment (GVT Project, ANR Corvette 7.1.3 and FUI SIFORAS 7.1.1). In this context, we are tackling the problem of using Virtual Reality environments for improving the ergonomics of workstations. Collaborative work is now a hot issue for facing the question of sharing expertise of distant experts for project review, for collaborative design or for analysis of data resulting from scientific computations (FP7-Infra VISIONAIR project 7.2.1) where we propose new software architectures ensuring the data distribution and the synchronization of the users (Figure 1).

Figure 1. Collaboration between VR4i team in Immersia Room 6.4 and UCL on shared analysis of earthquake simulation within VISIONAIR project 7.2.1