Keywords
 A4.3. Cryptography
 A4.3.1. Public key cryptography
 A4.3.2. Secret key cryptography
 A4.3.3. Cryptographic protocols
 A4.3.4. Quantum Cryptography
 A7.1. Algorithms
 A7.1.4. Quantum algorithms
 A8.1. Discrete mathematics, combinatorics
 A8.3. Geometry, Topology
 A8.4. Computer Algebra
 A8.5. Number theory
 A8.10. Computer arithmetic
 B5.6. Robotic systems
 B9.5.1. Computer science
 B9.5.2. Mathematics
1 Team members, visitors, external collaborators
Research Scientists

Fabrice Rouillier [
Team leader , Inria, Senior Researcher, HDR]  Yacine Bouzidi [Inria, Starting Research Position, until Jun 2020]
 Alban Quadrat [Inria, Senior Researcher, HDR]
 Elias Tsigaridas [Inria, Researcher]
Faculty Members
 Jean Bajard [Sorbonne Université, Professor]
 Elisha Falbel [Sorbonne Université, Professor, HDR]
 Antonin Guilloux [Sorbonne Université, Associate Professor, HDR]
 Antoine Joux [Université Pierre et Marie Curie, Associate Professor, HDR]
 PierreVincent Koseleff [Sorbonne Université, Associate Professor, HDR]
 Pascal Molin [Université de Paris, Associate Professor]
PostDoctoral Fellow
 Josue Tonelli Cueto [Inria, from Feb 2020]
PhD Students
 Raphael Alexandre [Sorbonne Université]
 Thibauld Feneuil [Crypto Experts, CIFRE, from Oct 2020]
 Christina Katsamaki [Inria]
 Mahya Mehrabdollahei [Inria]
 Grace Younes [Inria]
Interns and Apprentices
 Valerian Hatey [Inria, from Apr 2020 until Jul 2020]
Administrative Assistants
 Laurence Bourcier [Inria]
 Julien Guieu [Inria]
2 Overall objectives
OURAGAN proposes to focus on the transfer of computational algebraic methods to some related fields (computational geometry, topology, number theory, etc.) and some carefully chosen application domains (robotics, control theory, evaluation of the security of cryptographic systems, etc.), which implies working equally on the use (modeling, know  how) and on the development of new algorithms. The latest breakthrough developments and applications where algebraic methods are currently decisive remain few and very targeted. We wish to contribute to increase the impact of these methods but also the number of domains where the use of computational algebraic methods represent a significant added value. This transferoriented positioning does not imply to stop working on the algorithms, it simply sets the priorities.
An original aspect of the OURAGAN proposal is to blend into an environment of fundamental mathematics, at the Institut de Mathématiques de Jussieu – Paris Rive Gauche (IMJPRG CNRS 7586), and to be crossfunctional to several teams (Algebraic Analysis, Complex Analysis and Geometry, Number Theory to name only the main ones), which will be our first source of transfer of computational knowhow. The success of this coupling allows to maintain a strong theoretical basis and to measure objectively our transfer activity in the direction of mathematicians (in geometry, topology, number theory, algebraic analysis, etc.) and to consolidate the presence of Inria in scientific areas among the most theoretical.
We propose three general directions with five particular targets:
 Number Theory
 Algorithmic Number Theory
 Rigorous Numerical Computations
 Topology in small dimension
 Character varieties
 Knot theory
 Computational geometry
 Algebraic analysis of functional systems
These actions come, of course, in addition to the study and development of a common set of core elements of
 Basic theory and algorithms in algebra and geometry [Transverse activity].
This core activity is the invention and study of fundamental algebraic algorithms and objects that can be grouped into 2 categories: algorithms designed to operate on finite fields and algorithms running on fields of characteristic 0; with 2 types of computational strategies: the exactness and the use of approximate arithmetic (but with exact results). This mix also installs joint studies between the various axes and is an originality of the projectteam. For example many kinds of arithmetic tools around algebraic numbers have to face to similar theoretical problems such as finding a good representation for a number field; almost all problems related to the resolution of algebraic systems will reduce to the study of varieties in small dimension and in particular, most of the time, to the effective computation of the topology of curves and surfaces, or the certified drawing of non algebraic function over an algebraic variety.
The tools and objects developed for research on algorithmic number theory as well as in computational geometry apply quite directly on some selected connected challenging subjects:
 Security of cryptographic systems
 Control theory
 Robotics
 Signal processing
These applications will serve for the evaluation of the general tools we develop when used in a different context, in particular their capability to tackle state of the art problems.
2.1 Scientific ground
2.1.1 Basic computable objects and algorithms
The basic computable objects and algorithms we study, use, optimize or develop are among the most classical ones in computer algebra and are studied by many people around the world: they mainly focus on basic computer arithmetic, linear algebra, lattices, and both polynomial system and differential system solving.
In the context of OURAGAN, it is important to avoid reinventing the wheel and to reuse wherever possible existing objects and algorithms, not necessarily developed in our team so that the main effort is focused on finding good formulations/modelisations for an efficient use. Also, our approach for the development of basic computable objects and algorithms is application driven and follows a simple strategy : use the existing tools in priority, develop missing tools when required and then optimize the critical operations. First, for some selected problems, we do propose and develop general key algorithms (isolation of real roots of univariate polynomials, parametrisations of solutions of zerodimensional polynomial systems, solutions of parametric equations, equidimensional decompositions, etc.) in order to complement the existing set computable objects developed and studied around the world (Gröbner bases, resultants 74, subresultants 95, critical point methods 52, etc.) which are also deeply used in our developments. Second, for a selection of wellknown problems, we propose different computational strategies (for example the use of approximate arithmetic to speed up LLL algorithm or root isolators, still certifying the final result). Last, we propose specialized variants of known algorithms optimized for a given problem (for example, dedicated solvers for degenerated bivariate polynomials to be used in the computation of the topology of plane curves).
In the activity of OURAGAN, many key objects or algorithms around the resolution of algebraic systems are developed or optimized within the team, such as the resolution of polynomials in one variable with real coefficients 11414, rational parameterizations of solutions of zerodimensional systems with rational coefficients 6013 or discriminant varieties for solving systems depending on parameters 11, but we are also power users of existing software (mainly Sage 1, Maple 2, PariGP 3,Snappea 4) and libraries (mainly gmp 5, mpfr 6, flint 7, arb 8, etc.) to which we contribute when it makes sense.
For our studies in number theory and applications to the security of cryptographic systems, our team works on three categories of basic algorithms: discrete logarithm computations 109 (for example to make progress on the computation of class groups in number fields 96), network reductions by means of LLL variants 85 and, obviously, various computations in linear algebra, for example dedicated to almost sparse matrices 110.
Finally, for the algorithmic approach to algebraic analysis of functional equations 56112113, we developed the effective study of both module theory and homological algebra 146 over certain noncommutative polynomial rings of functional operators 4, of Stafford's famous theorems on the Weyl algebras 136, of the equidimensional decomposition of functional systems 133, etc.
2.1.2 Computational Number Theory
Many frontiers between computable objects, algorithms (above section), computational number theory and applications, especially in cryptography are porous. However, one can classify our work in computational number theory into two classes of studies : computational algebraic number theory and (rigorous) numerical computations in number theory.
Our work on rigorous numerical computations is somehow a transverse activity in Ouragan : floating point arithmetic is used in many basic algorithms we develop (root isolation, LLL) and is thus present in almost all our research directions. However there are specific developments that could be labelized Number Theory, in particular contributions to numerical evaluations of $L$functions which are deeply used in many problems in number theory (for example the Riemann Zeta function). We participate, for example to the Lfunctions and Modular Forms Database9 a world wide collaborative project.
Our work in computational algebraic number theory is driven by the algorithmic improvement to solve presumably hard problems relevant to cryptography. The use of numbertheoretic hard problems in cryptography dates back to the invention of publickey cryptography by Diffie and Hellman 81, where they proposed a first instantiation of their paradigm based on the discrete logarithm problem in prime fields. The invention of RSA 144, based on the hardness of factoring came as a second example. The introduction of discrete logarithms on elliptic curves 115148 only confirmed this trend.
These cryptosystems attracted a lot of interest on the problems of factoring and discrete log. Their study led to the invention of fascinating new algorithms that can solve the problems much faster than initially expected :
 the elliptic curve method (ECM) 126
 the quadratic field for factoring 130 and its variant for discrete log called the Gaussian integers method 123
 the number field sieve (NFS) 125
Since the invention of NFS in the 90’s, many optimizations of this algorithm have been performed. However, an algorithm with better complexity hasn’t been found for factoring and discrete logarithms in large characteristic.
While factorization and discrete logarithm problems have a long history in cryptography, the recent postquantum cryptosystems introduce a new variety of presumably hard problems/objects/algorithms with cryptographic relevance: the shortest vector problem (SVP), the closest vector problem (CVP) or the computation of isogenies between elliptic curves, especially in the supersingular case.
Members of OURAGAN started working on the topic of discrete logarithms around 1998, with several computation records that were announced on the NMBRTHRY mailing list. In large characteristic, especially for the case of prime fields, the best current method is the number field sieve (NFS) algorithm. In particular, they published the first NFS based record computation10. Despite huge practical improvements, the prime field case algorithm hasn't really changed since that first record. Around the same time, we also presented small characteristic computation record based on simplifications of the Function Field Sieve (FFS) algorithm 108.
In 2006, important changes occurred concerning the FFS and NFS algorithms, indeed, while the algorithms only covered the extreme case of constant characteristic and constant extension degree, two papers extended their ranges of applicability to all finite fields. At the same time, this permitted a big simplification of the FFS, removing the need for function fields.
Starting from 2012, new results appeared in small characteristic. Initially based on a simplification of the 2006 result, they quickly blossomed into the Frobenial representation methods, with quasipolynomial time complexity 109, 97.
An interesting sideeffect of this research was the need to revisit the key sizes of pairingbased cryptography. This type of cryptography is also a topic of interest for OURAGAN. In particular, it was introduced in 2000 9.
The computations of class groups in number fields has strong links with the computations of discrete logarithms or factorizations using the NFS (number field sieve) strategy which as the name suggests is based on the use of number fields. Roughly speaking, the NFS algorithm uses two number fields and the strategy consists in choosing number fields with small sized coefficients in their definition polynomials. On the contrary, in class group computations, there is a single number field, which is clearly a simplification, but this field is given as input by some fixed definition polynomial. Obviously, the degree of this polynomial as well as the size of its coefficients are both influencing the complexity of the computations so that finding other polynomials representing the same class group but with a better characterization (degree or coefficient's sizes) is a mathematical problem with direct practical consequences. We proposed a method to address the problem 96, but many issues remain open.
Computing generators of principal ideals of cyclotomic fields is also strongly related to the computation of class groups in number fields. Ideals in cyclotomic fields are used in a number of recent publickey cryptosystems. Among the difficult problems that ensure the safety of these systems, there is one that consists in finding a small generator, if it exists, of an ideal. The case of cyclotomic fields is considered 55.
2.1.3 Topology in small dimension
Character varieties
There is a tradition of using computations and software to study and understand the topology of small dimensional manifolds, going back at least to Thurston's works (and before him, Riley's pioneering work). The underlying philosophy of these tools is to build combinatorial models of manifolds (for example, the torus is often described as a square with an identification of the sides). For dimensions 2, 3 and 4, this approach is relevant and effective. In the team OURAGAN, we focus on the dimension 3, where the manifolds are modelized by a finite number of tetrahedra with identification of the faces. The software SnapPy 10 implements this strategy 150 and is regularly used as a starting point in our work. Along the same philosophy of implementation, we can also cite Regina 11. A specific trait of SnapPy is that it focuses on hyperbolic structures on the 3dimensional manifolds. This setting is the object of a huge amount of theoretical work that were used to speed up computations. For example, some Newton methods were implemented without certification for solving a system of equations, but the theoretical knowledge of the uniqueness of the solution made this implementation efficient enough for the target applications. In recent years, in part under the influence of our team 12, more attention has been given to certified computations (at least with an error control) and now this is implemented in SnapPy.
This philosophy (modelization of manifolds by quite simple combinatoric models to compute such complicated objects as representations of the fundamental group) was applied in a pioneering work of Falbel 8 when he begins to look for another type of geometry on 3dimensional manifolds (called CRspherical geometry). From a computational point of view, this change of objectives was a jump in the unknown: the theoretical justification for the computations were missing, and the number of variables of the systems were multiplied by four. So instead of a relatively small system that could be tackled by Newton methods and numerical approximations, we had to deal with/study (were in front of) relatively big systems (the smallest example being 8 variables of degree 6) with no a priori description of the solutions.
Still, the computable objects that appear from the theoretical study are very often outside the reach of automated computations and are to be handled case by case. A few experts around the world have been tackling this kind of computations (Dunfield, Goerner, Heusener, Porti, Tillman, Zickert) and the main current achievement is the Ptolemy module13 for SnapPy.
From these early computational needs, topology in small dimension has historically been the source of collaboration with the IMJPRG laboratory. At the beginning, the goal was essentially to provide computational tools for finding geometric structures in triangulated 3dimensional varieties. Triangulated varieties can be topologically encoded by a collection of tetrahedra with gluing constraints (this can be called a triangulation or mesh, but it is not an approximation of the variety by simple structures, rather a combinatorial model). Imposing a geometric structure on this combinatorial object defines a number of constraints that we can translate into an algebraic system that we then have to solve to study geometric structures of the initial variety, for example in relying on solutions to study representations of the fundamental group of the variety. For these studies, a large part of the computable objects or algorithms we develop are required, from the algorithms for univariate polynomials to systems depending on parameters. It should be noted that most of the computational work lies in the modeling of problems 547 that have strictly no chance to be solved by blindly running the most powerful black boxes: we usually deal here with systems that have 24 to 64 variables, depend on 4 to 8 parameters and with degrees exceeding 10 in each variable. With an ANR 14 funding on the subject, the progress that we did 89 were (much) more significant than expected. In particular, we have introduced new computable objects with an immediate theoretical meaning (let us say rather with a theoretical link established with the usual objects of the domain), namely, the socalled deformation variety.
Knot theory
Knot theory is a wide area of mathematics. We are interested in polynomial representations of long knots, that is to say polynomial embeddings $\mathbf{R}\to {\mathbf{R}}^{3}\subset {\mathbf{S}}^{3}$. Every knot admits a polynomial representation and a natural question is to determine explicit parameterizations, minimal degree parameterizations. On the other hand we are interested to determine what is the knot of a given polynomial smooth embedding $\mathbf{R}\to {\mathbf{R}}^{3}$. These questions involve real algebraic curves. This subject was first considered by Vassiliev in the 90's 149.
A Chebyshev knot 117, is a polynomial knot parameterized by a Chebyshev curve $({T}_{a}\left(t\right),{T}_{b}\left(t\right),{T}_{c}(t+\phi ))$ where ${T}_{n}\left(t\right)=cos(narccost)$ is the $n$th Chebyshev polynomial of the first kind. Chebyshev knots are polynomial analogues of Lissajous knots that have been studied by Jones, Hoste, Lamm... It was first established that any knot can be parameterized by Chebyshev polynomials, then we have studied the properties of harmonic nodes 118 which then opened the way to effective computations.
Our activity in Knot theory is a bridge between our work in computational geometry (topology and drawing of real space curves) and our work on topology in small dimensions (varieties defined as a knot complement).
Twobridge knots (or rational knots) are particularly studied because they are much easier to study. The first 26 knots (except ${8}_{5}$) are twobridge knots. We were able to give an exhaustive, minimal and certified list of Chebyshev parameterizations of the first rational twobridge knots, using blind computations 120. On the other hand, we propose the identification of Chebyshev knot diagrams 121 by developing new certified algorithms for computing trigonometric expressions 122. These works share many tools with our action in visualization and computational geometry.
We made use of Chebyshev polynomials so as Fibonacci polynomials which are families of orthogonal polynomials. Considering the AlexanderConway polynomials as continuant polynomials in the Fibonacci basis, we were able to give a partial answer to Hoste's conjecture on the roots of Alexander polynomials of alternating knots ( 119).
We study the lexicographic degree of the twobridge knots, that is to say the minimal (multi)degree of a polynomial representation of a $N$crossing twobridge knot. We show that this degree is $(3,b,c)$ with $b+c=3N$. We have determined the lexicographic degree of the first 362 first twobridge knots with 12 crossings or fewer 1715. These results make use of the braid theoretical approach developped by Y. Orevkov to study real plane curves and the use of real pseudoholomorphic curves 67, the slide isotopies on trigonal diagrams, namely those that never increase the number of crossings 68.
Visualization and Computational Geometry
The drawing of algebraic curves and surfaces is a critical action in OURAGAN since it is a key ingredient in numerous developments. For example, a certified plot of a discriminant variety could be the only admissible answer that can be proposed for engineering problems that need the resolution of parametric algebraic systems: this variety (and the connected components of its counter part) defines a partition of the parameter’s space in regions above which the solutions are numerically stable and topologically simple. Several directions have been explored since the last century, ranging from pure numerical computations to infallible exact ones, depending on the needs (global topology, local topology, simple drawing, etc.). For plane real algebraic curves, one can mention the cylindrical algebraic decomposition 73, grids methods (for ex. the marching square algorithm), subdivision methods, etc.
As mentioned above, we focus on curves and surfaces coming from the study of parametric systems. They mostly come from some elimination process, they highly (numerically) unstable (a small deformation of the coefficients might change a lot the topology of the curve) and we are mostly interested in getting qualitative information about their counter part in the parameter's space.
For this work, we are associated with the GAMBLE EPI (Inria Nancy Grand Est) with the aim of developing computational techniques for the study, plotting and topology. In this collaboration, Ouragan focuses on CADLike methods while Gamble develops numerical strategies (that could also apply on non algebraic curves). Ouragan's work involves the development of effective methods for the resolution of algebraic systems with 2 or 3 variables 60, 114, 61, 62 which are basic engines for computing the topology 128, 80 and / or plotting.
2.1.4 Algebraic analysis of functional systems
Systems of functional equations or simply functional systems are systems whose unknowns are functions, such as systems of ordinary or partial differential equations, of differential timedelay equations, of difference equations, of integrodifferential equations, etc.
Numerical aspects of functional systems, especially differential systems, have been widely studied in applied mathematics due to the importance of numerical simulation issues.
Complementary approaches, based on algebraic methods, are usually upstream or help the numerical simulation of systems of functional systems. These methods also tackle a different range of questions and problems such as algebraic preconditioning, elimination and simplification, completion to formal integrability or involution, computation of integrability conditions and compatibility conditions, index reduction, reduction of variables, choice of adapted coordinate systems based on symmetries, computation of first integrals of motion, conservation laws and Lax pairs, Liouville integrability, study of the (asymptotic) behavior of solutions at a singularity, etc. Although not yet very popular in applied mathematics, these theories have lengthy been studied in fundamental mathematics and were developed by Lie, Cartan, Janet, Ritt, Kolchin, Spencer, etc. 104112113116143131.
Over the past years, certain of these algebraic approaches to functional systems have been investigated within an algorithmic viewpoint, mostly driven by applications to engineering sciences such as mathematical systems theory and control theory. We have played a role towards these effective developments, especially in the direction of an algorithmic approach to the socalled algebraic analysis112, 113, 56, a mathematical theory developed by the Japanese school of Sato, which studies linear differential systems by means of both algebraic and analytic methods. To develop an effective approach to algebraic analysis, we first have to make algorithmic standard results on rings of functional operators, module theory, homological algebra, algebraic geometry, sheaf theory, category theory, etc., and to implement them in computer algebra systems. Based on elimination theory (Gröbner or Janet bases 104, 72, 145, differential algebra 5886, Spencer's theory 131, etc.), in 4, 5, we have initiated such a computational algebraic analysis approach for general classes of functional systems (and not only for holonomic systems as done in the literature of computer algebra 72). Based on the effective aspects to algebraic analysis approach, the parametrizability problem 4, the reduction and (Serre) decomposition problems 5, the equidimensional decomposition 133, Stafford's famous theorems for the Weyl algebras 136, etc., have been studied and solutions have been implemented in Maple, Mathematica, and GAP715. But these results are only the first steps towards computational algebraic analysis, its implementation in computer algebra systems, and its applications to mathematical systems, control theory, signal processing, mathematical physics, etc.
2.2 Synergies
Outside applications which can clearly be seen as transversal acitivies, our development directions are linked at several levels : shared computable objects, computational strategies and transversal research directions.
Sharing basic algebraic objects As seen above, is the wellknown fact that the elimination theory for functional systems is deeply intertwined with the one for polynomial systems so that, topology in small dimension, applications in control theory, signal theory and robotics share naturally a large set of computable objects developped in our project team.
Performing efficient basic arithmetic operations in number fields is also a key ingredient to most of our algorithms, in Number theory as well as in topology in small dimension or , more generally in the use of roots of polynomials systems. In particular, finding good representations of number fields, lead to the same computational problems as working with roots of polynomial systems by means of triangular systems (towers of number fields) or rational parameterizations (unique number field). Making any progress in one direction will probably have direct consequences for almost all the problems we want to tackle.
Symbolicnumeric strategies. Several general lowlevel tools are also shared such as the use of approximate arithmetic to speed up certified computations. Sometimes these can also lead to improvement for a different purpose (for example computations over the rationals, deeply used in geometry can often be performed in parallel combining computations in finite fields together with fast Chinese remaindering and modular evaluations).
As simple example of this sharing of tools and strategies, the use of approximate arithmetic is common to the work on LLL (used in the evaluation of the security of cryptographic systems), resolutions of realworld algebraic systems (used in our applications in robotics, control theory, and signal theory), computations of signs of trigonometric expressions used in knot theory or to certified evaluations of dilogarithm functions on an algebraic variety for the computation of volumes of representations in our work in topology, numerical integration and computations of $L$functions.
Transversal research directions. The study of the topology of complex algebraic curves is central in the computation of periods of algebraic curves (number theory) but also in the study of character varieties (topology in small dimension) as well as in control theory (stability criteria). Very few computational tools exists for that purpose and they mostly convert the problem to the one of variety over the reals (we can then recycle our work in computational geometry).
As for real algebraic curves, finding a way to describe the topology (an equivalent to the graph obtained in the real case) or computing certified drawings (in the case of a complex plane curve, a useful drawing is the so called associated amoeba) are central subjects for Ouragan.
As mentioned in the section 3.3 the computation of the Mahler measure of an algebraic implicit curve is either a challenging problem in number theory and a new direction in topology. The basic formula requires the study of points of moduli 1 , as for stability problems in Control Theory (stability problems), and certified numerical evaluations of non algebraic functions at algebraic points as for many computations for $L$Functions.
3 Research program
3.1 Basic computable objects and algorithms
The development of basic computable objects is somehow on demand and depends on all the other directions. However, some critical computations are already known to be bottlenecks and are sources of constant efforts.
Computations with algebraic numbers appear in almost all our activities: when working with number fields in our work in algorithmic number theory as well as in all the computations that involve the use of solutions of zerodimensional systems of polynomial equations. Among the identified problems: finding good representations for single number fields (optimizing the size and degree of the defining polynomials), finding good representations for towers or products of number fields (typically working with a tower or finding a unique good extension), efficiently computing in practice with number fields (using certified approximation vs working with the formal description based on polynomial arithmetics). Strong efforts are currently done in the understanding of the various strategies by means of tight theoretical complexity studies 80, 124, 61 and many other efforts will be required to find the right representation for the right problem in practice. For example, for isolating critical points of plane algebraic curves, it is still unclear (at least the theoretical complexity cannot help) that an intermediate formal parameterization is more efficient than a triangular decomposition of the system and it is still unclear that these intermediate computations could be dominated in time by the certified final approximation of the roots.
3.2 Algorithmic Number Theory
Concerning algorithmic number theory, the main problems we will be considering in the coming years are the following:
 Number fields. We will continue working on the problems of class groups and generators. In particular, the existence and accessibility of good defining polynomials for a fixed number field remain very largely open. The impact of better polynomials on the algorithmic performance is a very important parameter, which makes this problem essential.
 Lattice reduction. Despite a great amount of work in the past 35 years on the LLL algorithm and its successors, many open problems remain. We will continue the study of the use of interval arithmetic in this field and the analysis of variants of LLL along the lines of the PotentialLLL which provides improved reduction comparable to BKZ with a small block size but has better performance.
 Elliptic curves and Drinfeld modules. The study of elliptic curves is a very fruitful area of number theory with many applications in crypto and algorithms. Drinfeld modules are “cousins” of elliptic curves which have been less explored in the algorithm context. However, some recent advances 84 have used them to provide some fast sophisticated factoring algorithms. As a consequence, it is natural to include these objects in our research directions.
Rigorous numerical computations
Some studies in this area will be driven by some other directions, for example, the rigorous evaluation of non algebraic functions on algebraic varieties might become central for some of our work on topology in small dimension (volumes of varieties, drawing of amoeba) or control theory (approximations of discriminant varieties) are our two main current sources of interesting problems. In the same spirit, the work on $L$functions computations (extending the computation range, algorithmic tools for computing algebraic data from the $L$ function) will naturally follow.
On the other hand, another objective is to extend existing results on periods of algebraic curves to general curves and higher dimensional varieties is a general promising direction. This project aims at providing tools for integration on higher homology groups of algebraic curves, ie computing GaussManin connections. It requires good understanding of their topology, and more algorithmic tools on differential equations.
3.3 Topology in small dimension
Character varieties
The brute force approach to computable objects from topology of small dimension will not allow any significant progress. As explained above, the systems that arise from these problems are simply outside the range of doable computations. We still continue the work in this direction by a fourfold approach, with all three directions deeply interrelated. First, we focus on a couple of especially meaningful (for the applications) cases, in particular the 3dimensional manifold called Whitehead link complement. At this point, we are able to make steps in the computation and describe part of the solutions 89, 101; we hope to be able to complete the computation using every piece of information to simplify the system. Second, we continue the theoretical work to understand more properties of these systems 87. These properties may prove how useful for the mathematical understanding is the resolution of such systems  or at least the extraction of meaningful information. This approach is for example carried on by Falbel and his work on configuration of flags 90, 92. Third, we position ourselves as experts in the knowhow of this kind of computations and natural interlocutors for colleagues coming up with a question on such a computable object (see 98 and 101). This also allows us to push forward the kind of computation we actually do and make progress in the direction of the second point. We are credible interlocutors because our team has the blend of theoretical knowledge and computational capabilities that grants effective resolutions of the problems we are presented. And last, we use the knowledge already acquired to pursue our theoretical study of the CRspherical geometry 79, 91, 88.
Another direction of work is the help to the community in experimental mathematics on new objects. It involves downsizing the system we are looking at (for example by going back to systems coming from hyperbolic geometry and not CRspherical geometry) and get the most out of what we can compute, by studying new objects. An example of this research direction is the work of Guilloux around the volume function on deformation varieties. This is a realanalytic function defined on the varieties we specialized in computing. Being able to do effective computations with this function led first to a conjecture 100. Then, theoretical discussions around this conjecture led to a paper on a new approach to the Mahler measure of some 2variables polynomials 99. In turn, this last paper gave a formula for the Mahler measure in terms of a function akin to the volume function applied at points in an algebraic variety whose moduli of coordinates are 1. The OURAGAN team has the expertise to compute all the objects appearing in this formula, opening the way to another area of application. This area is deeply linked with number theory as well as topology of small dimension. It requires all the tools at disposition within OURAGAN.
Knot theory
We will carry on the exhaustive search for the lexicographic degrees for the rational knots. They correspond to trigonal space curves: computations in the braid group ${B}_{3}$, explicit parametrization of trigonal curves corresponding to "dessins d'enfants", etc. The problem seems much more harder when looking for more general knots.
On the other hand, a natural direction would be: given an explicit polynomial space curve, determine the under/over nature of the crossings when projecting, draw it and determine the known knot 16 it is isotopic to.
Vizualisation and Computational Geometry
As mentioned above, the drawing of algebraic curves and surfaces is a critical action in OURAGAN since it is a key ingredient in numerous developments. In some cases, one will need a fully certified study of the variety for deciding existence of solutions (for example a region in a robot's parameter's space with solutions to the DKP above or deciding if some variety crosses the unit polydisk for some stability problems in controltheory), in some other cases just a partial but certified approximation of a surface (path planning in robotics, evaluation of non algebraic functions over an algebraic variety for volumes of knot complements in the study of character varieties).
On the one hand, we will contribute to general tools like ISOTOP 17 under the supervision of the GAMBLE projectteam and, on the other hand, we will propose adhoc solutions by gluing some of our basic tools (problems of high degrees in robust control theory). The priority is to provide a first software that implements methods that fit as most as possible the very last complexity results we got on several (theoretical) algorithms for the computation of the topology of plane curves.
A particular effort will be devoted to the resolution of overconstraint bivariate systems which are useful for the studies of singular points and to polynomials systems in 3 variables in the same spirit : avoid the use of Gröbner basis and propose a new algorithm with a stateoftheart complexity and with a good practical behavior.
In parallel, one will have to carefully study the drawing of graphs of non algebraic functions over algebraic complex surfaces for providing several tools which are useful for mathematicians working on topology in small dimension (a well known example is the drawing of amoebia, a way of representing a complex curve on a sheet of paper).
3.4 Algebraic analysis of functional systems
We want to further develop our expertise in the computational aspects of algebraic analysis by continuing to develop effective versions of results of module theory, homological algebra, category theory and sheaf theory 146 which play important roles in algebraic analysis 56, 112, 113 and in the algorithmic study of linear functional systems. In particular, we shall focus on linear systems of integrodifferentialconstant/varying/distributed delay equations 132, 135 which play an important role in mathematical systems theory, control theory, and signal processing 132, 141, 137, 138.
The rings of integrodifferential operators are highly more complicated than the purely differential case (i.e. Weyl algebras) 12, due to the existence of zerodivisors, or the fact of having a coherent ring instead of a noetherian ring 53. Therefore, we want to develop an algorithmic study of these rings. Following the direction initiated in 135 for the computation of zero divisors (based on the polynomial null spaces of certain operators), we first want to develop algorithms for the computation of left/right kernels and left/right/generalized inverses of matrices with entries in such rings, and to use these results in module theory (e.g. computation of syzygy modules, (shorter/shortest) free resolutions, split short/long exact sequences). Moreover, Stafford's results 147, algorithmically developed in 12 for rings of partial differential operators (i.e. the Weyl algebras), are known to still hold for rings of integrodifferential operators. We shall study their algorithmic extensions. Our corresponding implementation will be extended accordingly.
Finally, within a computer algebra viewpoint, we shall continue to algorithmically study issues on rings of integrodifferentialdelay operators 132, 137 and their applications to the study of equivalences of differential constant/varying/distributed delay systems (e.g. Artstein's reduction, FiagbedziPearson's transformation) which play an important role in control theory.
4 Application domains
4.1 Security of cryptographic systems
The study of the security of asymmetric cryptographic systems comes as an application of the work carried out in algorithmic number theory and revolves around the development and the use of a small number of general purpose algorithms (lattice reduction, class groups in number fields, discrete logarithms in finite fields, ...). For example, the computation of generators of principal ideals of cyclotomic fields can be seen as one of these applications since these are used in a number of recent public key cryptosystems.
The cryptographic community is currently very actively assessing the threat coming for the development of quantum computers. Indeed, such computers would permit tremendous progress on many number theoretic problems such as factoring or discrete logarithm computations and would put the security of current cryptosystem under a major risk. For this reason, there is a large global research effort dedicated to finding alternative methods of securing data. For example, the US standardization agency called NIST has recently launched a standardization process around this issue. In this context, OURAGAN is part of the competition and has submitted a candidate (which has not been selected) 51. This method is based on numbertheoretic ideas involving a new presumably difficult problem concerning the Hamming distance of integers modulo large numbers of Mersenne.
4.2 Robotics
Algebraic computations have tremendously been used in Robotics, especially in kinematics, since the last quarter of the 20th century 103. For example, one can find algebraic proofs for the 40 possible solutions to the direct kinematics problem 127 for steward platforms and companion experiments based on Gröbner basis computations 93. On the one hand, hard general kinematics problems involve too many variables for pure algebraic methods to be used in place of existing numerical or seminumerical methods everywhere and everytime, and on the other hand, global algebraic studies allow to propose exhaustive classifications that cannot be reached by other methods,for some quite large classes.
Robotics is a longstanding collaborative work with LS2N (Laboratory of Numerical Sciences of Nantes). Work has recently focused on the offline study of mechanisms, mostly parallel, their singularities or at least some types of singularities (cuspidals robots 151).
For most parallel or serial manipulators, pose variables and joints variables are linked by algebraic equations and thus lie an algebraic variety. The twokinematics problems (the direct kinematics problem  DKP and the inverse kinematics problem  IKP) consist in studying the preimage of the projection of this algebraic variety onto a subset of unknowns. Solving the DKP remains to computing the possible positions for a given set of joint variables values while solving the IKP remains to computing the possible joints variables values for a given position. Algebraic methods have been deeply used in several situations for studying parallel and serial mechanisms, but finally their use stays quite confidential in the design process. Cylindrical Algebraic Decomposition coupled with variable's eliminations by means of Gröbner based computations can be used to model the workspace, the joint space and the computation of singularities. On the one hand, such methods suffer immediately when increasing the number of parameters or when working with imprecise data. On the other hand, when the problem can be handled, they might provide full and exhaustive classifications. The tools we use in that context 70, 69, 105, 107, 106 depend mainly on the resolution of parameterbased systems and therefore of studydependent curves or flat algebraic surfaces (2 or 3 parameters), thus joining our thematic Computational Geometry.
4.3 Control theory
Certain problems studied in mathematical systems theory and control theory can be better understood and finely studied by means of algebraic structures and methods. Hence, the rich interplay between algebra, computer algebra, and control theory has a long history.
For instance, the first main paper on Gröbner bases written by their creators, Buchberger, was published in Bose's book 57 on control theory of multidimensional systems. Moreover, the differential algebra approach to nonlinear control theory (see 83, 82 and the references therein) was a major motivation for the algorithmic study of differential algebra 58, 86. Finally, the behaviour approach to linear systems theory 152, 129 advocates for an algorithmic study of algebraic analysis (see Section 2.1.4). More generally, control theory is porous to computer algebra since one finds algebraic criteria of all kinds in the literature even if the control theory community has a very few knowledge in computer algebra.
OURAGAN has a strong interest in the computer algebra aspects of mathematical systems theory and control theory related to both functional and polynomial systems, particularly in the direction of robust stability analysis and robust stabilization problems for multidimensional systems 57, 129 and infinitedimensional systems 76 (such as, e.g., differential timedelay systems).
Let us shortly state a few points of our recent interests in this direction.
In control theory, stability analysis of linear timeinvariant control systems is based on the famous RouthHurwitz criterion (late 19th century) and its relation with Sturm sequences and Cauchy index. Thus, stability tests were only involving tools for univariate polynomials 111. While extending those tests to multidimensional systems or differential timedelay systems, one had to tackle multivariate problems recursively with respect to the variables 57. Recent works use a mix of symbolic/numeric strategies, Linear Matrix Inequalities (LMI), sums of squares, etc. But still very few practical experiments are currently involving certified algebraic computations based on general solvers for polynomial equations. We have recently started to study certified stability tests for multidimensional systems or differential timedelay systems with an important observation: with a correct modelization, some recent algebraic methods $$ derived from our work in algorithmic geometry and shared with applications in robotics $$ can now handle previously impossible computations and lead to a better understanding of the problems to be solved 63, 64, 66. The previous approaches seem to be blocked on a recursive use of onevariable methods, whereas our approach involves the direct processing of the problem for a larger number of variables.
The structural stability of $n$D discrete linear systems (with $n\ge 2$) is a good source of problems of several kinds ranging from solving univariate polynomials to studying algebraic systems depending on parameters. For instance, we show 65, 64, 66 that the standard characterization of the structural stability of a multivariate rational transfer function (namely, the denominator of the transfer function does not have solutions in the unit polydisc of ${\u2102}^{n}$) is equivalent to deciding whether or not a certain system of polynomial equations has real solutions. The use stateoftheart computer algebra algorithms to check this last condition, and thus the structural stability of multidimensional systems has been validated in several situations from toy examples with parameters to stateoftheart examples involving, e.g., the resolution of bivariate systems 62, 61.
The rich interplay between control theory, algebra, and computer algebra is also well illustrated with our recent work on robust stabilization problems for multidimensional and finite/infinitedimensional systems 59, 134, 139, 142, 140, 141.
4.4 Signal processing
Due to numerous applications (e.g. sensor network, mobile robots), sources and sensors localization has intensively been studied in the literature of signal processing. The anchor position self calibration problem is a wellknown problem which consists in estimating the positions of both the moving sources and a set of fixed sensors (anchors) when only the distance information between the points from the different sets is available. The position selfcalibration problem is a particular case of the Multidimensional Unfolding (MDU) problem for the Euclidean space of dimension 3. In the signal processing literature, this problem is attacked by means of optimization problems (see 75 and the references therein). Based on computer algebra methods for polynomial systems, we have recently developed a new approach for the MDU problem which yields closedform solutions and a very efficient algorithm for the estimation of the positions 77 based only on linear algebra techniques. This first result, done in collaboration with Dagher (Inria Chile) and Zheng (DEFROST, Inria Lille), yielded a recent patent 78. This result advocates for the study of other localization problems based on the computational polynomial techniques developed in OURAGAN.
In collaboration with Safran Tech (Barau, Hubert) and Dagher (Inria Chile), a symbolicnumeric study of the new multicarrier demodulation method102 has recently been initiated. Gear fault diagnosis is an important issue in aeronautics industry since a damage in a gearbox, which is not detected in time, can have dramatic effects on the safety of a plane. Since the vibrations of a spur gear can be modeled as a product of two periodic functions related to the gearbox kinematic, it is proposed to recover each function from the global signal by means of an optimal reconstruction problem which, based on Fourier analysis, can be rewritten as ${\mathrm{argmin}}_{u\in {\u2102}^{n},{v}_{1},{v}_{2}\in {\u2102}^{m}}\parallel Mu\phantom{\rule{0.166667em}{0ex}}{v}_{1}^{\u2606}D\phantom{\rule{0.166667em}{0ex}}u\phantom{\rule{0.166667em}{0ex}}{v}_{2}^{\u2606}{\parallel}_{F}$, where $M\in {\u2102}^{n\times m}$ (resp. $D\in {\u2102}^{n\times n}$) is a given matrix with a special shape (resp. diagonal matrix), $\parallel \xb7{\parallel}_{F}$ is the Frobenius norm, and ${v}^{\u2606}$ is the Hermitian transpose of $v$. We have recently obtained closedform solutions for the exact problem, i.e., $M=u\phantom{\rule{0.166667em}{0ex}}{v}_{1}^{\u2606}+D\phantom{\rule{0.166667em}{0ex}}u\phantom{\rule{0.166667em}{0ex}}{v}_{2}^{\u2606}$, which is a polynomial system with parameters. This first result gives interesting new insides for the study of the nonexact case, i.e. for the above optimization problem.
Our expertise on algebraic parameter estimation problem, developed in the former NonA projectteam (Inria Lille), will be further developed. Following this work 94, the problem consists in estimating a set $\theta $ of parameters of a signal $x(\theta ,t)$$$ which satisfies a certain dynamics $$ when the signal $y\left(t\right)=x(\theta ,t)+\gamma \left(t\right)+\varpi \left(t\right)$ is observed, where $\gamma $ denotes a structured perturbation and $\varpi $ a noise. It has been shown that $\theta $ can sometimes be explicitly determined by means of closedform expressions using iterated integrals of $y$. These integrals are used to filter the noise $\varpi $. Based on a combination of algebraic analysis techniques (rings of differential operators), differential elimination theory (Gröbner basis techniques for Weyl algebras), and operational calculus (Laplace transform, convolution), an algorithmic approach to algebraic parameter estimation problem has been initiated in 137 for a particular type of structured perturbations (i.e. bias) and was implemented in the Maple prototype NonA. The case of a general structured perturbation is still lacking.
5 Highlights of the year
We participated the INRIA COVID19 Mission with the project Parlons Maths;
Our contract with Maple has been renewed for two years;
One contract and one NDA have been signed with Safran Defense.
Sudarshan Shinde defended his PhD 39 (directed by PierreVincent Koseleff and Razvan Barbulescu);
A new CIFRE grant with Crypto experts started in October. Thibauld Feneuil has joined the team.
The the book 38 has been published.
6 New software and platforms
6.1 New software
6.1.1 ISOTOP
 Name: Topology and geometry of planar algebraic curves
 Keywords: Topology, Curve plotting, Geometric computing
 Functional Description: Isotop is a Maple software for computing the topology of an algebraic plane curve, that is, for computing an arrangement of polylines isotopic to the input curve. This problem is a necessary key step for computing arrangements of algebraic curves and has also applications for curve plotting. This software has been developed since 2007 in collaboration with F. Rouillier from Inria Paris  Rocquencourt.

URL:
https://
isotop. gamble. loria. fr/  Publications: hal00809430, hal00809425, inria00329754, inria00580431, hal00992634, hal01342211, inria00425383, inria00517175, hal01468796, hal00977671
 Authors: Luis Penaranda, Marc Pouget, Sylvain Lazard
 Contacts: Sylvain Lazard, Marc Pouget
 Participants: Luis Penaranda, Marc Pouget, Sylvain Lazard
6.1.2 RS
 Functional Description: Real Roots isolation for algebraic systems with rational coefficients with a finite number of Complex Roots

URL:
https://
team. inria. fr/ ouragan/ software/  Author: Fabrice Rouillier
 Contact: Fabrice Rouillier
 Participant: Fabrice Rouillier
6.1.3 A NewDsc
 Name: A New Descartes
 Keyword: Scientific computing
 Functional Description: Computations of the real roots of univariate polynomials with rational coefficients.

URL:
https://
anewdsc. mpiinf. mpg. de  Authors: Fabrice Rouillier, Alexander Kobel, Michael Sagraloff
 Contact: Fabrice Rouillier
 Partner: Max Planck Institute for Software Systems
6.1.4 SIROPA
 Keywords: Robotics, Kinematics
 Functional Description: Library of functions for certified computations of the properties of articulated mechanisms, particularly the study of their singularities

URL:
http://
siropa. gforge. inria. fr/  Authors: Damien Chablat, Fabrice Rouillier, Guillaume Moroz, Philippe Wenger
 Contacts: Fabrice Rouillier, Guillaume Moroz
 Partner: LS2N
6.1.5 MPFI
 Keyword: Arithmetic
 Functional Description: MPFI is a C library based on MPFR and GMP for multi precision floating point arithmetic.

URL:
http://
mpfi. gforge. inria. fr  Contacts: Fabrice Rouillier, Nathalie Revol
7 New results
7.1 Number Theory
7.1.1 Numerical verification of the CohenLenstraMartinet heuristics and of Greenberg's prationality conjecture
In 16, we make a series of numerical experiments to support Greenberg's prationality conjecture, we present a family of prational biquadratic fields and we find new examples of prational multiquadratic fields. In the case of multiquadratic and multicubic fields we show that the conjecture is a consequence of the CohenLenstraMartinet heuristic and of the conjecture of Hofmann and Zhang on the padic regulator, and we bring new numerical data to support the extensions of these conjectures. We compare the known algorithmic tools and propose some improvements.
7.1.2 An asymptotically faster version of FV supported on HPR
Stateoftheart implementations of homomorphic encryption exploit the Fan and Vercauteren (FV) scheme and the Residue Number System (RNS). While the RNS breaks down large integer arithmetic into smaller independent channels, its nonpositional nature makes operations such as division and rounding hard to implement, and makes the representation of small values inefficient. In 25, we propose the application of the Hybrid PositionResidues Number System representation to the FV scheme. This is a positional representation of large radix where the digits are represented in RNS. It inherits the benefits from RNS and allows to accelerate the critical division and rounding operations while also making the representation of smaller values more compact. This directly benefits the decryption and the homomorphic multiplication procedures, reducing their asymptotic complexity, in dimension n, from $O\left({n}^{2}logn\right)$ to $O\left(nlogn\right)$ and from $O\left({n}^{3}logn\right)$ to $O\left({n}^{3}\right)$, respectively and has resulted in noticeable speedups when experimentally compared to related art RNS implementations.
7.2 Computer Algebra
7.2.1 Multilinear Polynomial Systems: Root Isolation and Bit Complexity
In 21, we exploit structure in polynomial system solving by considering polynomials that are linear in subsets of the variables. We focus on algorithms and their Boolean complexity for computing isolating hyperboxes for all the isolated complex roots of wellconstrained, unmixed systems of multilinear polynomials based on resultant methods. We enumerate all expressions of the multihomogeneous (or multigraded) resultant of such systems as a determinant of Sylvesterlike matrices, aka generalized Sylvester matrices. We construct these matrices by means of Weyman homological complexes, which generalize the CayleyKoszul complex. The computation of the determinant of the resultant matrix is the bottleneck for the overall complexity. We exploit the quasiToeplitz structure to reduce the problem to efficient matrixvector multiplication, which corresponds to multivariate polynomial multiplication, by extending the seminal work on Macaulay matrices of Canny, Kaltofen, and Yagati to the multihomogeneous case. We compute a rational univariate representation of the roots, based on the primitive element method. In the case of 0dimensional systems we present a Monte Carlo algorithm with probability of success $11/{2}^{r}$, for a given $r\ge 1$, and bit complexity ${O}_{B}({n}^{2}{D}^{(4+e)}({n}^{(N+1)}+\tau )+n{D}^{(2+e)}r(D+r))$ for any $e>0$, where $n$ is the number of variables, $D$ equals the multilinear Bézout bound, $N$ is the number of variable subsets, and $\tau $ is the maximum coefficient bitsize. We present an algorithmic variant to compute the isolated roots of overdetermined and positivedimensional systems. Thus our algorithms and complexity analysis apply in general with no assumptions on the input.
7.2.2 Separation bounds for polynomial systems
In 22, we rely on aggregate separation bounds for univariate polynomials to introduce novel worstcase separation bounds for the isolated roots of zerodimensional, positivedimensional, and overde termined polynomial systems. We exploit the structure of the given system, as well as bounds on the height of the sparse (or toric) resultant, by means of mixed volume, thus establishing adaptive bounds. Our bounds improve upon Canny’s Gap theorem [9]. Moreover, they exploit sparseness and they apply without any assumptions on the input polynomial system. To evaluate the quality of the bounds, we present polynomial systems whose root separation is asymptotically not far from our bounds. We apply our bounds to three problems. First, we use them to estimate the bitsize of the eigenvalues and eigenvectors of an integer matrix; thus we provide a new proof that the problem has polynomial bit complexity. Second, we bound the value of a positive polynomial over the simplex: we improve by at least one order of magnitude upon all existing bounds. Finally, we asymptotically bound the number of steps of any purely subdivisionbased algorithm that isolates all real roots of a polynomial system.
7.2.3 Matrix formulae for Resultants and Discriminants of Bivariate Tensorproduct Polynomials
The construction of optimal resultant formulae for polynomial systems is one of the main areas of research in computational algebraic geometry. However, most of the constructions are restricted to formulae for unmixed polynomial systems, that is, systems of polynomials which all have the same support. Such a condition is restrictive, since mixed systems of equations arise frequently in many problems. Nevertheless, resultant formulae for mixed polynomial systems is a very challenging problem. In 19, we present a square, Koszultype, matrix, the determinant of which is the resultant of an arbitrary (mixed) bivariate tensorproduct polynomial system. The formula generalizes the classical Sylvester matrix of two univariate polynomials, since it expresses a map of degree one, that is, the elements of the corresponding matrix are up to sign the coefficients of the input polynomials. Interestingly, the matrix expresses a primaldual multiplication map, that is, the tensor product of a univariate multiplication map with a map expressing derivation in a dual space. In addition we prove an impossibility result which states that for tensorproduct systems with more than two (affine) variables there are no universal degreeone formulae, unless the system is unmixed. Last but not least, we present applications of the new construction in the efficient computation of discriminants and mixed discriminants.
7.2.4 Certified lattice reduction
Quadratic form reduction and lattice reduction are fundamental tools in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra–Lenstra–Lovász reduction algorithm (socalled LLL) has been improved in many ways through the past decades and remains one of the central methods used for reducing integral lattice basis. In particular, its floatingpoint variants—where the rational arithmetic required by Gram–Schmidt orthogonalization is replaced by floatingpoint arithmetic—are now the fastest known. However, the systematic study of the reduction theory of real quadratic forms or, more generally, of real lattices is not widely represented in the literature. When the problem arises, the lattice is usually replaced by an integral approximation of (a multiple of) the original lattice, which is then reduced. While practically useful and proven in some special cases, this method doesn't offer any guarantee of success in general. In 23, we present an adaptiveprecision version of a generalized LLL algorithm that covers this case in all generality. In particular, we replace floatingpoint arithmetic by Interval Arithmetic to certify the behavior of the algorithm. We conclude by giving a typical application of the result in algebraic number theory for the reduction of ideal lattices in number fields.
7.3 Algebraic Analysis
7.3.1 Computing polynomial solutions and annihilators of integrodifferential operators with polynomial coefficients
In 37, we study algorithmic aspects of the algebra of linear ordinary integrodifferential operators with polynomial coefficients. Even though this algebra is not Noetherian and has zero divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory over this algebra. For an algorithmic approach to linear systems of integrodifferential equations with boundary conditions, computing the kernel of matrices with entries in this algebra is a fundamental task. As a first step, we have to find annihilators of integrodifferential operators, which, in turn, is related to the computation of polynomial solutions of such operators. For a class of linear operators including integrodifferential operators, we present an algorithmic approach for computing polynomial solutions and the index. A generating set for right annihilators can be constructed in terms of such polynomial solutions. For initial value problems, an involution of the algebra of integrodifferential operators then allows us to compute left annihilators, which can be interpreted as compatibility conditions of integrodifferential equations with boundary conditions. We illustrate our approach using an implementation in the computer algebra system Maple.
7.3.2 Equivalences of linear functional systems
In 36, within the algebraic analysis approach to linear systems theory, we investigate the equivalence problem of linear functional systems, i.e., the problem of characterizing when all the solutions of two linear functional systems are in a oneto one correspondence. To do that, we first provide a new characterization of isomorphic finitely presented modules in terms of inflation of their presentation matrices. We then prove several isomorphisms which are consequences of the unimodular completion problem. We then use these isomorphisms to complete and refine existing results concerning Serre’s reduction problem. Finally, different consequences of these results are given. All the results obtained here are algorithmic for rings for which Gröbner basis techniques exist and the computations can be performed by the Maple packages OreModules and OreMorphisms or the Mathematica package OreAlgebraicAnalysis.
7.3.3 Effective algebraic analysis approach to linear systems over Ore algebras
The purpose of 35 is to present a survey on the effective algebraic analysis approach to linear systems theory with applications to control theory and mathematical physics. In particular, we show how the combination of effective methods of computer algebra – based on Gröbner basis techniques over a class of noncommutative polynomial rings of functional operators called Ore algebras – and constructive aspects of module theory and homological algebra enables the characterization of structural properties of linear functional systems. Algorithms are given and a dedicated implementation, called OreAlgebraicAnalysis, based on the Mathematica package HolonomicFunctions, is demonstrated.
7.4 Geometry
7.4.1 Computing the Homology of Semialgebraic Sets. II: General formulas.
In 18, we describe and analyze a numerical algorithm for computing the homology (Betti numbers and torsion coefficients) of semialgebraic sets given by Boolean formulas. The algorithm works in weak exponential time. This means that outside a subset of data having exponentially small measure, the cost of the algorithm is single exponential in the size of the data. This extends the work in Part I to arbitrary semialgebraic sets. All previous algorithms proposed for this problem have doubly exponential complexity.
7.4.2 Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces
The conditionbased complexity analysis framework is one of the gems of modern numerical algebraic geometry and theoretical computer science. One of the challenges that it poses is to expand the currently limited range of random polynomials that we can handle. Despite important recent progress, the available tools cannot handle random sparse polynomials and Gaussian polynomials, that is polynomials whose coefficients are i.i.d. Gaussian random variables. In 30, initiate a conditionbased complexity framework based on the norm of the cube, that is a step in this direction. We present this framework for real hypersurfaces. We demonstrate its capabilities by providing a new probabilistic complexity analysis for the PlantingaVegter algorithm, which covers both random sparse (alas a restricted sparseness structure) polynomials and random Gaussian polynomials. We present explicit results with structured random polynomials for problems with two or more dimensions. Additionally, we provide some estimates of the separation bound of a univariate polynomial in our current framework.
7.4.3 Computing the topology of a plane or space hyperelliptic curve
In 15,We present algorithms to compute the topology of 2D and 3D hyperelliptic curves. The algorithms are based on the fact that 2D and 3D hyperelliptic curves can be seen as the image of a planar curve (the Weierstrass form of the curve), whose topology is easy to compute, under a birational mapping of the plane or the space. We report on a Maple implementation of these algorithms, and present several examples. Complexity and certification issues are also discussed.
7.4.4 PTOPO: A Maple package for the topology of parametric curves
In 24, we present PTOPO, a MAPLE package computing the topology and describing the geometry of a parametric plane curve. The algorithm behind PTOPO constructs an abstract graph that is isotopic to the curve. PTOPO exploits the benefits of the parametric representation and performs all computations in the parameter space using exact computing. PTOPO computes the topology and visualizes the curve in less than a second for most examples in the literature.
7.4.5 On the Geometry and the Topology of Parametric Curves
In 31, we consider the problem of computing the topology and describing the geometry of a parametric curve in ${\mathbb{R}}^{n}$. We present an algorithm, PTOPO, that constructs an abstract graph that is isotopic to the curve in the embedding space. Our method exploits the benefits of the parametric representation and does not resort to implicitization. Most importantly, we perform all computations in the parameter space and not in the implicit space. When the parametrization involves polynomials of degree at most $d$ and maximum bitsize of coefficients $\tau $, then the worst case bit complexity of PTOPO is ${\tilde{O}}_{B}(n{d}^{6}+n{d}^{5}\tau +{d}^{4}({n}^{2}+n\tau )+{d}^{3}({n}^{2}\tau +{n}^{3})+{n}^{3}{d}^{2}\tau )$. This bound matches the current record bound ${\tilde{O}}_{B}({d}^{6}+{d}^{5}\tau )$ for the problem of computing the topology of a planar algebraic curve given in implicit form. For planar and space curves, if $N=max\{d,\tau \}$, the complexity of PTOPO becomes ${\tilde{O}}_{B}\left({N}^{6}\right)$, which improves the stateoftheart result, due to Alcázar and DíazToca, by a factor of ${N}^{10}$. However, visualizing the curve on top of the abstract graph construction, increases the bound to ${\tilde{O}}_{B}\left({N}^{7}\right)$. We have implemented PTOPO in maple for the case of planar curves. Our experiments illustrate its practical nature.
7.4.6 Sampling the feasible sets of SDPs and volume approximation
In 20, we present algorithmic, complexity, and implementation results on the problem of sampling points in the interior and the boundary of a spectrahedron, that is the feasible region of a semidefinite program. Our main tool is random walks. We define and analyze a set of primitive geometric operations that exploits the algebraic properties of spectrahedra and the polynomial eigenvalue problem, and leads to the realization of a broad collection of efficient random walks. We demonstrate random walks that experimentally show faster mixing time than the ones used previously for sampling from spectrahedra in theory or applications, for example Hit and Run. Consecutively, the variety of random walks allows us to sample from general probability distributions, for example the family of logconcave distributions which arise frequently in numerous applications. We apply our tools to compute (i) the volume of a spectrahedron and (ii) the expectation of functions coming from robust optimal control. We provide a C++ open source implementation of our methods that scales efficiently up to to dimension 200. We illustrate its efficiency on various data sets.
7.4.7 The lexicographic degree of the first twobridge knots
In 17 study the degree of polynomial representations of knots. We give the lexicographic degree of all twobridge knots with 11 or fewer crossings. First, we estimate the total degree of a lexicographic parametrisation of such a knot. This allows us to transform this problem into a study of real algebraic trigonal plane curves, and in particular to use the braid theoretical method developed by Orevkov.
7.5 Signal Processing
7.5.1 Algebraic aspects of a rank factorization problem arising in vibration analysis
The article 28 continues the study of a factorization problem arising in gear fault surveillance. The structure of a class of solutions – interesting in practice – of this factorization problem is studied. We show that these solutions can be parametrized. The parameter space P is proved to be the complementary of an algebraic set that is explicitly characterized based on module theory and computer algebra. A finite open cover of P is obtained and for each basic open subset of the cover, a closedform solution is computed using computer algebra. Hence, the local structure of the solution space can be finely studied. Finally, we show that the existence of a single closedform solution defined on the whole parameter space P is related to difficult problems in module theory.
7.5.2 On a rank factorisation problem arising in gearbox vibration analysis
Given a field $K$, r matrices ${D}_{i}\in {K}^{n\times n}$, a matrix $M\in {K}^{n\times m}$ of rank at most $r$, in 29, we study the problem of factoring $M$ as follows $M={\sum}_{i=}^{r}{D}_{u}*u*{v}_{i}$, where $u\in {K}^{n\times 1}$ and ${v}_{i}\in {K}^{1\times m}$, for $i=1..r$. This problem arises in modulationbased mechanical models studied in gearbox vibration analysis (e.g., amplitude and phase modulation). We show how linear algebra methods combined with linear system theory ideas can be used to characterize when this polynomial problem is solvable and if so, how to explicitly compute the solutions.
7.6 Control Theory
7.6.1 Computation of the LInfinity norm of finitedimensional linear systems
In 26, we study the computation of the ${\mathcal{L}}_{\infty}$norm for finitedimensional linear systems. This problem is first reduced to the computation of the maximal $x$projection of the real solutions $(x,y)$ of a bivariate polynomial system $\{\mathcal{P},\frac{\partial \mathcal{P}}{\partial y}\}\subset \mathbb{Z}[x,y]$. We then apply computer algebra methods to solve the problem. We alternatively study a method based on rational univariate representations, a method based on root separation and finally a method based on the sign variation of the leading coefficients of the signed subresultant sequence and on the identification of an isolating interval for the maximal $x$projection of the real solutions of the system.
7.6.2 On the effective computation of stabilizing controllers of 2D systems
In 32, we show how stabilizing controllers for 2D systems can effectively be computed based on computer algebra methods dedicated to polynomial systems, module theory and homological algebra. The complete chain of algorithms for the computation of stabilizing controllers, implemented in Maple, is illustrated with an explicit example.
7.6.3 Symbolic Methods for Solving Algebraic Systems of Equations and Applications for Testing the Structural Stability
In 33, we provide an overview of the classical symbolic techniques for solving algebraic systems of equations and show the interest of such techniques in the study of some problems in dynamical system theory, namely testing the structural stability of multidimensional systems.
7.7 Robotics
7.7.1 TRPLP – Trifocal Relative Pose From Lines at Points
In 27, we present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of (i) three points and one line and (ii) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Grobner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We show in simulated experiments that our solvers are numerically robust and stable under image noise. We show in real experiment that (i) SIFT features provide good enough pointandline correspondences for threeview reconstruction and (ii) that we can solve difficult cases with too few or too noisy tentative matches where the state of the art structure from motion initialization fails.
7.7.2 Using Maple to analyse parallel robots
in 34, we present the SIROPA Maple Library which has been designed to study serial and parallel manipulators at the conception level. We show how modern algorithms in Computer Algebra can be used to study the workspace, the joint space but also the existence of some physical capabilities w.r.t. to some design parameters left as degree of freedom for the designer of the robot.
8 Bilateral contracts and grants with industry
8.1 Bilateral contracts with industry

The objective of our Agrement with WATERLOO MAPLE INC. is to promote software developments to which we actively contribute.
On the one hand, WMI provides man power, software licenses, technical support (development, documentation and testing) for an inclusion of our developments in their commercial products. On the other hand, OURAGAN offers perpetual licenses for the use of the concerned source code.
As past results of this agreement one can cite our CLibrary RS for the computations of the real solutions zerodimensional systems or also our collaborative development around the Maple package DV for solving parametric systems of equations.
For this term, the agreement covers algorithms developed in areas including but not limited to: 1) solving of systems of polynomial equations, 2) validated numerical polynomial root finding, 3) computational geometry, 4) curves and surfaces topology, 5) parametric algebraic systems, 6) cylindrical algebraic decompositions, 7) robotics applications.
In particular, it covers our collaborative work with some of our partners, especially the Gamble ProjectTeam  Inria Nancy Grand Est.
 A research contract was signed with the company Safran Electronics & Defense on the study of a geolocalization problem.
 A NDA was signed with the company Safran Electronics & Defense on the study of parallel mecanisms.
9 Partnerships and cooperations
9.1 International initiatives
Partenariat Hubert Curien francoturc (PHC Bosphore) with Gebze Technical University, Turkey.
Title: "Gröbner bases, ResultAnts and Polyhedral gEometry” (GRAPE)
Duration: 2019 – 2020 (2 years project)
Coordinator: Elias Tsigaridas
9.1.1 Inria associate team not involved in an IIL
MACAO
 Title: Mathematics and Algorithms for Cryptographic Advanced Objects
 Duration: 2019
 Coordinator: Antoine Joux

Partners:
 isgDPRMN, University of Wollongong (Australia)
 Inria contact: Antoine Joux
 Summary: Since quantum computers have the ability to break the two main problems on which current public cryptography relies, i.e., the factoring and discrete logarithm problem, every step towards the practical realization of these computers raises fears about potential attacks on cryptographic systems. By scrutinizing the techniques proposed to build postquantum cryptography, we can identify a few candidate hard problems which underly the proposals. One objective of this international project is to precisely assess the security of these cryptographic algorithms. First, by analyzing in a systematic manner the existing resolution algorithms and by assessing their complexity as a function of security parameters. Then, we will consider new algorithmic techniques to solve these candidate hard PostQuantum problems, both on classical computers and quantum machines aiming at the discovery of new and better algorithms to solve them.
9.1.2 Inria international partners
Declared Inria international partners
University of Wollongong (Australia)
Informal international partners
 CQT Singapour (UMI CNRS Majulab)
 UFPA  Para Brésil (José Miguel Veloso)
 Institut Joseph Fourier  Université Grenoble Alpes (Martin Deraux, V. Vitse et Pierre Will)
 MaxPlanckInstitut für Informatik  Saarbrücken  Germany (Alex. Kobel)
 Holon Institute of Technology, Israel (Jeremy Kaminsky)
 Department of Informatics, National Kapodistrian University of Athens, Greece (Ioannis Emiris)
 Gamble INRIA projectteam
 Datashape INRIA projectteam
9.2 European initiatives
9.2.1 FP7 & H2020 Projects
Program: H2020EU.1.1.  EXCELLENT SCIENCE  European Research Council (ERC)
Project acronym: Almacrypt
Project title: Algorithmic and Mathematical Cryptology
Duration: 01/2016  06/2021
Coordinator: Antoine Joux
Abstract: Cryptology is a foundation of information security in the digital world. Today's internet is protected by a form of cryptography based on complexity theoretic hardness assumptions. Ideally, they should be strong to ensure security and versatile to offer a wide range of functionalities and allow efficient implementations. However, these assumptions are largely untested and internet security could be built on sand. The main ambition of Almacrypt is to remedy this issue by challenging the assumptions through an advanced algorithmic analysis. In particular, this proposal questions the two pillars of publickey encryption: factoring and discrete logarithms. Recently, the PI contributed to show that in some cases, the discrete logarithm problem is considerably weaker than previously assumed. A main objective is to ponder the security of other cases of the discrete logarithm problem, including elliptic curves, and of factoring. We will study the generalization of the recent techniques and search for new algorithmic options with comparable or better efficiency. We will also study hardness assumptions based on codes and subsetsum, two candidates for postquantum cryptography. We will consider the applicability of recent algorithmic and mathematical techniques to the resolution of the corresponding putative hard problems, refine the analysis of the algorithms and design new algorithm tools. Cryptology is not limited to the above assumptions: other hard problems have been proposed to aim at postquantum security and/or to offer extra functionalities. Should the security of these other assumptions become critical, they would be added to Almacrypt's scope. They could also serve to demonstrate other applications of our algorithmic progress. In addition to its scientific goal, Almacrypt also aims at seeding a strengthened research community dedicated to algorithmic and mathematical cryptology.
9.3 National initiatives

FMJH Program, PGMO grant
ALMA (Algebraic methods in games and optimization).
Duration: 2018 – 2020. (2 years project)
Coordinator: Elias Tsigaridas, with Stéphane Gaubert and Xavier Allamigeon (CMAP, École Polytechnique)
9.3.1 ANR

ANR JCJC GALOP (Games through the lens of ALgebra and OPptimization)
Coordinator: Elias Tsigaridas
Duration: 2018 – 2022
GALOP is a Young Researchers (JCJC) project with the purpose of extending the limits of the state oftheart algebraic tools in computer science, especially in stochastic games. It brings original and innovative algebraic tools, based on symbolicnumeric computing, that exploit the geometry and the structure and complement the stateoftheart. We support our theoretical tools with a highly efficient opensource software for solving polynomials. Using our algebraic tools we study the geometry of the central curve of (semidefinite) optimization problems. The algebraic tools and our results from the geometry of optimization pave the way to introduce algorithms and precise bounds for stochastic games.
10 Dissemination
10.1 Promoting scientific activities
Chair of conference program committees
JeanClaude Bajard was cochair of the 8th International Workshop, WAIFI 2020, Rennes, France, July 68, 2020
Member of the conference program committees
Alban Quadrat was member of the Program Committee of the 2020 Maple Conference, 0206/11/2020
Elias Tsigaridas was a member of the program committee of the 21th International Workshop on Computer Algebra in Scientific Computing (CASC) 2020.
10.1.1 Journal
Member of the editorial boards
Elisha Falbel is a member of the editorial board of São Paulo Journal of Mathematical Sciences  Springer
Antoine Joux is a member of the editorial board of Designs, Codes and Cryptography
Alban Quadrat is associate editor of Multidimensional Systems and Signal Processing, Springer
Fabrice Rouillier is associated editor of Journal of Symbolic Computations, Elsevier
10.1.2 Leadership within the scientific community
Alban Quadrat coorganized the invited session Algebraic and Symbolic Methods in Mathematical Systems Theory at the 21st IFAC World Congress, 1317 July 2020
10.1.3 Scientific expertise
Alban Quadrat is member of the Scientific committee of the Journées Nationales de Calcul Formel (JNCF)
10.1.4 Research administration
Alban Quadrat is member of the Conseil d'Administration of the Société Mathématique de France (SMF).
Fabrice Rouillier is a member of the scientific commitee of the Indo French Centre for Applied Mathematics.
Elisha Falbel is director of the École Doctorale Sciences Mathématiques de Paris Centre  ED 386.
Elias Tsigaridas is an elected member of the Commission d’évaluation d’Inria (CE).
10.2 Teaching  Supervision  Juries
10.2.1 Teaching
Alban Quadrat, Project Démodulation (2 groups), 10, L3, Sorbonne University.
Fabrice Rouillier: Course in Algebraic Computations, M1, 24h, Sorbonne Université.
Antonin Guilloux: Courses L1 at Sorbonne Université; Courses and organization of the "Préparation à l'Option C de mathématiques", at Sorbonne Université
Pascal Molin collaborates to the funded (20K euros) project AATEM for implementing a Jupyter+Cocalc server for teaching Maths and coputer science à Paris University.
PierreVincent Koseleff did propose anew course in Master 1 at Sorbonne Université : Algèbre Algorithmique
10.2.2 Supervision
Alban Quadrat supervised the Master thesis of Valérian Hatey, Etude effective de l'algèbre des opérateurs intégrodifférentiels ordinaires à coefficients polynomiaux, M2 Algèbre Appliquée, University of Paris Saclay
PierreVincent Koseleff supervised the Master thesis of Andrea Negro, some properties of the Alexander polynomials of twobridge knots, M2 Mathématiques fondamentales, Sorbonne Université
 PhD in progress: Mahya Mehrabdollahei, 09/2018, directed by Antonin Guilloux and Fabrice Rouillier
 PhD in progress: Grace Younes, 09/2018, directed by Alban Quadrat and Fabrice Rouillier
 PhD in progress: Christina Katsamaki, 09/2019, directed by Elias Tsigaridas and Fabrice Rouillier
 PhD in progress: Raphael Alexandre, 09/2019, directed by Elisha Falbel.
 PhD in progress : Thibauld Feneuil, 10/2020, directed by JeanClaude Bajard.
 PhD in progress : Carles Checa, 10/2020, directed by Elias Tsigaridas (cosupervision with Ioannis Emiris)
 Sudarshan Shinde, defense in July 2020 was directed by Razvan Barbulescu and PierreVincent Koseleff
10.2.3 Juries
J.C. Bajard was reviewer for the PhD of Mohamad Ali Mehrabi on hardware implementation of Elliptic Curve Cryptography based on Residue Number Systems , Macquarie University, Australia
J.C. Bajard was president of the Jury for the PhD of Timo ZIJLSTRA on accélérateurs matériels sécurisés pour la cryptographie post quantique, Université de Bretagne Sud.
J.C. Bajard was was member of the jury for the PhD of Natalia Kharchenko on lattice algorithms and latticebased cryptography , Sorbonne University.
10.3 Popularization
Antonin Guilloux: Interview for a short movie presented to "Je filme le métier qui me plaît" concourse on the work of a teacher/researcher in mathematics.
10.3.1 Internal or external Inria responsibilities
Alban Quadrat is member of the technical committee Linear Systems of the International Federation of Automatic Control (IFAC)
Fabrice Rouillier is the President of the association Animath.
Fabrice Rouillier is Chargé de mission Médiation for the Inria Paris research center.
Fabrice Rouillier is in the editoria board of Interstices.
Fabrice Rouillier is a member of the comité de pilotage de l'année des matématiques
Fabrice Rouillier is a member of the comité de pilotage de la semaine des mathématiques
Fabrice Rouillier est membre du Jury des Olympiades Nationales de Mathématiques
10.3.2 Interventions
Fabrice Rouillier participated to the semaine des mathématiques for the Paris Inria Paris research center.
11 Scientific production
Major publications
 1 article'Solving bivariate systems using Rational Univariate Representations'.Journal of Complexity372016, 3475
 2 article 'On the lexicographic degree of twobridge knots'. Journal Of Knot Theory And Its Ramifications (JKTR) 25 7 14p., 21 figs June 2016
 3 article 'Untangling trigonal diagrams'. Journal Of Knot Theory And Its Ramifications (JKTR) 25 7 10p., 24 figs June 2016
 4 article'Effective algorithms for parametrizing linear control systems over Ore algebras'.Applicable Algebra in Engineering, Communications and Computing162005, 319376
 5 article'Factoring and decomposing a class of linear functional systems'.Linear Algebra and Its Applications4282008, 324381
 6 article 'Dimension of character varieties for 3manifolds'. Proceedings of the American Mathematical Society 2016
 7 article'Character Varieties For SL(3,C): The Figure Eight Knot'.Experimental Mathematics2522016, 17
 8 article'Branched spherical CR structures on the complement of the figureeight knot'.Michigan Mathematical Journal632014, 635667
 9 article'A one round protocol for tripartite DiffieHellman'.J. Cryptology1742004, 263276
 10 article'Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method'.Math. Comput.722422003, 953967
 11 article'Solving Parametric Polynomial Systems'.Journal of Symbolic Computation42June 2007, 636667
 12 article'Computation of bases of free modules over the Weyl algebras'.Journal of Symbolic Computation422007, 11131141
 13 article'Solving zerodimensional systems through the rational univariate representation'.Journal of Applicable Algebra in Engineering, Communication and Computing951999, 433461
 14 article'Efficient Isolation of Polynomial Real Roots'.Journal of Computational and Applied Mathematics16212003, 3350
11.1 Publications of the year
International journals
 15 article 'Computing the topology of a plane or space hyperelliptic curve'. Computer Aided Geometric Design February 2020
 16 article'Numerical verification of the CohenLenstraMartinet heuristics and of Greenberg's prationality conjecture'.Journal de Théorie des Nombres de Bordeaux3212020, 159177
 17 article'The lexicographic degree of the first twobridge knots'.Annales de la Faculté des Sciences de Toulouse. Mathématiques.294December 2020, https://afst.centremersenne.org/item/AFST_2020_6_29_4_761_0/
 18 article 'Computing the Homology of Semialgebraic Sets. II: General formulas'. Foundations of Computational Mathematics January 2021
 19 article'Matrix formulae for Resultants and Discriminants of Bivariate Tensorproduct Polynomials'.Journal of Symbolic Computation98June 2020, 6583
 20 article 'Sampling the feasible sets of SDPs and volume approximation'. ACM Communications in Computer Algebra 2021
 21 article'Multilinear Polynomial Systems: Root Isolation and Bit Complexity'.Journal of Symbolic Computation1052021, 145164
 22 article'Separation bounds for polynomial systems'.Journal of Symbolic Computation1012020, 128151
 23 article'Certified lattice reduction'.Advances in Mathematics of Communications141February 2020, 137159
 24 article'PTOPO: A Maple package for the topology of parametric curves'.ACM Communications in Computer Algebra542September 2020, 4952
National journals
Invited conferences
International peerreviewed conferences
 25 inproceedings 'An asymptotically faster version of FV supported on HPR'. ARITH2020  27th IEEE International Symposium on Computer Arithmetic Portland, United States http://arith2020.arithsymposium.org/programme.html June 2020
 26 inproceedings 'Computation of the $\mathcal{L}_{\infty}$norm of finitedimensional linear systems'. Maple Conference Waterloo, Canada November 2020
 27 inproceedings'TRPLP – Trifocal Relative Pose From Lines at Points'.CVPR 2020  IEEE/CVF Conference on Computer Vision and Pattern RecognitionSeattle / Virtual, United StatesJune 2020, 1207012080
 28 inproceedings 'Algebraic aspects of a rank factorization problem arising in vibration analysis'. Maple Conference Waterloo / Virtual, Canada November 2020
 29 inproceedings 'On a rank factorisation problem arising in gearbox vibration analysis'. IFAC 2020  21st World Congress Berlin / Virtual, Germany https://www.ifaccontrol.org/events/ifacworldcongress21thwc2020 July 2020
 30 inproceedings'Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces'.Proceedings of the 2020 International Symposium on Symbolic and Algebraic Computation, ISSAC'20Kalamata, Greecehttp://www.issacconference.org/2020/July 2020, 434441
National peerreviewed Conferences
Conferences without proceedings
 31 inproceedings 'On the Geometry and the Topology of Parametric Curves'. ISSAC 2020  International Symposium on Symbolic and Algebraic Computation Kalamata / Virtual, Greece July 2020
Scientific books
Scientific book chapters
 32 inbook'On the effective computation of stabilizing controllers of 2D systems'.Maple in Mathematics Education and ResearchMaple in Mathematics Education and Researchhttps://link.springer.com/book/10.1007/9783030412586#toc2020, 3049
 33 inbook'Symbolic Methods for Solving Algebraic Systems of Equations and Applications for Testing the Structural Stability'.Algebraic and Symbolic Computation Methods in Dynamical SystemsMay 2020, 203237
 34 inbook'Using Maple to analyse parallel robots'.Maple in Mathematics Education and ResearchMaple in Mathematics Education and ResearchFebruary 2020, 5064
 35 inbook'Effective algebraic analysis approach to linear systems over Ore algebras'.9Algebraic and Symbolic Computation Methods in Dynamical SystemsAdvances in Delays and Dynamicshttps://www.springer.com/gp/book/97830303835582020, 452
 36 inbook'Equivalences of linear functional systems'.9Algebraic Methods and SymbolicNumeric Computation in Systems Theoryhttps://www.springer.com/gp/book/97830303835582020, 5386
 37 inbook 'Computing polynomial solutions and annihilators of integrodifferential operators with polynomial coefficients'. 9 Algebraic and Symbolic Computation Methods in Dynamical Systems Advances in Delays and Dynamics 87114 https://www.springer.com/gp/book/9783030383558#aboutBook 2020
Edition (books, proceedings, special issue of a journal)
 38 book'Algebraic and Symbolic Computation Methods in Dynamical Systems'.9Advances in Delays and Dynamics2020, 311
Doctoral dissertations and habilitation theses
 39 thesis 'Cryptographic applications of modular curves'. Sorbonne Université July 2020
Reports & preprints
 40 misc 'Geodesic convexity and closed nilpotent similarity manifolds'. March 2020
 41 misc 'Redundancy of hyperbolic triangle groups in spherical CR representations'. June 2020
 42 misc 'Montgomeryfriendly primes and applications to cryptography'. June 2020
 43 misc 'A classification of ECMfriendly families using modular curves: intégré à la thèse de doctorat de Sudarshan Shinde, Sorbonne Université, 10 juillet 2020.'. July 2020
 44 misc 'Efficient Sampling from Feasible Sets of SDPs and Volume Approximation'. October 2020
 45 misc 'Geometric algorithms for sampling the flux space of metabolic networks'. December 2020
 47 misc 'Functional norms, condition numbers and numerical algorithms in algebraic geometry'. February 2021
 48 misc 'On the Complexity of the PlantingaVegter Algorithm'. December 2020
 49 misc 'PTOPO: Computing the Geometry and the Topology of Parametric Curves'. December 2020
 50 misc 'Condition Numbers for the Cube. I: Univariate Polynomials and Hypersurfaces'. December 2020
Other scientific publications
11.2 Other
Scientific popularization
Educational activities
Patents
Softwares
Cited publications
 51 inproceedings'A New PublicKey Cryptosystem via Mersenne Numbers'.Advances in Cryptology  CRYPTO 2018  38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 1923, 2018, Proceedings, Part III2018, 459482URL: https://doi.org/10.1007/9783319968780_16
 52 book 'Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics)'. Berlin, Heidelberg SpringerVerlag 2006
 53 article'The algebra of integrodifferential operators on an affine line and its modules'.J. Pure Appl. Algebra2172013, 495529
 54 article 'Tetrahedra of flags, volume and homology of SL(3)'. Geometry & Topology Monographs 18 2014
 55 inproceedings'Computing generator in cyclotomic integer rings'.36th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2017)10210Lecture Notes in Computer ScienceParis, FranceApril 2017, 6088
 56 book 'Algebraic Dmodules'. Perspectives in mathematics Academic Press 1987
 57 book 'Multidimensional Systems Theory: Progress, Directions and Open Problems in Multidimensional Systems'. Mathematics and Its Applications Springer Netherlands 2001
 58 article'Computing representations for radicals of finitely generated differential ideals'.Applicable Algebra in Engineering, Communication and Computing202009, 73121
 59 inproceedings'Computing effectively stabilizing controllers for a class of $n$D systems'.The 20th World Congress of the International Federation of Automatic Control501Toulouse, FranceJuly 2017, 1847  1852
 60 inproceedings 'Improved algorithm for computing separating linear forms for bivariate systems'. ISSAC  39th International Symposium on Symbolic and Algebraic Computation Kobe, Japan July 2014
 61 article'Solving bivariate systems using Rational Univariate Representations'.Journal of Complexity372016, 3475
 62 article'Separating linear forms and Rational Univariate Representations of bivariate systems'.Journal of Symbolic Computation680May 2015, 84119
 63 incollection 'A symbolic computation approach to the asymptotic stability analysis of differential systems with commensurate delays'. Delays and Interconnections: Methodology, Algorithms and Applications Advances on Delays and Dynamics at Springer Springer Verlag March 2017
 64 unpublished'Certified Nonconservative Tests for the Structural Stability of Multidimensional Systems'.August 2017, To appear in Multidimensional Systems and Signal Processing, https://link.springer.com/article/10.1007/s110450180596y
 65 inproceedings 'Computer algebra methods for testing the structural stability of multidimensional systems'. IEEE 9th International Workshop on Multidimensional (nD) Systems (IEEE nDS 2015) Proceedings of the IEEE 9th International Workshop on Multidimensional (nD) Systems (IEEE nDS 2015) Vila Real, Portugal September 2015
 66 inproceedings 'Certified Algorithms for proving the structural stability of two dimensional systems possibly with parameters'. MNTS 2016  22nd International Symposium on Mathematical Theory of Networks and Systems Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems Minneapolis, United States July 2016
 67 article 'On the lexicographic degree of twobridge knots'. Journal Of Knot Theory And Its Ramifications (JKTR) 25 7 14p., 21 figs June 2016
 68 article 'Untangling trigonal diagrams'. Journal Of Knot Theory And Its Ramifications (JKTR) 25 7 10p., 24 figs June 2016
 69 inproceedings'Nonsingular assembly mode changing trajectories in the workspace for the 3RPS parallel robot'.14th International Symposium on Advances in Robot KinematicsLjubljana, SloveniaJune 2014, 149  159
 70 inproceedings'Workspace and joint space analysis of the 3RPS parallel robot'.ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering ConferenceVolume 5ABuffalo, United StatesAugust 2014, 110
 71 article'Effective algorithms for parametrizing linear control systems over Ore algebras'.Applicable Algebra in Engineering, Communications and Computing162005, 319376
 72 article'Noncommutative elimination in Ore algebras proves multivariate identities'.Journal of Symbolic Computation2621998, 187227
 73 inproceedings'Quantifier elimination for real closed fields by cylindrical algebraic decompostion'.Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, May 2023, 1975Berlin, HeidelbergSpringer Berlin Heidelberg1975, 134183
 74 book 'Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics)'. Berlin, Heidelberg SpringerVerlag 2007
 75 article'A bilinear approach to the position selfcalibration of multiple sensors'.IEEE Transactions on Signal Processing6022012, 660673
 76 book 'An Introduction to InfiniteDimensional Linear Systems Theory'. Texts in Applied Mathematics Springer New York 2012
 77 article 'Algebraic solutions to the metric multidimensional unfolding. Application to the position selfcalibration problem'. in preparation 2019
 78 article 'Autolocalisation par mesure de distances'. Pattern n. FR1853553 2018
 79 article'Complex hyperbolic geometry of the figure eight knot'.Geometry and Topology19February 2015, 237293
 80 unpublished'Bounds for polynomials on algebraic numbers and application to curve topology'.October 2018, working paper or preprint
 81 article'New directions in cryptography'.IEEE Transactions on Information Theory2261976, 644654
 82 article'Differentialalgebraic decision methods and some applications to system theory'.Theoret. Comput. Sci.981992, 137161
 83 article'Elimination in control theory'.Math. Control Signals Systems41991, 1732
 84 article'Drinfeld Modules with Complex Multiplication, Hasse Invariants and Factoring Polynomials over Finite Fields'.CoRRabs/1712.006692017, URL: http://arxiv.org/abs/1712.00669
 85 article'Adaptive precision LLL and PotentialLLL reductions with Interval arithmetic'.IACR Cryptology ePrint Archive20162016, 528URL: http://eprint.iacr.org/2016/528
 86 incollection'Notes on Triangular Sets and TriangulationDecomposition Algorithms II: Differential Systems'.Symbolic and Numerical Scientific ComputationLecture Notes in Computer Science 2630Springer2003, 4087
 87 article 'Dimension of character varieties for 3manifolds'. Proceedings of the American Mathematical Society 2016
 88 unpublished'Hilbert metric, beyond convexity'.2018, working paper or preprint
 89 article'Representations of fundamental groups of 3manifolds into PGL(3,C): Exact computations in low complexity'.Geometriae Dedicata1771August 2015, 52
 90 unpublished'Configurations of flags in orbits of real forms'.April 2018, working paper or preprint
 91 article'A Flag structure on a cusped hyperbolic 3manifold with unipotent holonomy'.Pacific Journal of Mathematics27812015, 5178
 92 unpublished'Flag structures on real 3manifolds'.April 2018, working paper or preprint
 93 article'Combinatorial classes of parallel manipulators'.Mechanism and Machine Theory3061995, 765  776URL: http://www.sciencedirect.com/science/article/pii/0094114X9400069W
 94 article'An algebraic framework for linear identification'.ESAIM Control Optim. Calc. Variat.92003, 151–168
 95 book 'Modern Computer Algebra'. New York, NY, USA Cambridge University Press 2013
 96 inproceedings'Reducing number field defining polynomials: an application to class group computations'.Algorithmic Number Theory Symposium XII19LMS Journal of Computation and MathematicsAKaiserslautern, GermanyAugust 2016, 315331
 97 article'A Simplified Approach to Rigorous Degree 2 Elimination in Discrete Logarithm Algorithms'.IACR Cryptology ePrint Archive20182018, 430URL: https://eprint.iacr.org/2018/430
 98 unpublished'Deformation space of discrete groups of SU(2,1) in quaternionic hyperbolic plane'.March 2018, working paper or preprint
 99 unpublished'Volume function and Mahler measure of exact polynomials'.April 2018, working paper or preprint
 100 article 'Volume of representations and birationality of peripheral holonomy'. Experimental Mathematics May 2017
 101 unpublished'On SL(3,C)representations of the Whitehead link group'.2018, To appear in Geom. Ded
 102 inproceedings'New MultiCarrier Demodulation Method Applied to Gearbox Vibration Analysis'.04 2018, 21412145
 103 inproceedings'Algebraic Geometry and Kinematics'.Nonlinear Computational GeometryNew York, NYSpringer New York2010, 85107
 104 book 'Leçons sur les systèmes d'équations aux dérivées partielles'. GauthierVillars 1929
 105 article'Workspace, Joint space and Singularities of a family of DeltaLike Robot'.Mechanism and Machine Theory127September 2018, 7395
 106 inproceedings 'An algebraic method to check the singularityfree paths for parallel robots'. International Design Engineering Technical Conferences & Computers and Information in Engineering Conference ASME Boston, United States August 2015
 107 inproceedings 'Workspace and Singularity analysis of a Delta like family robot'. 4th IFTOMM International Symposium on Robotics and Mechatronics Poitiers, France June 2015
 108 inproceedings'The function field sieve is quite special'.Algorithmic Number TheoryANTS V2369Lecture Notes in Computer ScienceSpringer2002, 431445
 109 inproceedings'Improving the Polynomial time Precomputation of Frobenius Representation Discrete Logarithm Algorithms  Simplified Setting for Small Characteristic Finite Fields'.20th International Conference on the Theory and Application of Cryptology and Information Security8873Lecture Notes in Computer ScienceKaoshiung, TaiwanSpringer Berlin HeidelbergDecember 2014, 378397
 110 incollection 'Nearly Sparse Linear Algebra and application to Discrete Logarithms Computations'. Contemporary Developments in Finite Fields and Applications WorldScientific 2016
 111 book 'Linear Systems'. PrenticeHall 1980
 112 book 'Algebraic study of systems of partial differential equations'. 63 Master’s thesis 1970 (English translation) Mémoires de la S. M. F. 1995
 113 book 'Foundations of Algebraic Analysis'. 37 Princeton University Press 1986
 114 inproceedings'Computing Real Roots of Real Polynomials ... and now For Real!' ISSAC '16 Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation ISSAC '16 Proceedings of the ACM on International Symposium on Symbolic and Algebraic ComputationWaterloo, CanadaJuly 2016, 7
 115 article'Elliptic curve cryptosystems'.Mathematics of Computation48177January 1987, 203209
 116 book 'Differential Algebra & Algebraic Groups'. Pure and Applied Mathematics Elsevier Science 1973
 117 article'Chebyshev Knots'.Journal of Knot Theory and Its Ramifications204April 2011, 575593
 118 article'Harmonic Knots'.Journal Of Knot Theory And Its Ramifications (JKTR)251318 p., 30 fig.2016, 18
 119 article'On AlexanderConway polynomials of twobridge links'.Journal of Symbolic ComputationVolume 68215pMay 2015, 215229
 120 article'The first rational Chebyshev knots'.Journal of Symbolic Computation4512December 2010, 13411358
 121 article'Computing Chebyshev knot diagrams'.Journal of Symbolic Computation862018, 21
 122 inproceedings 'On the sign of a trigonometric expression'. ISSAC ' 15 Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation Bath, United Kingdom July 2015
 123 article'Computation of discrete logarithms in prime fields'.Designs, Codes and Cryptography11991, 4762
 124 article'Bivariate triangular decompositions in the presence of asymptotes'.Journal of Symbolic Computation822017, 123  133
 125 book A. Lenstra H. Lenstra 'The development of the number field sieve'. 1554 Lecture Notes in Mathematics SpringerVerlag 1993
 126 article'Factoring integers with elliptic curves'.Annals of Mathematics12621987, 649673
 127 inproceedings'The 40 Generic Positions of a Parallel Robot'.Proceedings of the 1993 International Symposium on Symbolic and Algebraic ComputationISSAC '93New York, NY, USAKiev, UkraineACM1993, 173182URL: http://doi.acm.org/10.1145/164081.164120
 128 inproceedings'On the computation of the topology of plane curves'.International Symposium on Symbolic and Algebraic ComputationKobe UniversityKobe, JapanACM PressJuly 2014, 130137
 129 article'Multidimensional constant linear systems'.Acta Appl. Math.201990, 1175
 130 incollection'Analysis and comparison of some integer factoring methods'.Computational methods in number theory  Part I154Mathematical centre tractsAmsterdamMathematisch Centrum1982, 8139
 131 book 'Systems of Partial Differential Equations and Lie Pseudogroups'. Ellis Horwood Series in Mathematics and its Applications Gordon and Breach Science Publishers 1978
 132 inproceedings 'A constructive algebraic analysis approach to Artstein's reduction of linear timedelay systems'. 12th IFAC Workshop on Time Delay Systems Proceedings of 12th IFAC Workshop on Time Delay Systems University of Michigan Ann Arbor, United States May 2016
 133 article'Grade filtration of linear functional systems'.Acta Applicandė Mathematicė1271October 2013, 2786
 134 inproceedings'Noncommutative geometric structures on stabilizable infinitedimensional linear systems'.ECC 2014Strasbourg, FranceJune 2014, 2460  2465
 135 techreport'Computing Polynomial Solutions and Annihilators of IntegroDifferential Operators with Polynomial Coefficients'.RR9002Inria Lille  Nord Europe ; Institute for Algebra, Johannes Kepler University LinzDecember 2016, 24
 136 article'A constructive study of the module structure of rings of partial differential operators'.Acta Applicandė Mathematicė1332014, 187243
 137 inproceedings 'Towards an effective study of the algebraic parameter estimation problem'. IFAC 2017 Workshop Congress Toulouse, France July 2017
 138 inproceedings'Algebraic analysis for the Ore extension ring of differential timevarying delay operators'. 22nd International Symposium on Mathematical Theory of Networks and Systems (MTNS)Minneapolis, United StatesJuly 2016, 8
 139 inproceedings'A symbolicnumeric method for the parametric H$\infty$ loopshaping design problem'.22nd International Symposium on Mathematical Theory of Networks and Systems (MTNS) Minneapolis, United StatesJuly 2016, 8
 140 inproceedings 'Explicit H$\infty$ controllers for 1st to 3rd order singleinput singleoutput systems with parameters'. IFAC 2017 Workshop Congress Toulouse, France July 2017
 141 inproceedings 'Explicit H$\infty$ controllers for 4th order singleinput singleoutput systems with parameters and their applications to the two massspring system with damping'. IFAC 2017 Workshop Congress Toulouse, France July 2017
 142 phdthesis 'Parametric $H_{\infty}$ control and its application to gyrostabilized sights'. Université ParisSaclay July 2018
 143 book 'Differential Algebra'. Colloquium publications American Mathematical Society 1950
 144 article'A method for obtaining digital signatures and publickey cryptosystems'.Commun. ACM2121978, 120126
 145 book 'Formal Algorithmic Elimination for PDEs'. Lecture Notes in Mathematics 2121 Springer 2014
 146 book 'An Introduction to Homological Algebra'. Universitext Springer New York 2008
 147 article'Module structure of Weyl algebras'.J. London Math. Soc.181978, 429442
 148 inproceedings'Use of elliptic curves in cryptography'.Advances in Cryptology  CRYPTO'85218LNCSSpringer1986, 417428
 149 incollection'Cohomology of knot spaces'.Theory of singularities and its applications1Adv. Soviet Math.Amer. Math. Soc., Providence, RI1990, 2369
 150 incollection'Chapter 10  Computation of Hyperbolic Structures in Knot Theory'.Handbook of Knot TheoryAmsterdamElsevier Science2005, 461  480URL: http://www.sciencedirect.com/science/article/pii/B9780444514523500113
 151 inproceedings 'A new general formalism for the kinematic analysis of all nonredundant manipulators'. ICRA 1992
 152 book 'Introduction to Mathematical Systems Theory: A Behavioral Approach'. Texts in Applied Mathematics Springer New York 2013