Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Data Analytics

Data analytics refers to a set of techniques to draw conclusions through data examination. It involves data mining, statistics, and data management, and is applied to categorical and continuous data. In the Zenith team, we are interested in both of these data types. Categorical data designates a set of data that can be described as “check boxes”. It can be names, products, items, towns, etc. A common illustration is the market basket data, where each item bought by a client is recorded and the set of items is the basket. The typical data mining problems with this kind of data are:

Continuous data are numeric records that can have an infinite number of values between any two values. A temperature value or a timestamp are examples of such data. They are involved in a widely used type of data known as time series: a series of values, ordered by time, and giving a measure, e.g. coming from a sensor. There is a large number of problems that can apply to this kind of data, including:

One main problem in data analytics is to deal with data streams. Existing methods have been designed for very large data sets where complex algorithms from artificial intelligence were not efficient because of data size. However, we now must deal with data streams, sequences of data events arriving at high rate, where traditional data analytics techniques cannot complete in real-time, given the infinite data size. In order to extract knowledge from data streams, the data mining community has investigated approximation methods that could yield good result quality.