Team, Visitors, External Collaborators
Overall Objectives
Research Program
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Personalizable Privacy-Aware Distributed Systems

On-line services are increasingly moving towards an in-depth analysis of user data, with the objective of providing ever better personalization. But in doing so, personalized on-line services inevitably pose risks to the privacy of users. Eliminating, or even reducing these risks raises important challenges caused by the inherent trade-off between the level of personalization users wish to achieve, and the amount of information they are willing to reveal about themselves (explicitly or through the many implicit sources of digital information such as smart homes, smart cars, and IoT environments).

At a general level, we would like to address these challenges through protocols that can provide access to unprecedented amounts of data coming from sensors, users, and documents published by users, while protecting the privacy of individuals and data sources. To this end, we plan to rely on our experience in the context of distributed systems, recommender systems, and privacy, as well as in our collaborations with experts in neighboring fields such as machine learning, and security. In particular, we aim to explore different privacy-utility tradeoffs that make it possible to provide differentiated levels of privacy guarantees depending on the context associated with data, on the users that provide the data, and on those that access it. Our research targets the general goal of privacy-preserving decentralized learning, with applications in different contexts such as user-oriented applications, and the Internet-of-Things (IoT).

Privacy-preserving decentralized learning

Personalization and recommendation can be seen as a specific case of general machine learning. Production-grade recommenders and personalizers typically centralize and process the available data in one location (a data-center, a cloud service). This is highly problematic, as it endangers the privacy of users, while hampering the analysis of datasets subject to privacy constraints that are held by multiple independent organizations (such as health records). A decentralized approach to machine learning appears as a promising candidate to overcome these weaknesses: if each user or participating organization keeps its data, while only exchanging gradient or model information, privacy leaks seem less likely to occur.

In some cases, decentralized learning may be achieved through relatively simple adaptations of existing centralized models, for instance by defining alternative learning models that may be more easily decentralized. But in all cases, processing growing amounts of information calls for high-performance algorithms and middleware that can handle diverse storage and computation resources, in the presence of dynamic and privacy-sensitive data. To reach this objective, we will therefore leverage our work in distributed and privacy-preserving algorithms and middleware  [51], [53], [54] as well as the results of our work on large-scale hybrid architectures in Objective 1.

Personalization in user-oriented applications

As a first application perspective, we plan to design tools that exploit decentralized analytics to enhance user-centric personalized applications. As we observed above, such applications exhibit an inherent trade-off between personalization quality and privacy preservation. The most obvious goal in this direction consists in designing algorithms that can achieve high levels of personalization while protecting sensitive user information. But an equally important one consists in personalizing the trade-off itself by adapting the quality of the personalization provided to a user to his/her willingness to expose information. This, like other desirable behaviors, appears at odds with the way current systems work. For example, a user of a recommender system that does not reveal his/her profile information penalizes other users causing them to receive less accurate recommendations. We would like to mitigate this situation by means of protocols that reward users for sharing information. On the one hand, we plan to take inspiration from protocols for free-riding avoidance in peer-to-peer systems  [55], [60]. On the other hand, we will consider blockchains as a tool for tracking and rewarding data contributions. Ultimately, we aim at enabling users to configure the level of privacy and personalization they wish to experience.

Privacy preserving decentralized aggregation

As a second setting we would like to consider target applications running on constrained devices like in the Internet-of-Things (IoT). This setting makes it particularly important to operate on decentralized data in a light-weight privacy-preserving manner, and further highlights the synergy between this objective and Objective 1. For example, we plan to provide data subjects with the possibility to store and manage their data locally on their own devices, without having to rely on third-party managers or aggregators, but possibly storing less private information or results in the cloud. Using this strategy, we intend to design protocols that enable users themselves, or third-party companies to query distributed data in aggregate form, or to run data analytics processes on a distributed set of data repositories, thereby gathering knowledge without violating the privacy of other users. For example, we have started working on the problem of computing an aggregate function over a subset of the data in a distributed setting. This involves two major steps: selection and aggregation. With respect to selection, we envision defining a decentralized data-selection operation that can apply a selection predicate without violating privacy constraints. With respect to aggregation, we will continue our investigation of lightweight protocols that can provide privacy with limited computational complexity  [45].