Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Overall Objectives


Valda's focus is on both foundational and systems aspects of complex data management, especially human-centric data. The data we are interested in is typically heterogeneous, massively distributed, rapidly evolving, intensional, and often subjective, possibly erroneous, imprecise, incomplete. In this setting, Valda is in particular concerned with the optimization of complex resources such as computer time and space, communication, monetary, and privacy budgets. The goal is to extract value from data, beyond simple query answering.

Data management [37], [46] is now an old, well-established field, for which many scientific results and techniques have been accumulated since the sixties. Originally, most works dealt with static, homogeneous, and precise data. Later, works were devoted to heterogeneous data [35] [38], and possibly distributed [76] but at a small scale.

However, these classical techniques are poorly adapted to handle the new challenges of data management. Consider human-centric data, which is either produced by humans, e.g., emails, chats, recommendations, or produced by systems when dealing with humans, e.g., geolocation, business transactions, results of data analysis. When dealing with such data, and to accomplish any task to extract value from such data, we rapidly encounter the following facets:

These problems have already been studied individually and have led to techniques such as query rewriting [59] or distributed query optimization [64].

Among all these aspects, intensionality is perhaps the one that has least been studied, so we pay particular attention to it. Consider a user's query, taken in a very broad sense: it may be a classical database query, some information retrieval search, a clustering or classification task, or some more advanced knowledge extraction request. Because of intensionality of data, solving such a query is a typically dynamic task: each time new data is obtained, the partial knowledge a system has of the world is revised, and query plans need to be updated, as in adaptive query processing [52] or aggregated search [75]. The system then needs to decide, based on this partial knowledge, of the best next access to perform. This is reminiscent of the central problem of reinforcement learning [73] (train an agent to accomplish a task in a partially known world based on rewards obtained) and of active learning [70] (decide which action to perform next in order to optimize a learning strategy) and we intend to explore this connection further.

Uncertainty of the data interacts with its intensionality: efforts are required to obtain more precise, more complete, sounder results, which yields a trade-off between processing cost and data quality.

Other aspects, such as heterogeneity and massive distribution, are of major importance as well. A standard data management task, such as query answering, information retrieval, or clustering, may become much more challenging when taking into account the fact that data is not available in a central location, or in a common format. We aim to take these aspects into account, to be able to apply our research to real-world applications.