Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Overall Objectives

Overall Objectives

Tosca aims to significantly contribute to discern and explore new horizons for stochastic modeling. To this end we need to better understand the issues of stochastic modeling and the objectives pursued by practitioners who need them: we thus need to deeply understand other scientific fields than ours (e.g., Fluid Mechanics, Ecology, Biophysics) and to take scientific risks. Indeed, these risks are typified by the facts that often new and complex models do not behave as expected, mathematical and numerical difficulties are harder to overcome than forecast, and the increase of our knowledge in target fields is slower than wished.

In spite of these risks we think that our scientific approach is relevant for the following reasons:

To bring relevant analytical and numerical answers to the preceding problems, we feel necessary to attack in parallel several problems arising from different fields. Each one of these problems contributes to our better understanding of the advantages and limitations of stochastic models and algorithms.

Of course, this strategy allows each researcher in the team to have her/his own main topic. However we organize the team in order to maximize internal collaborations. We consider this point, which justifies the existence of Inria project-teams, as essential to the success of our programme of research. It relies on the fact that, to develop our mathematical and numerical studies, we share a common interest for collaborations with engineers, practitioners, physicists, biologists and numerical analysts, and we also share the following common toolbox:

We finally emphasize that the unifying theme of our research is to develop analytical tools that can be effectively applied to various problems that come from extremely diverse subjects. For example, as described in more detail below, we study: branching processes and their simulation with the view of advancing our understanding of population dynamics, molecular dynamics, and cancer models; the theory and numerical analysis of McKean-Vlasov interacting particle systems in order to develop our models in biology, computational fluid dynamics, coagulation and fragmentation; hitting times of domains by stochastic processes so that we can improve on the current methods and theory used in finance and neuroscience.