Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
S. A. Hirstoaga.
Design and performant implementation of numerical methods for multiscale problems in plasma physics, Université de Strasbourg, IRMA UMR 7501, April 2019, Habilitation à diriger des recherches.
https://tel.archives-ouvertes.fr/tel-02081304

Articles in International Peer-Reviewed Journals

[2]
L. Almeida, M. Duprez, Y. Privat, N. Vauchelet.
Mosquito population control strategies for fighting against arboviruses, in: Mathematical Biosciences and Engineering, 2019, vol. 16, no 6, pp. 6274-6297, https://arxiv.org/abs/1901.05688. [ DOI : 10.3934/mbe.2019313 ]
https://hal.archives-ouvertes.fr/hal-01984426
[3]
L. Almeida, Y. Privat, M. Strugarek, N. Vauchelet.
Optimal releases for population replacement strategies, application to Wolbachia, in: SIAM Journal on Mathematical Analysis, 2019, vol. 51, no 4, pp. 3170–3194, https://arxiv.org/abs/1909.02727. [ DOI : 10.1137/18M1189841 ]
https://hal.archives-ouvertes.fr/hal-01807624
[4]
D. Coulette, E. Franck, P. Helluy, M. Mehrenberger, L. Navoret.
High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation, in: Computers and Fluids, August 2019, https://arxiv.org/abs/1802.04590. [ DOI : 10.1016/j.compfluid.2019.06.007 ]
https://hal.archives-ouvertes.fr/hal-01706614
[5]
D. Coulette, E. Franck, P. Helluy, A. Ratnani, E. Sonnendrücker.
Implicit time schemes for compressible fluid models based on relaxation methods, in: Computers and Fluids, June 2019, vol. 188, pp. 70-85. [ DOI : 10.1016/j.compfluid.2019.05.009 ]
https://hal.archives-ouvertes.fr/hal-01514593
[6]
C. Courtès, D. Coulette, E. Franck, L. Navoret.
Vectorial kinetic relaxation model with central velocity. Application to implicit relaxations schemes, in: Communications in Computational Physics, 2019, forthcoming.
https://hal.archives-ouvertes.fr/hal-01942317
[7]
A. Delyon, A. Henrot, Y. Privat.
Non-dispersal and density properties of infinite packings, in: SIAM Journal on Control and Optimization, 2019, vol. 57, no 2, pp. 1467-1492. [ DOI : 10.1137/18M1181183 ]
https://hal.archives-ouvertes.fr/hal-01753911
[8]
F. Drui, E. Franck, P. Helluy, L. Navoret.
An analysis of over-relaxation in a kinetic approximation of systems of conservation laws, in: Comptes Rendus Mécanique, January 2019, vol. 347, no 3, pp. 259-269, https://arxiv.org/abs/1807.05695. [ DOI : 10.1016/j.crme.2018.12.001 ]
https://hal.archives-ouvertes.fr/hal-01839092
[9]
E. Humbert, Y. Privat, E. Trélat.
Observability properties of the homogeneous wave equation on a closed manifold, in: Communications in Partial Differential Equations, 2019, vol. 44, no 9, pp. 749–772, https://arxiv.org/abs/1607.01535. [ DOI : 10.1080/03605302.2019.1581799 ]
https://hal.archives-ouvertes.fr/hal-01338016
[10]
I. Mazari, G. Nadin, Y. Privat.
Optimal location of resources maximizing the total population size in logistic models, in: Journal de Mathématiques Pures et Appliquées, 2019, https://arxiv.org/abs/1907.05034, forthcoming. [ DOI : 10.1016/j.matpur.2019.10.008 ]
https://hal.archives-ouvertes.fr/hal-01607046
[11]
Y. Privat, E. Trélat, E. Zuazua.
Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions, in: Calculus of Variations and Partial Differential Equations, 2019, vol. 58, no 2, 64 p, https://arxiv.org/abs/1809.05316. [ DOI : 10.1007/s00526-019-1522-3 ]
https://hal.archives-ouvertes.fr/hal-01872896
[12]
S. Zhang, M. Mehrenberger, C. Steiner.
Computing the double-gyroaverage term incorporating short-scale perturbation and steep equilibrium profile by the interpolation algorithm, in: plasma, April 2019, vol. 2, no 2, pp. 91-126. [ DOI : 10.3390/plasma2020009 ]
https://hal.archives-ouvertes.fr/hal-02009446

Scientific Books (or Scientific Book chapters)

[13]
Linear stability of a vectorial kinetic relaxation scheme with a central velocity, HYP2018 proceedings, 2019, forthcoming.
https://hal.archives-ouvertes.fr/hal-01970499

Other Publications

[14]
G. S. Alberti, Y. Capdeboscq, Y. Privat.
On Randomisation In Computational Inverse Problems, March 2019, https://arxiv.org/abs/1903.11273 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02077786
[15]
M. Boileau, B. Bramas, E. Franck, P. Helluy, L. Navoret.
Parallel lattice-boltzmann transport solver in complex geometry, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02404082
[16]
F. Bouchut, E. Franck, L. Navoret.
A low cost semi-implicit low-Mach relaxation scheme for the full Euler equations, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02420859
[17]
B. Bramas, P. Helluy, L. Mendoza, B. Weber.
Optimization of a discontinuous finite element solver with OpenCL and StarPU, July 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01942863
[18]
E. Franck, L. Navoret.
Semi-implicit two-speed Well-Balanced relaxation scheme for Ripa model, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02407820
[19]
E. Humbert, Y. Privat, E. Trélat.
Geometric and probabilistic results for the observability of the wave equation, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01652890
[20]
R. Hélie, P. Helluy, E. Franck, L. Navoret.
Kinetic over-relaxation method for the convection equation with Fourier solver, January 2020, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02427044
[21]
I. Mazari, G. Nadin, Y. Privat.
Shape optimization of a weighted two-phase Dirichlet eigenvalue, January 2020, https://arxiv.org/abs/2001.02958 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02432387
[22]
S. Zhang.
Gyrokinetic Vlasov-Poisson model derived by hybrid-coordinate transform of the distribution function, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01924706
References in notes
[23]
C. Altmann, T. Belat, M. Gutnic, P. Helluy, H. Mathis, E. Sonnendrücker, W. Angulo, J.-M. Hérard.
A local time-stepping Discontinuous Galerkin algorithm for the MHD system, in: Modélisation et Simulation de Fluides Complexes - CEMRACS 2008, Marseille, France, July 2009. [ DOI : 10.1051/proc/2009038 ]
https://hal.inria.fr/inria-00594611
[24]
T. Barth.
On the role of involutions in the discontinous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in: IMA Vol. Math. Appl., 2006, vol. 142, pp. 69–88.
[25]
A. Crestetto, P. Helluy.
Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, in: CEMRACS'11, France, EDP Sciences, 2011, vol. 38, pp. 257–274. [ DOI : 10.1051/proc/201238014 ]
https://hal.archives-ouvertes.fr/hal-00731021
[26]
N. Crouseilles, E. Frénod, S. A. Hirstoaga, A. Mouton.
Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no 08, pp. 1527–1559. [ DOI : 10.1142/S0218202513500152. ]
https://hal.archives-ouvertes.fr/hal-00638617
[27]
E. Frénod, F. Salvarani, E. Sonnendrücker.
Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, in: Mathematical Models and Methods in Applied Sciences, 2009, vol. 19, no 2, pp. 175-197, ACM 82D10 35B27 76X05.
http://hal.archives-ouvertes.fr/hal-00180700/en/
[28]
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, L. Villard.
A drift-kinetic Semi-Lagrangian 4D Vlasov code for ion turbulence simulation, in: J. of Comput. Phys., 2006, vol. 217, 395 p.
[29]
C. Hauck, C.-D. Levermore.
Convex Duality and Entropy-Based Moment Closures: Characterizing Degenerate Densities, in: SIAM J. Control Optim., 2008, vol. 47, pp. 1977–2015.
[30]
C.-D. Levermore.
Entropy-based moment closures for kinetic equations, in: Transport Theory Statist. Phys., 1997, vol. 26, no 4-5, pp. 591–606.
[31]
E. Sonnendrücker, J.-R. Roche, P. Bertrand, A. Ghizzo.
The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, pp. 201–220.
[32]
E. Tadmor.
Entropy conservative finite element schemes, in: Numerical methods for Compressible Flows, Finite Difference Element and Volume Techniques, T. E. Tezduyar, T. J. R. Hughes (editors), Proc. Winter Annual Meeting, Amer. Soc. Mech. Eng, AMD- Vol. 78, 1986, 149 p.
[33]
B. Weber, P. Helluy, T. Strub.
Optimisation d'un algorithme Galerkin Discontinu en OpenCL appliqué à la simulation en électromagnétisme, in: preprint, 2017.