Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
M. Barkatou, S. Maddah.
Formal solutions of singularly-perturbed linear differential systems, in: Journal of Symbolic Computation, September 2019, vol. 94, pp. 183-209. [ DOI : 10.1016/j.jsc.2018.08.003 ]
https://hal.archives-ouvertes.fr/hal-02393887
[2]
J. P. Bell, F. Chyzak, M. Coons, P. Dumas.
Becker's conjecture on Mahler functions, in: Transactions of the American Mathematical Society, 2019, vol. 372, pp. 3405–3423, In press, forthcoming. [ DOI : 10.1090/tran/7762 ]
https://hal.inria.fr/hal-01885598
[3]
A. Bostan, T. Krick, A. Szanto, M. Valdettaro.
Subresultants of (x-α)m and (x-β)n, Jacobi polynomials and complexity, in: Journal of Symbolic Computation, 2019, forthcoming. [ DOI : 10.1016/j.jsc.2019.10.003 ]
https://hal.archives-ouvertes.fr/hal-01966640
[4]
A. Bostan, A. Marynych, K. Raschel.
On the least common multiple of several random integers, in: Journal of Number Theory, November 2019, vol. 204, pp. 113–133, https://arxiv.org/abs/1901.03002. [ DOI : 10.1016/j.jnt.2019.03.017 ]
https://hal.archives-ouvertes.fr/hal-01984389
[5]
F. Chapoton, A. Bostan.
A note on gamma triangles and local gamma vectors, in: Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2019, https://arxiv.org/abs/1809.00575, forthcoming.
https://hal.archives-ouvertes.fr/hal-01866199
[6]
P. Lairez.
Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems, in: Journal of the American Mathematical Society, 2019, forthcoming.
https://hal.inria.fr/hal-01631778
[7]
A. Mahboubi, G. Melquiond, T. Sibut-Pinote.
Formally Verified Approximations of Definite Integrals, in: Journal of Automated Reasoning, February 2019, vol. 62, no 2, pp. 281-300. [ DOI : 10.1007/s10817-018-9463-7 ]
https://hal.inria.fr/hal-01630143

International Conferences with Proceedings

[8]
A. Bostan, X. Caruso, G. Christol, P. Dumas.
Fast Coefficient Computation for Algebraic Power Series in Positive Characteristic, in: ANTS-XIII - Thirteenth Algorithmic Number Theory Symposium, Madison, United States, R. Scheidler, J. Sorenson (editors), Proceedings of the Thirteenth Algorithmic Number Theory Symposium (ANTS–XIII), Mathematical Sciences Publishers, 2019, vol. 2, no 1, pp. 119-135, https://arxiv.org/abs/1806.06543. [ DOI : 10.2140/obs.2019.2-1 ]
https://hal.archives-ouvertes.fr/hal-01816375
[9]
S. Covanov, D. Mohajerani, M. Moreno Maza, L. Wang.
Big Prime Field FFT on Multi-core Processors, in: ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Pékin, China, July 2019.
https://hal.inria.fr/hal-02191652
[10]
P. Lairez, M. Mezzarobba, M. Safey El Din.
Computing the volume of compact semi-algebraic sets, in: ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Beijing, China, ACM, July 2019, https://arxiv.org/abs/1904.11705.
https://hal.archives-ouvertes.fr/hal-02110556

Other Publications

[11]
V. Andrejić, A. Bostan, M. Tatarevic.
Improved algorithms for left factorial residues, December 2019, https://arxiv.org/abs/1904.09196 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02411741
[12]
A. Bostan, A. Elvey-Price, A. J. Guttmann, J.-M. Maillard.
Stieltjes moment sequences for pattern-avoiding permutations, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02425917
[13]
A. Bostan, T. Rivoal, B. Salvy.
Explicit degree bounds for right factors of linear differential operators, July 2019, https://arxiv.org/abs/1906.05529 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02154679
[14]
A. Bostan, J. Tirrell, B. W. Westbury, Y. Zhang.
On sequences associated to the invariant theory of rank two simple Lie algebras, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02411755
[15]
C. Boutillier, K. Raschel, A. Bostan.
Martin boundary of killed random walks on isoradial graphs, December 2019, Avec un appendice d'Alin Bostan.
https://hal.archives-ouvertes.fr/hal-02422417
[16]
F. Chyzak, F. Nielsen.
A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions, December 2019, https://arxiv.org/abs/1905.10965 - 8 pages.
https://hal.inria.fr/hal-02420591
[17]
G. Fayolle.
A note on the connection between product-form Jackson networks and counting lattice walks in the quarter plane, January 2020, working paper or preprint.
https://hal.inria.fr/hal-02415746
References in notes
[18]
M. Abramowitz, I. A. Stegun (editors)
Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1992, xiv+1046 p, Reprint of the 1972 edition.
[19]
Computer Algebra Errors, Article in mathematics blog MathOverflow.
http://mathoverflow.net/questions/11517/computer-algebra-errors
[20]
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (editors)
NIST Handbook of mathematical functions, Cambridge University Press, 2010.
[21]
M. Armand, B. Grégoire, A. Spiwack, L. Théry.
Extending Coq with Imperative Features and its Application to SAT Verication, in: Interactive Theorem Proving, international Conference, ITP 2010, Edinburgh, Scotland, July 11–14, 2010, Proceedings, Lecture Notes in Computer Science, Springer, 2010.
[22]
B. Beckermann, G. Labahn.
A uniform approach for the fast computation of matrix-type Padé approximants, in: SIAM J. Matrix Anal. Appl., 1994, vol. 15, no 3, pp. 804–823.
[23]
A. Benoit, F. Chyzak, A. Darrasse, S. Gerhold, M. Mezzarobba, B. Salvy.
The Dynamic Dictionary of Mathematical Functions (DDMF), in: The Third International Congress on Mathematical Software (ICMS 2010), K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (editors), Lecture Notes in Computer Science, 2010, vol. 6327, pp. 35–41.
http://dx.doi.org/10.1007/978-3-642-15582-6_7
[24]
M. Boespflug, M. Dénès, B. Grégoire.
Full reduction at full throttle, in: First International Conference on Certified Programs and Proofs, Taiwan, December 7–9, Lecture Notes in Computer Science, Springer, 2011.
[25]
S. Boldo, C. Lelay, G. Melquiond.
Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives, in: Certified Programs and Proofs, C. Hawblitzel, D. Miller (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7679, pp. 289-304.
http://dx.doi.org/10.1007/978-3-642-35308-6_22
[26]
S. Boldo, G. Melquiond.
Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in: Proceedings of the 20th IEEE Symposium on Computer Arithmetic, Tübingen, Germany, July 2011, pp. 243–252.
[27]
A. Bostan.
Algorithmes rapides pour les polynômes, séries formelles et matrices, in: Actes des Journées Nationales de Calcul Formel, Luminy, France, 2010, pp. 75–262, Les cours du CIRM, tome 1, numéro 2.
http://ccirm.cedram.org:80/ccirm-bin/fitem?id=CCIRM_2010__1_2_75_0
[28]
A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine.
Globally nilpotent differential operators and the square Ising model, in: J. Phys. A: Math. Theor., 2009, vol. 42, no 12, 50 p.
http://dx.doi.org/10.1088/1751-8113/42/12/125206
[29]
A. Bostan, S. Chen, F. Chyzak, Z. Li.
Complexity of creative telescoping for bivariate rational functions, in: ISSAC'10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, ACM, 2010, pp. 203–210.
http://doi.acm.org/10.1145/1837934.1837975
[30]
A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, É. Schost.
Differential equations for algebraic functions, in: ISSAC'07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, C. W. Brown (editor), ACM Press, 2007, pp. 25–32.
http://dx.doi.org/10.1145/1277548.1277553
[31]
A. Bostan, F. Chyzak, M. van Hoeij, L. Pech.
Explicit formula for the generating series of diagonal 3D rook paths, in: Sém. Loth. Comb., 2011, vol. B66a, 27 p.
http://www.emis.de/journals/SLC/wpapers/s66bochhope.html
[32]
A. Bostan, M. Kauers.
The complete generating function for Gessel walks is algebraic, in: Proceedings of the American Mathematical Society, September 2010, vol. 138, no 9, pp. 3063–3078, With an appendix by Mark van Hoeij.
[33]
F. Chyzak.
An extension of Zeilberger's fast algorithm to general holonomic functions, in: Discrete Math., 2000, vol. 217, no 1-3, pp. 115–134, Formal power series and algebraic combinatorics (Vienna, 1997).
[34]
F. Chyzak, M. Kauers, B. Salvy.
A Non-Holonomic Systems Approach to Special Function Identities, in: ISSAC'09: Proceedings of the Twenty-Second International Symposium on Symbolic and Algebraic Computation, J. May (editor), 2009, pp. 111–118.
http://dx.doi.org/10.1145/1576702.1576720
[35]
F. Chyzak, B. Salvy.
Non-commutative elimination in Ore algebras proves multivariate identities, in: J. Symbolic Comput., 1998, vol. 26, no 2, pp. 187–227.
[36]
T. Coquand, G. P. Huet.
The Calculus of Constructions, in: Inf. Comput., 1988, vol. 76, no 2/3, pp. 95-120.
http://dx.doi.org/10.1016/0890-5401(88)90005-3
[37]
T. Coquand, C. Paulin-Mohring.
Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer-Verlag, 1990, vol. 417.
[38]
D. Delahaye, M. Mayero.
Dealing with algebraic expressions over a field in Coq using Maple, in: J. Symbolic Comput., 2005, vol. 39, no 5, pp. 569–592, Special issue on the integration of automated reasoning and computer algebra systems.
http://dx.doi.org/10.1016/j.jsc.2004.12.004
[39]
G. Fayolle, R. Iasnogorodski, V. A. Malyshev.
S. Asmussen, P. W. Glynn, Y. Le Jan (editors), Random Walks in the Quarter Plane: Algebraic Methods, Boundary Value Problems, Applications to Queueing Systems and Analytic Combinatorics, Probability Theory and Stochastic Modelling, Springer International Publishing, February 2017, vol. 40, 255 p, The first edition was published in 1999. [ DOI : 10.1007/978-3-319-50930-3 ]
https://hal.inria.fr/hal-01651919
[40]
F. Garillot, G. Gonthier, A. Mahboubi, L. Rideau.
Packaging Mathematical Structures, in: Theorem Proving in Higher-Order Logics, S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (editors), Lecture Notes in Computer Science, Springer, 2009, vol. 5674, pp. 327–342.
[41]
J. von zur. Gathen, J. Gerhard.
Modern computer algebra, 2nd, Cambridge University Press, New York, 2003, xiv+785 p.
[42]
G. Gonthier.
Formal proofs—the four-colour theorem, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1382-1393.
[43]
G. Gonthier, A. Mahboubi.
An introduction to small scale reflection in Coq, in: Journal of Formalized Reasoning, 2010, vol. 3, no 2, pp. 95–152.
[44]
G. Gonthier, A. Mahboubi, E. Tassi.
A Small Scale Reflection Extension for the Coq system, Inria, 2008, no RR-6455.
http://hal.inria.fr/inria-00258384
[45]
G. Gonthier, E. Tassi.
A language of patterns for subterm selection, in: ITP, LNCS, 2012, vol. 7406, pp. 361–376.
[46]
B. Grégoire, A. Mahboubi.
Proving Equalities in a Commutative Ring Done Right in Coq, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, Lecture Notes in Computer Science, Springer, 2005, vol. 3603, pp. 98–113.
[47]
T. Hales.
Formal proof, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1370-1380.
[48]
J. Harrison.
A HOL Theory of Euclidean space, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, J. Hurd, T. Melham (editors), Lecture Notes in Computer Science, Springer-Verlag, 2005, vol. 3603.
[49]
J. Harrison.
Formalizing an analytic proof of the prime number theorem, in: Journal of Automated Reasoning, 2009, vol. 43, pp. 243–261, Dedicated to Mike Gordon on the occasion of his 60th birthday.
[50]
J. Harrison.
Theorem proving with the real numbers, CPHC/BCS distinguished dissertations, Springer, 1998.
[51]
J. Harrison.
A Machine-Checked Theory of Floating Point Arithmetic, in: Theorem Proving in Higher Order Logics: 12th International Conference, TPHOLs'99, Nice, France, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Théry (editors), Lecture Notes in Computer Science, Springer-Verlag, 1999, vol. 1690, pp. 113–130.
[52]
J. Harrison, L. Théry.
A Skeptic's Approach to Combining HOL and Maple, in: J. Autom. Reason., December 1998, vol. 21, no 3, pp. 279–294.
http://dx.doi.org/10.1023/A:1006023127567
[53]
F. Johansson.
Another Mathematica bug, 2009, Article on personal blog.
http://fredrik-j.blogspot.fr/2009/07/another-mathematica-bug.html
[54]
C. Koutschan.
A fast approach to creative telescoping, in: Math. Comput. Sci., 2010, vol. 4, no 2-3, pp. 259–266.
http://dx.doi.org/10.1007/s11786-010-0055-0
[55]
A. Mahboubi.
Implementing the cylindrical algebraic decomposition within the Coq system, in: Mathematical Structures in Computer Science, 2007, vol. 17, no 1, pp. 99–127.
[56]
R. Matuszewski, P. Rudnicki.
Mizar: the first 30 years, in: Mechanized Mathematics and Its Applications, 2005, vol. 4.
[57]
M. Mayero.
Problèmes critiques et preuves formelles, Université Paris 13, novembre 2012, Habilitation à Diriger des Recherches.
[58]
M. Mezzarobba.
NumGfun: a package for numerical and analytic computation and D-finite functions, in: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, ACM, 2010, pp. 139–146.
http://dx.doi.org/10.1145/1837934.1837965
[59]
P. Paule, M. Schorn.
A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities, in: J. Symbolic Comput., 1995, vol. 20, no 5-6, pp. 673–698, Symbolic computation in combinatorics Δ1 (Ithaca, NY, 1993).
http://dx.doi.org/10.1006/jsco.1995.1071
[60]
B. Petersen.
Maple, Personal web site.
[61]
P. Rudnicki, A. Trybulec.
On the Integrity of a Repository of Formalized Mathematics, in: Proceedings of the Second International Conference on Mathematical Knowledge Management, London, UK, MKM '03, Springer-Verlag, 2003, pp. 162–174.
http://dl.acm.org/citation.cfm?id=648071.748518
[62]
B. Salvy, P. Zimmermann.
Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, in: ACM Trans. Math. Software, 1994, vol. 20, no 2, pp. 163–177.
[63]
N. J. A. Sloane, S. Plouffe.
The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995.
[64]
The Coq Development Team.
The Coq Proof Assistant: Reference Manual.
http://coq.inria.fr/doc/
[65]
The Mathematical Component Team.
A Formalization of the Odd Order Theorem using the Coq proof assistant, September 2012.
http://www.msr-inria.fr/projects/mathematical-components/
[66]
L. Théry.
A Machine-Checked Implementation of Buchberger's Algorithm, in: J. Autom. Reasoning, 2001, vol. 26, no 2, pp. 107-137.
http://dx.doi.org/10.1023/A:1026518331905
[67]
K. Wegschaider.
Computer generated proofs of binomial multi-sum identities, RISC, J. Kepler University, May 1997, 99 p.
[68]
S. Wolfram.
Mathematica: A system for doing mathematics by computer (2nd ed.), Addison-Wesley, 1992.
[69]
D. Zeilberger.
Opinion 94: The Human Obsession With “Formal Proofs” is a Waste of the Computer's Time, and, Even More Regretfully, of Humans' Time, 2009.
http://www.math.rutgers.edu/~zeilberg/Opinion94.html
[70]
D. Zeilberger.
A holonomic systems approach to special functions identities, in: J. Comput. Appl. Math., 1990, vol. 32, no 3, pp. 321–368.
[71]
D. Zeilberger.
The method of creative telescoping, in: J. Symbolic Comput., 1991, vol. 11, no 3, pp. 195–204.