Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Optimal Complexity and Certification of Bregman First-Order Methods

We provide a lower bound showing that the O(1/k) convergence rate of the NoLips method (a.k.a. Bregman Gradient) is optimal for the class of functions satisfying the h-smoothness assumption. This assumption, also known as relative smoothness, appeared in the recent developments around the Bregman Gradient method, where acceleration remained an open issue. On the way, we show how to constructively obtain the corresponding worst-case functions by extending the computer-assisted performance estimation framework of Drori and Teboulle (Mathematical Programming, 2014) to Bregman first-order methods, and to handle the classes of differentiable and strictly convex functions.