Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Local- and global-best equivalence, simple projector, and optimal hp approximation in 𝐇( div )

Participants : Alexandre Ern, Thirupathi Gudi, Iain Smears, Martin Vohralík.

Figure 3. Equivalence between global-best and local-best approximation for any 𝐇( div ) function 𝐯 with zero normal flux over part of the boundary and piecewise polynomial divergence

In [53], we prove that a global-best approximation in 𝐇( div ), with constraints on normal component continuity and divergence, is equivalent to the sum of independent local-best approximations, without any constraints, as illustrated in Figure 3. This may seem surprising on a first sight since the right term in Figure 3 is seemingly much smaller (since the minimization set is unconstrained and thus much bigger). This result leads to optimal a priori hp-error estimates for mixed and least-squares finite element methods, which were missing in the literature until 2019. Additionally, the construction we devise gives rise to a simple stable local commuting projector in 𝐇( div ), which delivers approximation error equivalent to the local-best approximation and applies under the minimal necessary Sobolev 𝐇( div ) regularity, which is another result that has been sought for a very long time.