Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Improving Locality-Aware Scheduling with Acyclic Directed Graph Partitioning

We investigate efficient execution of computations, modeled as Directed Acyclic Graphs (DAGs), on a single processor with a two-level memory hierarchy, where there is a limited fast memory and a larger slower memory. Our goal is to minimize execution time by minimizing redundant data movement between fast and slow memory. We utilize a DAG partitioner that finds localized, acyclic parts of the whole computation that can fit into fast memory, and minimizes the edge cut among the parts. We propose a new scheduler that executes each part one-by-one, obeying the dependency among parts, aiming at reducing redundant data movement needed by cut-edges. Extensive experimental evaluation shows that the proposed DAG-based scheduler significantly reduces redundant data movement.

This work will appear in the proceedings of PPAM 2019 [24].