Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Application Domains

Automated vehicles

The long term effort of the project is to put automatically guided vehicles (cybercars) on the road. It seems too early to mix cybercars and traditional vehicles, but data processing and automation now make it possible to consider in the relatively short term the development of such vehicles and the adapted infrastructures. RITS aims at using these technologies on experimental platforms (vehicles and infrastructures) to accelerate the technology transfer and to innovate in this field. Other application can be precision docking systems that will allow buses to be automatically maneuvered into a loading zone or maintenance area, allowing easier access for passengers, or more efficient maintenance operations. Transit operating costs will also be reduced through decreased maintenance costs and less damage to the braking and steering systems. Regarding technical topics, several aspects of Cybercars have been developed at RITS this year. First, we have stabilized a generic Cycab architecture involving Inria SynDEx tool and CAN communications. The critical part of the vehicle is using a real-time SynDEx application controlling the actuators via two Motorola’s MPC555. Today, we have decided to migrate to the new dsPIC architecture for more efficiency and ease of use. This application has a second feature, it can receive commands from an external source (Asynchronously to this time) on a second CAN bus. This external source can be a PC or a dedicated CPU, we call it high level. To work on the high level, in the past years we have been developing a R&D framework called (Taxi) which used to take control of the vehicle (Cycab and Yamaha) and process data such as gyro, GPS, cameras, wireless communications and so on. In order to rely on a professional and maintained solution, we use the RTMaps SDK development platform for our developments and demonstrations. These demonstrations include: reliable SLAMMOT algorithm using 2 to 4 laser sensors simultaneously, automatic line/road following techniques, PDA remote control, multi sensors data fusion, collaborative perception via ad-hoc network. The second main topic is inter-vehicle communications using ad-hoc networks. We have worked with the EVA team for setting and tuning OLSR, a dynamic routing protocol for vehicles communications. Our goal is to develop a vehicle dedicated communication software suite, running on a specialized hardware. It can be linked also with the Taxi Framework for getting data such GPS information’s to help the routing algorithm.