Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Integration of Artificial Intelligence Techniques in Integer Programming

When one deals with combinatorial problems with a large number of integer variables, or tightly constrained problems, mixed integer programming (MIP) alone may not be able to find solutions in a reasonable amount of time. In this case, techniques from artificial intelligence can be used to improve these methods. In particular, we use variable fixing techniques, primal heuristics and constraint programming.

Primal heuristics are useful to find feasible solutions in a small amount of time. We focus on heuristics that are either based on integer programming (rounding, diving, relaxation induced neighborhood search, feasibility pump), or that are used inside our exact methods (heuristics for separation or pricing subproblem, heuristic constraint propagation, ...). Such methods are likely to produce good quality solutions only if the integer programming formulation is of top quality, i.e., if its LP relaxation provides a good approximation of the IP solution.

In the same line, variable fixing techniques, that are essential in reducing the size of large scale problems, rely on good quality approximations: either tight formulations or tight relaxation solvers (as a dynamic program combined with state space relaxation). Then if the dual bound derives when the variable is fixed to one exceeds the incubent solution value, the variable can be fixed to zero and hence removed from the problem. The process can be apply sequentially by refining the degree of relaxation.

Constraint Programming (CP) focuses on iteratively reducing the variable domains (sets of feasible values) by applying logical and problem-specific operators. The latter propagates on selected variables the restrictions that are implied by the other variable domains through the relations between variables that are defined by the constraints of the problem. Combined with enumeration, it gives rise to exact optimization algorithms. A CP approach is particularly effective for tightly constrained problems, feasibility problems and min-max problems. Mixed Integer Programming (MIP), on the other hand, is known to be effective for loosely constrained problems and for problems with an objective function defined as the weighted sum of variables. Many problems belong to the intersection of these two classes. For such problems, it is reasonable to use algorithms that exploit complementary strengths of Constraint Programming and Mixed Integer Programming.