Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Overall Objectives

Scientific Context

Critical problems of the 21st century like the search for highly energy efficient or even carbon-neutral, and cost-efficient systems, or the design of new molecules against extensively drug-resistant bacteria crucially rely on the resolution of challenging numerical optimization problems. Such problems typically depend on noisy experimental data or involve complex numerical simulations such that derivatives are not useful or not available and the function is seen as a black-box.

Many of those optimization problems are in essence multiobjective—one needs to optimize simultaneously several conflicting objectives like minimizing the cost of an energy network and maximizing its reliability—and most of the challenging black-box problems are non-convex, non-smooth and combine difficulties related to ill-conditioning, non-separability, and ruggedness (a term that characterizes functions that can be non-smooth but also noisy or multi-modal). Additionally the objective function can be expensive to evaluate, that is one function evaluation can take several minutes to hours (it can involve for instance a CFD simulation).

In this context, the use of randomness combined with proper adaptive mechanisms that particularly satisfy several invariance properties (affine invariance, invariance to monotonic transformations) has proven to be one key component for the design of robust global numerical optimization algorithms [35], [25].

The field of adaptive stochastic optimization algorithms has witnessed some important progress over the past 15 years. On the one hand, subdomains like medium-scale unconstrained optimization may be considered as “solved” (particularly, the CMA-ES algorithm, an instance of Evolution Strategy (ES) algorithms, stands out as state-of-the-art method) and considerably better standards have been established in the way benchmarking and experimentation are performed. On the other hand, multiobjective population-based stochastic algorithms became the method of choice to address multiobjective problems when a set of some best possible compromises is thought for. In all cases, the resulting algorithms have been naturally transferred to industry (the CMA-ES algorithm is now regularly used in companies such as Bosch, Total, ALSTOM, ...) or to other academic domains where difficult problems need to be solved such as physics, biology [38], geoscience [31], or robotics [33]).

Very recently, ES algorithms attracted quite some attention in Machine Learning with the OpenAI article Evolution Strategies as a Scalable Alternative to Reinforcement Learning. It is shown that the training time for difficult reinforcement learning benchmarks could be reduced from 1 day (with standard RL approaches) to 1 hour using ES [36]. (The key behind such an improvement is the parallelization of the algorithm (on thousands of CPUs) that is done in such a way that the communication between the different workers is reduced to only exchanging a vector of permutation of small length (typically less than 100) containing the ranking of candidate solutions on the function to be optimized. In contrast, parallelization of backpropagation requires to exchange the gradient vector of the size of the problem (of the order of 106). This reduced communication time is an important factor for the important speedup.) A few years ago, another impressive application of CMA-ES, how “Computer Sim Teaches Itself To Walk Upright” (published at the conference SIGGRAPH Asia 2013) was presented in the press in the UK.

Several of those important advances around adaptive stochastic optimization algorithms are relying to a great extent on works initiated or achieved by the founding members of RandOpt particularly related to the CMA-ES algorithm and to the Comparing Continuous Optimizer (COCO) platform.

Yet, the field of adaptive stochastic algorithms for black-box optimization is relatively young compared to the “classical optimization” field that includes convex and gradient-based optimization. For instance, the state-of-the art algorithms for unconstrained gradient based optimization like quasi-Newton methods (e.g. the BFGS method) date from the 1970s [24] while the stochastic derivative-free counterpart, CMA-ES dates from the early 2000s [26]. Consequently, in some subdomains with important practical demands, not even the most fundamental and basic questions are answered:

Additionally, the development of stochastic adaptive methods for black-box optimization has been mainly driven by heuristics and practice—rather than a general theoretical framework—validated by intensive computational simulations. Undoubtedly, this has been an asset as the scope of possibilities for design was not restricted by mathematical frameworks for proving convergence. In effect, powerful stochastic adaptive algorithms for unconstrained optimization like the CMA-ES algorithm emerged from this approach. At the same time, naturally, theory strongly lags behind practice. For instance, the striking performances of CMA-ES empirically observed contrast with how little is theoretically proven on the method. This situation is clearly not satisfactory. On the one hand, theory generally lifts performance assessment from an empirical level to a conceptual one, rendering results independent from the problem instances where they have been tested. On the other hand, theory typically provides insights that change perspectives on some algorithm components. Also theoretical guarantees generally increase the trust in the reliability of a method and facilitate the task to make it accepted by wider communities.

Finally, as discussed above, the development of novel black-box algorithms strongly relies on scientific experimentation, and it is quite difficult to conduct proper and meaningful experimental analysis. This is well known for more than two decades now and summarized in this quote from Johnson in 1996

“the field of experimental analysis is fraught with pitfalls. In many ways, the implementation of an algorithm is the easy part. The hard part is successfully using that implementation to produce meaningful and valuable (and publishable!) research results.” [29]

Since then, quite some progress has been made to set better standards in conducting scientific experiments and benchmarking. Yet, some domains still suffer from poor benchmarking standards and from the generic problem of the lack of reproducibility of results. For instance, in multiobjective optimization, it is (still) not rare to see comparisons between algorithms made by solely visually inspecting Pareto fronts after a fixed budget. In Bayesian optimization, good performance seems often to be due to insider knowledge not always well described in papers.