Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Developing Novel Theoretical Frameworks for Analyzing and Designing Adaptive Stochastic Algorithms

Stochastic black-box algorithms typically optimize non-convex, non-smooth functions. This is possible because the algorithms rely on weak mathematical properties of the underlying functions: the algorithms do not use the derivatives—hence the function does not need to be differentiable—and, additionally, often do not use the exact function value but instead how the objective function ranks candidate solutions (such methods are sometimes called function-value-free).(To illustrate a comparison-based update, consider an algorithm that samples λ (with λ an even integer) candidate solutions from a multivariate normal distribution. Let x1,...,xλ in n denote those λ candidate solutions at a given iteration. The solutions are evaluated on the function f to be minimized and ranked from the best to the worse:

f ( x 1 : λ ) ... f ( x λ : λ ) .

In the previous equation i:λ denotes the index of the sampled solution associated to the i-th best solution. The new mean of the Gaussian vector from which new solutions will be sampled at the next iteration can be updated as

m 1 λ i = 1 λ / 2 x i : λ .

The previous update moves the mean towards the λ/2 best solutions. Yet the update is only based on the ranking of the candidate solutions such that the update is the same if f is optimized or gf where g: Im (f) is strictly increasing. Consequently, such algorithms are invariant with respect to strictly increasing transformations of the objective function. This entails that they are robust and their performances generalize well.)

Additionally, adaptive stochastic optimization algorithms typically have a complex state space which encodes the parameters of a probability distribution (e.g. mean and covariance matrix of a Gaussian vector) and other state vectors. This state-space is a manifold. While the algorithms are Markov chains, the complexity of the state-space makes that standard Markov chain theory tools do not directly apply. The same holds with tools stemming from stochastic approximation theory or Ordinary Differential Equation (ODE) theory where it is usually assumed that the underlying ODE (obtained by proper averaging and limit for learning rate to zero) has its critical points inside the search space. In contrast, in the cases we are interested in, the critical points of the ODEs are at the boundary of the domain.

Last, since we aim at developing theory that on the one hand allows to analyze the main properties of state-of-the-art methods and on the other hand is useful for algorithm design, we need to be careful not to use simplifications that would allow a proof to be done but would not capture the important properties of the algorithms. With that respect one tricky point is to develop theory that accounts for invariance properties.

To face those specific challenges, we need to develop novel theoretical frameworks exploiting invariance properties and accounting for peculiar state-spaces. Those frameworks should allow researchers to analyze one of the core properties of adaptive stochastic methods, namely linear convergence on the widest possible class of functions.

We are planning to approach the question of linear convergence from three different complementary angles, using three different frameworks:

We expect those frameworks to be complementary in the sense that the assumptions required are different. Typically, the ODE framework should allow for proofs under the assumptions that learning rates are small enough while it is not needed for the Markov chain framework. Hence this latter framework captures better the real dynamics of the algorithm, yet under the assumption of scaling-invariance of the objective functions. Also, we expect some overlap in terms of function classes that can be studied by the different frameworks (typically convex-quadratic functions should be encompassed in the three frameworks). By studying the different frameworks in parallel, we expect to gain synergies and possibly understand what is the most promising approach for solving the holy grail question of the linear convergence of CMA-ES. We foresee for instance that similar approaches like the use of Foster-Lyapunov drift conditions are needed in all the frameworks and that intuition can be gained on how to establish the conditions from one framework to another one.