Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
Y. Akimoto, N. Hansen.
Diagonal Acceleration for Covariance Matrix Adaptation Evolution Strategies, in: Evolutionary Computation, 2019, https://arxiv.org/abs/1905.05885, forthcoming. [ DOI : 10.1162/evco_a_00260 ]
https://hal.inria.fr/hal-01995373

International Conferences with Proceedings

[2]
D. Brockhoff, N. Hansen.
The Impact of Sample Volume in Random Search on the bbob Test Suite, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019. [ DOI : 10.1145/3319619.3326894 ]
https://hal.inria.fr/hal-02171213
[3]
D. Brockhoff, T. Tušar.
Benchmarking Algorithms from the platypus Framework on the Biobjective bbob-biobj Testbed, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019, vol. 7. [ DOI : 10.1145/3319619.3326896 ]
https://hal.inria.fr/hal-02171136
[4]
P. Dufossé, C. Touré.
Benchmarking MO-CMA-ES and COMO-CMA-ES on the Bi-objective bbob-biobj Testbed, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019. [ DOI : 10.1145/3319619.3326892 ]
https://hal.inria.fr/hal-02161252
[5]
Best Paper
N. Hansen.
A Global Surrogate Assisted CMA-ES, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, ACM, 2019, pp. 664-672. [ DOI : 10.1145/3321707.3321842 ]
https://hal.inria.fr/hal-02143961
[6]
Best Paper
C. Touré, A. Auger, D. Brockhoff, N. Hansen.
On Bi-Objective convex-quadratic problems, in: 10th International Conference on Evolutionary Multi-Criterion Optimization, East Lansing, Michigan, United States, March 2019, https://arxiv.org/abs/1812.00289.
https://hal.inria.fr/hal-01942159
[7]
C. Touré, N. Hansen, A. Auger, D. Brockhoff.
Uncrowded Hypervolume Improvement: COMO-CMA-ES and the Sofomore framework, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019, Part of this research has been conducted in the context of a research collaboration between Storengy and Inria. [ DOI : 10.1145/3321707.3321852 ]
https://hal.inria.fr/hal-02103694
[8]
T. Tušar, D. Brockhoff, N. Hansen.
Mixed-Integer Benchmark Problems for Single-and Bi-Objective Optimization, in: GECCO 2019 -The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019, submitted to GECCO 2019.
https://hal.inria.fr/hal-02067932
[9]
K. Varelas, M.-A. Dahito.
Benchmarking Multivariate Solvers of SciPy on the Noiseless Testbed, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019. [ DOI : 10.1145/3319619.3326891 ]
https://hal.inria.fr/hal-02160099
[10]
K. Varelas.
Benchmarking Large Scale Variants of CMA-ES and L-BFGS-B on the bbob-largescale Testbed, in: GECCO 2019 - The Genetic and Evolutionary Computation Conference, Prague, Czech Republic, July 2019. [ DOI : 10.1145/3319619.3326893 ]
https://hal.inria.fr/hal-02160106

Other Publications

[11]
D. Brockhoff, T. Tušar, A. Auger, N. Hansen.
Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites, January 2019, https://arxiv.org/abs/1604.00359 - ArXiv e-prints, arXiv:1604.00359.
https://hal.inria.fr/hal-01296987
[12]
O. A. Elhara, K. Varelas, D. H. Nguyen, T. Tušar, D. Brockhoff, N. Hansen, A. Auger.
COCO: The Large Scale Black-Box Optimization Benchmarking (bbob-largescale) Test Suite, March 2019, https://arxiv.org/abs/1903.06396 - working paper or preprint.
https://hal.inria.fr/hal-02068407
[13]
S. Mahévas, V. Picheny, P. Lambert, N. Dumoulin, L. Rouan, C. Soulié, D. Brockhoff, S. Lehuta, R. Le Riche, R. Faivre, H. Drouineau.
A practical guide for conducting calibration and decision-making optimisation with complex ecological models, December 2019, pdf available at https://www.preprints.org/manuscript/201912.0249/v1. [ DOI : 10.20944/preprints201912.0249.v1 ]
https://hal.inria.fr/hal-02418667
References in notes
[14]
Y. Akimoto, N. Hansen.
Online model selection for restricted covariance matrix adaptation, in: International Conference on Parallel Problem Solving from Nature, Springer, 2016, pp. 3–13.
[15]
Y. Akimoto, N. Hansen.
Projection-based restricted covariance matrix adaptation for high dimension, in: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, ACM, 2016, pp. 197–204.
[16]
D. V. Arnold, J. Porter.
Towards au Augmented Lagrangian Constraint Handling Approach for the (1+1)-ES, in: Genetic and Evolutionary Computation Conference, ACM Press, 2015, pp. 249-256.
[17]
A. Atamna, A. Auger, N. Hansen.
Linearly Convergent Evolution Strategies via Augmented Lagrangian Constraint Handling, in: Foundation of Genetic Algorithms (FOGA), 2017.
[18]
A. Auger, N. Hansen.
Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains, in: SIAM Journal on Optimization, 2016, vol. 26, no 3, pp. 1589-1624.
[19]
J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl.
Algorithms for Hyper-Parameter Optimization, in: Neural Information Processing Systems (NIPS 2011), 2011.
https://hal.inria.fr/hal-00642998/file/draft1.pdf
[20]
V. S. Borkar.
Stochastic approximation: a dynamical systems viewpoint, 2008, Cambridge University Press.
[21]
V. Borkar, S. Meyn.
The O.D.E. Method for Convergence of Stochastic Approximation and Reinforcement Learning, in: SIAM Journal on Control and Optimization, January 2000, vol. 38, no 2.
[22]
C. A. Coello Coello.
Constraint-handling techniques used with evolutionary algorithms, in: Proceedings of the 2008 Genetic and Evolutionary Computation Conference, ACM, 2008, pp. 2445–2466.
[23]
G. Collange, S. Reynaud, N. Hansen.
Covariance Matrix Adaptation Evolution Strategy for Multidisciplinary Optimization of Expendable Launcher Families, in: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Proceedings, 2010.
[24]
J. E. Dennis, R. B. Schnabel.
Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[25]
N. Hansen, A. Auger.
Principled design of continuous stochastic search: From theory to practice, in: Theory and principled methods for the design of metaheuristics, Springer, 2014, pp. 145–180.
[26]
N. Hansen, A. Ostermeier.
Completely Derandomized Self-Adaptation in Evolution Strategies, in: Evolutionary Computation, 2001, vol. 9, no 2, pp. 159–195.
[27]
J. N. Hooker.
Testing heuristics: We have it all wrong, in: Journal of heuristics, 1995, vol. 1, no 1, pp. 33–42.
[28]
F. Hutter, H. Hoos, K. Leyton-Brown.
An Evaluation of Sequential Model-based Optimization for Expensive Blackbox Functions, in: GECCO (Companion) 2013, ACM, 2013, pp. 1209–1216.
[29]
D. S. Johnson.
A theoretician’s guide to the experimental analysis of algorithms, in: Data structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges, 2002, vol. 59, pp. 215–250.
[30]
D. R. Jones, M. Schonlau, W. J. Welch.
Efficient global optimization of expensive black-box functions, in: Journal of Global optimization, 1998, vol. 13, no 4, pp. 455–492.
[31]
I. Kriest, V. Sauerland, S. Khatiwala, A. Srivastav, A. Oschlies.
Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0), in: Geoscientific Model Development, 2017, vol. 10, no 1, 127 p.
[32]
H. J. Kushner, G. Yin.
Stochastic approximation and recursive algorithms and applications, Applications of mathematics, Springer, New York, 2003.
http://opac.inria.fr/record=b1099801
[33]
P. MacAlpine, S. Barrett, D. Urieli, V. Vu, P. Stone.
Design and Optimization of an Omnidirectional Humanoid Walk: A Winning Approach at the RoboCup 2011 3D Simulation Competition, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI), July 2012.
[34]
S. Meyn, R. Tweedie.
Markov Chains and Stochastic Stability, Springer-Verlag, New York, 1993.
[35]
Y. Ollivier, L. Arnold, A. Auger, N. Hansen.
Information-geometric optimization algorithms: A unifying picture via invariance principles, in: Journal Of Machine Learning Research, 2016, accepted.
[36]
T. Salimans, J. Ho, X. Chen, I. Sutskever.
Evolution strategies as a scalable alternative to reinforcement learning, in: arXiv preprint arXiv:1703.03864, 2017.
[37]
J. Snoek, H. Larochelle, R. P. Adams.
Practical bayesian optimization of machine learning algorithms, in: Neural Information Processing Systems (NIPS 2012), 2012, pp. 2951–2959.
[38]
J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt, P. Hersen.
Long-term model predictive control of gene expression at the population and single-cell levels, in: Proceedings of the National Academy of Sciences, 2012, vol. 109, no 35, pp. 14271–14276.