Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Results
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Structural Instability of Driven Josephson Circuits Prevented by an Inductive Shunt

Participants: Raphaël Lescanne, Zaki Leghtas, Mazyar Mirrahimi and Lucas Verney

Superconducting circuits are a versatile platform to implement a multitude of Hamiltonians that perform quantum computation, simulation, and sensing tasks. A key ingredient for realizing a desired Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in situ control of couplings, which cannot be obtained by near-equilibrium Hamiltonians. However, as shown in this theoretical study, out-of-equilibrium systems are easily plagued by complex dynamics, leading to instabilities. The prediction and prevention of these instabilities is crucial, both from a fundamental and application perspective. We propose an inductively shunted transmon as the elementary circuit optimized for strong parametric drives. Developing a numerical approach that avoids the built-in limitations of perturbative analysis, we demonstrate that adding the inductive shunt significantly extends the range of pump powers over which the circuit behaves in a stable manner. This theoretical result was published in [22] and analyzes the experiment [17].