Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
F. Heinrich.
Modeling, Prediction and Optimization of Energy Consumption of MPI Applications using SimGrid, Université Grenoble Alpes, May 2019.
https://tel.archives-ouvertes.fr/tel-02269894
[2]
A. Marcastel.
Optimisation en ligne et apprentissage adaptatif pour les réseaux dans les bandes ISM, Université de Cergy Pontoise, February 2019.
[3]
P. Mertikopoulos.
Online optimization and learning in games: Theory and applications, Grenoble 1 UGA - Université Grenoble Alpes, December 2019, Habilitation à diriger des recherches.
https://hal.inria.fr/tel-02428077
[4]
U. Ozeer.
Autonomic Resilience of Distributed IoT Applications in the Fog, UGA - Université Grenoble Alpes ; MSTII, December 2019.

Articles in International Peer-Reviewed Journals

[5]
P. Alliez, R. Di Cosmo, B. Guedj, A. Girault, M.-S. Hacid, A. Legrand, N. P. Rougier.
Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria, in: Computing in Science & Engineering, 2019, pp. 1-14, https://arxiv.org/abs/1905.11123. [ DOI : 10.1109/MCSE.2019.2949413 ]
https://hal.archives-ouvertes.fr/hal-02135891
[6]
J. Anselmi.
Combining Size-Based Load Balancing with Round-Robin for Scalable Low Latency, in: IEEE Transactions on Parallel and Distributed Systems, 2019, pp. 1-3, forthcoming. [ DOI : 10.1109/TPDS.2019.2950621 ]
https://hal.archives-ouvertes.fr/hal-02276789
[7]
J. Anselmi, J. Doncel.
Asymptotically Optimal Size-Interval Task Assignments, in: IEEE Transactions on Parallel and Distributed Systems, 2019, vol. 30, no 11, pp. 2422-2433. [ DOI : 10.1109/TPDS.2019.2920121 ]
https://hal.archives-ouvertes.fr/hal-02318576
[8]
J. Anselmi, F. Dufour.
Power-of-d-Choices with Memory: Fluid Limit and Optimality, in: Mathematics of Operations Research, 2019, pp. 1-31, forthcoming.
https://hal.archives-ouvertes.fr/hal-02394147
[9]
I. M. Bomze, P. Mertikopoulos, W. Schachinger, M. Staudigl.
Hessian barrier algorithms for linearly constrained optimization problems, in: SIAM Journal on Optimization, 2019, vol. 29, pp. 2100 - 2127. [ DOI : 10.1137/18M1215682 ]
https://hal.inria.fr/hal-02403531
[10]
J. Doncel, N. Gast, B. Gaujal.
Discrete Mean Field Games: Existence of Equilibria and Convergence, in: Journal of Dynamics and Games, 2019, vol. 6, no 3, pp. 1-19, https://arxiv.org/abs/1909.01209. [ DOI : 10.3934/jdg.2019016 ]
https://hal.inria.fr/hal-01277098
[11]
A. Marcastel, E.-V. Belmega, P. Mertikopoulos, I. Fijalkow.
Online Power Optimization in Feedback-Limited, Dynamic and Unpredictable IoT Networks, in: IEEE Transactions on Signal Processing, 2019, vol. 67, no 11, pp. 2987 - 3000, forthcoming. [ DOI : 10.1109/TSP.2019.2910479 ]
https://hal.archives-ouvertes.fr/hal-02189523
[12]
P. Mertikopoulos, Z. Zhou.
Learning in games with continuous action spaces and unknown payoff functions, in: Mathematical Programming, Series A, 2019, vol. 173, no 1-2, pp. 465-507, https://arxiv.org/abs/1608.07310. [ DOI : 10.1007/s10107-018-1254-8 ]
https://hal.archives-ouvertes.fr/hal-01382282
[13]
X. Wu, P. Loiseau, E. Hyytiä.
Towards Designing Cost-Optimal Policies to Utilize IaaS Clouds with Online Learning, in: IEEE Transactions on Parallel and Distributed Systems, 2019, vol. 14, forthcoming. [ DOI : 10.1109/TPDS.2019.2935199 ]
https://hal.inria.fr/hal-02303480

International Conferences with Proceedings

[14]
A. Andreou, M. Silva, F. Benevenuto, O. Goga, P. Loiseau, A. Mislove.
Measuring the Facebook Advertising Ecosystem, in: NDSS 2019 - Proceedings of the Network and Distributed System Security Symposium, San Diego, United States, February 2019, pp. 1-15. [ DOI : 10.14722/ndss.2019.23280 ]
https://hal.archives-ouvertes.fr/hal-01959145
[15]
K. Antonakopoulos, E.-V. Belmega, P. Mertikopoulos.
An adaptive mirror-prox algorithm for variational inequalities with singular operators, in: NeurIPS 2019, Vancouver, Canada, 2019.
https://hal.inria.fr/hal-02403562
[16]
P. Bruel, S. Quinito Masnada, B. Videau, A. Legrand, J.-M. Vincent, A. Goldman.
Autotuning under Tight Budget Constraints: A Transparent Design of Experiments Approach, in: CCGrid 2019 - International Symposium in Cluster, Cloud, and Grid Computing, Larcana, Cyprus, May 2019, pp. 1-10. [ DOI : 10.1109/CCGRID.2019.00026 ]
https://hal.inria.fr/hal-02110868
[17]
A. Chakraborty, G. K. Patro, N. Ganguly, K. P. Gummadi, P. Loiseau.
Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations, in: FAT* 2019 - ACM Conference on Fairness, Accountability, and Transparency, Atlanta, United States, Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (FAT*), ACM, January 2019, pp. 129-138. [ DOI : 10.1145/3287560.3287570 ]
https://hal.archives-ouvertes.fr/hal-01959135
[18]
T. Cornebize, A. Legrand, F. C. Heinrich.
Fast and Faithful Performance Prediction of MPI Applications: the HPL Case Study, in: 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, United States, 2019 IEEE International Conference on Cluster Computing (CLUSTER), September 2019. [ DOI : 10.1109/CLUSTER.2019.8891011 ]
https://hal.inria.fr/hal-02096571
[19]
B. Donassolo, I. Fajjari, A. Legrand, P. Mertikopoulos.
Fog Based Framework for IoT Service Provisioning, in: CCNC 2019 - IEEE Consumer Communications & Networking Conference, Las Vegas, United States, IEEE, January 2019, pp. 1-6. [ DOI : 10.1109/CCNC.2019.8651835 ]
https://hal.inria.fr/hal-01859695
[20]
J. Doncel, N. Gast, M. Tribastone, M. Tschaikowski, A. Vandin.
UTOPIC: Under-Approximation Through Optimal Control, in: QEST 2019 - 16th International Conference on Quantitative Evaluation of SysTems, Glasgow, United Kingdom, Springer, September 2019, pp. 277-291. [ DOI : 10.1007/978-3-030-30281-8_16 ]
https://hal.inria.fr/hal-02283189
[21]
V. Emelianov, G. Arvanitakis, N. Gast, K. P. Gummadi, P. Loiseau.
The Price of Local Fairness in Multistage Selection, in: IJCAI-2019 - Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, France, International Joint Conferences on Artificial Intelligence Organization, May 2019, pp. 5836-5842, https://arxiv.org/abs/1906.06613. [ DOI : 10.24963/ijcai.2019/809 ]
https://hal.inria.fr/hal-02145071
[22]
B. Gaujal, A. Girault, S. Plassart.
A Linear Time Algorithm for Computing Off-line Speed Schedules Minimizing Energy Consumption, in: MSR 2019 - 12ème Colloque sur la Modélisation des Systèmes Réactifs, Angers, France, November 2019, pp. 1-14.
https://hal.archives-ouvertes.fr/hal-02372136
[23]
Y.-G. Hsieh, F. Iutzeler, J. Malick, P. Mertikopoulos.
On the convergence of single-call stochastic extra-gradient methods, in: NeurIPS 2019, Vancouver, Canada, 2019, https://arxiv.org/abs/1908.08465 - 27 pages, 3 figures.
https://hal.inria.fr/hal-02403555
[24]
B. Jonglez, S. Birbalta, M. Heusse.
Persistent DNS connections for improved performance, in: NETWORKING 2019 - IFIP Networking 2019, Warsaw, Poland, May 2019, pp. 1-2.
https://hal.inria.fr/hal-02149978
[25]
N. Liakopoulos, A. S. Destounis, G. Paschos, T. Spyropoulos, P. Mertikopoulos.
Cautious regret minimization: Online optimization with long-term budget constraints, in: ICML 2019 - 36th International Conference on Machine Learning, Long Beach, United States, June 2019, pp. 1-9.
https://hal.inria.fr/hal-02405753
[26]
P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, G. Piliouras.
Optimistic Mirror Descent in Saddle-Point Problems: Going the Extra (Gradient) Mile, in: ICLR 2019 - 7th International Conference on Learning Representations, New Orleans, United States, May 2019, pp. 1-23.
https://hal.inria.fr/hal-02111937
[27]
M. Minaei, M. Mondal, P. Loiseau, K. P. Gummadi, A. Kate.
Forgetting the Forgotten with Lethe: Conceal Content Deletion from Persistent Observers, in: PETS 2019 - 19th Privacy Enhancing Technologies Symposium, Stockholm, Sweden, July 2019, pp. 1-21.
https://hal.archives-ouvertes.fr/hal-01959119
[28]
U. Ozeer, L. Letondeur, F.-G. Ottogalli, G. Salaün, J.-M. Vincent.
Designing and Implementing Resilient IoT Applications in the Fog: A Smart Home Use Case, in: ICIN 2019 - 22nd Conference on Innovation in Clouds, Internet and Networks, Paris, France, IEEE, February 2019, pp. 230-232. [ DOI : 10.1109/ICIN.2019.8685909 ]
https://hal.archives-ouvertes.fr/hal-01979686
[29]
D. Quan Vu, P. Loiseau, A. Silva, L. Tran-Thanh.
Path Planning Problems with Side Observations—When Colonels Play Hide-and-Seek, in: AAAI 2020 - Thirty-Fourth AAAI Conference on Artificial Intelligence, New-York, United States, February 2020, pp. 1-15.
https://hal.inria.fr/hal-02375789
[30]
M. Staudigl, P. Mertikopoulos.
Convergent Noisy forward-backward-forward algorithms in non-monotone variational inequalities, in: LSS 2019 - 15th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, Delft, Pays-Bas, May 2019, pp. 120-125. [ DOI : 10.1016/j.ifacol.2019.06.021 ]
https://hal.inria.fr/hal-02405750
[31]
L. Vigneri, G. Paschos, P. Mertikopoulos.
Large-Scale Network Utility Maximization: Countering Exponential Growth with Exponentiated Gradients, in: INFOCOM 2019 - IEEE International Conference on Computer Communications, Paris, France, IEEE, April 2019, pp. 1630-1638. [ DOI : 10.1109/INFOCOM.2019.8737600 ]
https://hal.inria.fr/hal-02405759
[32]
S. Yasodharan, P. Loiseau.
Nonzero-sum Adversarial Hypothesis Testing Games, in: NeurIPS 2019 - Thirty-third Conference on Neural Information Processing Systems, Vancouver, Canada, 2019, pp. 1-23.
https://hal.inria.fr/hal-02299451

Conferences without Proceedings

[33]
E. Agullo, A. Buttari, A. Guermouche, A. Legrand, I. Masliah, L. Stanisic.
Simulation of a Sparse Direct Solver on Heterogeneous Systems using Starpu and Simgrid, in: CSE 2019 - SIAM Conference on Computational Science and Engineering, Spokane, United States, SIAM, February 2019.
https://hal.inria.fr/hal-02073725
[34]
J. Assunção, J.-M. Vincent, P. Fernandes.
Piecewise Aggregation for HMM fitting. A pre-fitting model for seamless integration with time series data, in: SEKE 2019 - 31st International Conference on Software Engineering and Knowledge Engineering, Lisbon, Portugal, July 2019, pp. 729-734. [ DOI : 10.18293/SEKE2019-185 ]
https://hal.archives-ouvertes.fr/hal-02409589
[35]
T.-E. Kennouche, F. Cadoux, N. Gast, B. Vinot.
ASGriDS: Asynchronous Smart-Grids Distributed Simulator, in: APPEEC 2019 - 11th IEEE PES Asia-Pacific Power and Energy Engineering Conference, Macao, Macau SAR China, IEEE, December 2019, pp. 1-5.
https://hal.archives-ouvertes.fr/hal-02384051
[36]
A. Legrand, D. Trystram, S. Zrigui.
Adapting Batch Scheduling to Workload Characteristics: What can we expect From Online Learning?, in: IPDPS 2019 - 33rd IEEE International Parallel & Distributed Processing Symposium, Rio de Janeiro, Brazil, IEEE, May 2019, pp. 686-695. [ DOI : 10.1109/IPDPS.2019.00077 ]
https://hal.archives-ouvertes.fr/hal-02044903
[37]
A. Marcastel, E.-V. Belmega, P. Mertikopoulos, I. Fijalkow.
Gradient-free Online Resource Allocation Algorithms for Dynamic Wireless Networks, in: SPAWC 2019 - 20th IEEE International Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, IEEE, July 2019, pp. 1-4. [ DOI : 10.1109/SPAWC.2019.8815409 ]
https://hal.archives-ouvertes.fr/hal-02189108
[38]
D. Quan Vu, P. Loiseau, A. Silva.
Combinatorial Bandits for Sequential Learning in Colonel Blotto Games, in: CDC 2019 - 58th IEEE Conference on Decision and Control, Nice, France, December 2019, https://arxiv.org/abs/1909.04912.
https://hal.archives-ouvertes.fr/hal-02283535

Scientific Books (or Scientific Book chapters)

[39]
L. Desquilbet, S. Granger, B. Hejblum, A. Legrand, P. Pernot, N. P. Rougier, E. de Castro Guerra, M. Courbin-Coulaud, L. Duvaux, P. Gravier, G. Le Campion, S. Roux, F. Santos.
Towards reproducible research : Evolve your practices, Unité régionale de formation à l'information scientifique et technique de Bordeaux, May 2019, pp. 1-161.
https://hal.archives-ouvertes.fr/hal-02144142

Internal Reports

[40]
T. Cornebize, A. Legrand.
DGEMM performance is data-dependent, Université Grenoble Alpes ; Inria ; CNRS, December 2019, no RR-9310, https://arxiv.org/abs/1912.05381.
https://hal.inria.fr/hal-02401760
[41]
B. Gaujal, A. Girault, S. Plassart.
A Discrete Time Markov Decision Process for Energy Minimization Under Deadline Constraints, Grenoble Alpes ; Inria Grenoble Rhône-Alpes, Université de Grenoble, December 2019, no RR-9309, 46 p.
https://hal.inria.fr/hal-02391948
[42]
B. Gaujal, A. Girault, S. Plassart.
Exploiting Job Variability to Minimize Energy Consumption under Real-Time Constraints, Inria Grenoble Rhône-Alpes, Université de Grenoble ; Université Grenoble - Alpes, November 2019, no RR-9300, 23 p.
https://hal.inria.fr/hal-02371742
[43]
B. Gaujal, A. Girault, S. Plassart.
Feasibility of on-line speed policies in real-time systems, Inria Grenoble Rhône-Alpes, Université de Grenoble ; Univ. Grenoble Alpes, November 2019, no RR-9301, 38 p.
https://hal.inria.fr/hal-02371996

Software

[44]
S. Archipoff, C. Augonnet, O. Aumage, G. Beauchamp, B. Bramas, A. Buttari, A. Cassagne, J. Clet-Ortega, T. Cojean, N. Collin, V. Danjean, A. Denis, L. Eyraud-Dubois, N. Furmento, S. Henry, A. Hugo, M. Juhoor, A. Juven, M. Keryell-Even, Y. Khorsi, T. Lambert, E. Leria, B. Lizé, M. Makni, S. Nakov, R. Namyst, L. Nesi Lucas, J. Pablo, D. Pasqualinotto, S. Pitoiset, N. Quôc-Dinh, C. Roelandt, C. Sakka, C. Salingue, L. Mello Schnorr, M. Sergent, A. Simonet, L. Stanisic, S. Bérangère, F. Tessier, S. Thibault, V. Brice, L. Villeveygoux, P.-A. Wacrenier.
StarPU, January 2020, Version : 1.3.3,
[ SWH-ID : swh:1:dir:b6e19d99449a78805e7a55a341fbaba2bc431973 ]
, Software.
https://hal.inria.fr/hal-02443512

Other Publications

[45]
R. I. Bot, P. Mertikopoulos, M. Staudigl, P. T. Vuong.
Forward-backward-forward methods with variance reduction for stochastic variational inequalities, December 2019, working paper or preprint.
https://hal.inria.fr/hal-02405776
[46]
B. Donassolo, I. Fajjari, A. Legrand, P. Mertikopoulos.
Load Aware Provisioning of IoT Services on Fog Computing Platform, March 2019, working paper or preprint.
https://hal.inria.fr/hal-02056743
[47]
B. Jonglez, S. Birbalta, M. Heusse.
Persistent DNS connections for improved performance, May 2019, 1 p, NETWORKING 2019 - IFIP Networking 2019, Poster.
https://hal.inria.fr/hal-02149975
[48]
D. Quan Vu, P. Loiseau, A. Silva.
Approximate Equilibria in Non-constant-sum Colonel Blotto and Lottery Blotto Games with Large Numbers of Battlefields, October 2019, https://arxiv.org/abs/1910.06559 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02315698
[49]
D. Quan Vu, P. Loiseau, A. Silva, L. Tran-Thanh.
Colonel Blotto and Hide-and-Seek Games as Path Planning Problems with Side Observations, May 2019, https://arxiv.org/abs/1905.11151 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02139519
[50]
S. Zrigui, R. Y. De Camargo, D. Trystram, A. Legrand.
Improving the Performance of Batch Schedulers Using Online Job Size Classification, October 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02334116
References in notes
[51]
R. M. Badia, J. Labarta, J. Giménez, F. Escalé.
Dimemas: Predicting MPI Applications Behaviour in Grid Environments, in: Proc. of the Workshop on Grid Applications and Programming Tools, June 2003.
[52]
C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen.
Model-checking algorithms for continuous-time Markov chains, in: Software Engineering, IEEE Transactions on, 2003, vol. 29, no 6.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1205180
[53]
A. Basu, S. Fleming, J. Stanier, S. Naicken, I. Wakeman, V. K. Gurbani.
The State of Peer-to-peer Network Simulators, in: ACM Computing Survey., August 2013, vol. 45, no 4.
[54]
D. Becker, F. Wolf, W. Frings, M. Geimer, B. Wylie, B. Mohr.
Automatic Trace-Based Performance Analysis of Metacomputing Applications, in: Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, March 2007.
http://dx.doi.org/10.1109/IPDPS.2007.370238
[55]
P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis, M. Quinson, M. L. Stillwell, F. Suter, B. Videau.
Toward Better Simulation of MPI Applications on Ethernet/TCP Networks, in: PMBS13 - 4th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, Denver, United States, November 2013.
https://hal.inria.fr/hal-00919507
[56]
G. Bianchi.
Performance analysis of the IEEE 802.11 distributed coordination function, in: Selected Areas in Communications, IEEE Journal on, 2000, vol. 18, no 3.
[57]
L. Bobelin, A. Legrand, M. A. G. David, P. Navarro, M. Quinson, F. Suter, C. Thiery.
Scalable Multi-Purpose Network Representation for Large Scale Distributed System Simulation, in: CCGrid 2012 – The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Ottawa, Canada, May 2012, 19 p.
https://hal.inria.fr/hal-00650233
[58]
L. Bortolussi, J. Hillston.
Model checking single agent behaviours by fluid approximation, in: Information and Computation, 2015, vol. 242.
http://dx.doi.org/10.1016/j.ic.2015.03.002
[59]
L. Bortolussi, R. Lanciani.
Model Checking Markov Population Models by Central Limit Approximation, in: Quantitative Evaluation of Systems, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, no 8054.
[60]
L. Bortolussi, R. Lanciani.
Fluid Model Checking of Timed Properties, in: Formal Modeling and Analysis of Timed Systems, Springer International Publishing, 2015.
[61]
H. Brunst, D. Hackenberg, G. Juckeland, H. Rohling.
Comprehensive Performance Tracking with Vampir 7, in: Tools for High Performance Computing 2009, M. S. Müller, M. M. Resch, A. Schulz, W. E. Nagel (editors), Springer Berlin Heidelberg, 2010.
http://dx.doi.org/10.1007/978-3-642-11261-4_2
[62]
A. Busic, B. Gaujal, G. Gorgo, J.-M. Vincent.
PSI2 : Envelope Perfect Sampling of Non Monotone Systems, in: QEST 2010 - International Conference on Quantitative Evaluation of Systems, Williamsburg, VA, United States, IEEE, September 2010, pp. 83-84.
https://hal.inria.fr/hal-00788884
[63]
A. Busic, B. Gaujal, F. Perronnin.
Perfect Sampling of Networks with Finite and Infinite Capacity Queues, in: 19th International Conference on Analytical and Stochastic Modelling Techniques and Applications (ASMTA) 2012, Grenoble, France, K. Al-Begain, D. Fiems, J.-M. Vincent (editors), Lecture Notes in Computer Science, Springer, 2012, vol. 7314, pp. 136-149. [ DOI : 10.1007/978-3-642-30782-9_10 ]
https://hal.inria.fr/hal-00788003
[64]
S. Böhm, C. Engelmann.
xSim: The Extreme-Scale Simulator, in: Proceedings of the International Conference on High Performance Computing and Simulation (HPCS) 2011, Istanbul, Turkey, IEEE Computer Society, Los Alamitos, CA, USA, July 2011.
[65]
H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter.
Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms, in: Journal of Parallel and Distributed Computing, June 2014, vol. 74, no 10, pp. 2899-2917. [ DOI : 10.1016/j.jpdc.2014.06.008 ]
https://hal.inria.fr/hal-01017319
[66]
A. Chaintreau, J.-Y. Le Boudec, N. Ristanovic.
The Age of Gossip: Spatial Mean Field Regime, in: SIGMETRICS Perform. Eval. Rev., June 2009, vol. 37, no 1.
http://doi.acm.org/10.1145/2492101.1555363
[67]
K. Coulomb, M. Faverge, J. Jazeix, O. Lagrasse, J. Marcoueille, P. Noisette, A. Redondy, C. Vuchener.
Visual trace explorer (ViTE), October, 2009.
[68]
J. Doncel, N. Gast, B. Gaujal.
Mean-Field Games with Explicit Interactions, February 2016.
https://hal.inria.fr/hal-01277098
[69]
S. Durand, B. Gaujal, F. Perronnin, J.-M. Vincent.
A perfect sampling algorithm of random walks with forbidden arcs, in: QEST 2014 - 11th International Conference on Quantitative Evaluation of Systems, Florence, Italy, Springer, September 2014, vol. 8657, pp. 178-193. [ DOI : 10.1007/978-3-319-10696-0_15 ]
https://hal.inria.fr/hal-01069975
[70]
C. Fricker, N. Gast.
Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity, in: EURO Journal on Transportation and Logistics, June 2014, 31 p. [ DOI : 10.1007/s13676-014-0053-5 ]
https://hal.inria.fr/hal-01086009
[71]
C. Fricker, N. Gast, H. Mohamed.
Mean field analysis for inhomogeneous bike sharing systems, in: AofA, Montreal, Canada, July 2012.
https://hal.inria.fr/hal-01086055
[72]
D. Fudenberg, D. K. Levine.
The Theory of Learning in Games, Economic learning and social evolution, MIT Press, Cambridge, MA, 1998, vol. 2.
[73]
R. M. Fujimoto.
Parallel Discrete Event Simulation, in: Commun. ACM, October 1990, vol. 33, no 10.
http://doi.acm.org/10.1145/84537.84545
[74]
N. Gast, B. Gaujal.
Markov chains with discontinuous drifts have differential inclusion limits, in: Performance Evaluation, 2012, vol. 69, no 12, pp. 623-642. [ DOI : 10.1016/j.peva.2012.07.003 ]
https://hal.inria.fr/hal-00787999
[75]
N. Gast, B. Gaujal, J.-Y. Le Boudec.
Mean field for Markov Decision Processes: from Discrete to Continuous Optimization, in: IEEE Transactions on Automatic Control, 2012, vol. 57, no 9, pp. 2266–2280. [ DOI : 10.1109/TAC.2012.2186176 ]
https://hal.inria.fr/hal-00787996
[76]
N. Gast, J.-Y. Le Boudec, D.-C. Tomozei.
Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity Markets, in: ACM e-Energy 2014, Cambridge, United Kingdom, June 2014. [ DOI : 10.1145/2602044.2602052 ]
https://hal.inria.fr/hal-01086036
[77]
N. Gast, B. Van Houdt.
Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms, in: ACM SIGMETRICS 2015, Portland, United States, June 2015. [ DOI : 10.1145/2745844.2745850 ]
https://hal.inria.fr/hal-01143838
[78]
J. Gonzalez, J. Gimenez, J. Labarta.
Automatic detection of parallel applications computation phases, in: Parallel and Distributed Processing Symposium, International, 2009, vol. 0.
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2009.5161027
[79]
M. Heath, J. Etheridge.
Visualizing the performance of parallel programs, in: IEEE software, 1991, vol. 8, no 5.
[80]
T. Hoefler, T. Schneider, A. Lumsdaine.
LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, in: Proc. of the ACM Workshop on Large-Scale System and Application Performance, June 2010.
[81]
L. Hu, J.-Y. Le Boudec, M. Vojnović.
Optimal channel choice for collaborative ad-hoc dissemination, in: INFOCOM, 2010 Proceedings IEEE, IEEE, 2010.
[82]
L. V. Kalé, G. Zheng, C. W. Lee, S. Kumar.
Scaling applications to massively parallel machines using Projections performance analysis tool, in: Future Generation Comp. Syst., 2006, vol. 22, no 3.
[83]
T. G. Kurtz.
Approximation of population processes, SIAM, 1981, vol. 36.
[84]
Y.-B. Lin, E. D. Lazowska.
A Time-division Algorithm for Parallel Simulation, in: ACM Trans. Model. Comput. Simul., January 1991, vol. 1, no 1.
http://doi.acm.org/10.1145/102810.214307
[85]
G. Llort, J. González, H. Servat, J. Giménez, J. Labarta.
On-line Detection of Large-scale Parallel Application's Structure, in: 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS’2010), 2010.
[86]
L. Mello Schnorr, A. Legrand.
Visualizing More Performance Data Than What Fits on Your Screen, in: Tools for High Performance Computing 2012, A. Cheptsov, S. Brinkmann, J. Gracia, M. M. Resch, W. E. Nagel (editors), Springer Berlin Heidelberg, 2013, pp. 149-162. [ DOI : 10.1007/978-3-642-37349-7_10 ]
https://hal.inria.fr/hal-00842761
[87]
S. Meyn, P. Barooah, A. Busic, J. Ehren.
Ancillary service to the grid from deferrable loads: the case for intelligent pool pumps in Florida, in: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, IEEE, 2013.
[88]
M. Mitzenmacher.
The power of two choices in randomized load balancing, in: Parallel and Distributed Systems, IEEE Transactions on, 2001, vol. 12, no 10.
[89]
K. Mohror, K. Karavanic, A. Snavely.
Scalable Event Trace Visualization, in: Euro-Par 2009 – Parallel Processing Workshops, H.-X. Lin, M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, A. Streit (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, vol. 6043.
http://dx.doi.org/10.1007/978-3-642-14122-5_27
[90]
W. Nagel, A. Arnold, M. Weber, H. Hoppe, K. Solchenbach.
VAMPIR: Visualization and Analysis of MPI Resources, in: Supercomputer, 1996, vol. 12, no 1.
[91]
V. Pillet, J. Labarta, T. Cortes, S. Girona.
PARAVER: A tool to visualise and analyze parallel code, in: Proceedings of Transputer and occam Developments, WOTUG-18, Transputer and Occam Engineering, IOS Press, 1995, vol. 44.
[92]
J. Propp, D. Wilson.
Coupling from the past: a user's guide, in: DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 1998, vol. 41, Microsurveys in discrete probability.
[93]
M. L. Puterman.
Markov decision processes: discrete stochastic dynamic programming, John Wiley & Sons, 2014.
[94]
D. Reed, P. Roth, R. Aydt, K. Shields, L. Tavera, R. Noe, B. Schwartz.
Scalable performance analysis: the Pablo performance analysis environment, in: Scalable Parallel Libraries Conference, 1993., Proceedings of the, 1993.
[95]
W. H. Sandholm.
Population Games and Evolutionary Dynamics, Economic learning and social evolution, MIT Press, Cambridge, MA, 2010.
[96]
W. H. Sandholm, M. Staudigl.
A Sample Path Large Deviation Principle for a Class of Population Processes, in: arXiv preprint arXiv:1511.07897, 2015.
[97]
H. Servat, G. Llort, J. Giménez, K. Huck, J. Labarta.
Folding: detailed analysis with coarse sampling, in: Tools for High Performance Computing 2011, Springer Berlin Heidelberg, 2012.
[98]
H. Servat, G. Llort, J. Gonzalez, J. Gimenez, J. Labarta.
Identifying code phases using piece-wise linear regressions, in: Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, IEEE, 2014.
[99]
B. Shneiderman.
The eyes have it: A task by data type taxonomy for information visualizations, in: Visual Languages, 1996. Proceedings., IEEE Symposium on, IEEE, 1996.
[100]
M. Tikir, M. Laurenzano, L. Carrington, A. Snavely.
PSINS: An Open Source Event Tracer and Execution Simulator for MPI Applications, in: Proc. of the 15th International Euro-Par Conference on Parallel Processing, LNCS, Springer, August 2009, no 5704.
[101]
B. Van Houdt.
A Mean Field Model for a Class of Garbage Collection Algorithms in Flash-based Solid State Drives, in: Proceedings of the ACM SIGMETRICS, New York, NY, USA, SIGMETRICS '13, ACM, 2013.
http://doi.acm.org/10.1145/2465529.2465543
[102]
P. Velho, L. Mello Schnorr, H. Casanova, A. Legrand.
On the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations, in: ACM Transactions on Modeling and Computer Simulation, October 2013, vol. 23, no 4.
https://hal.inria.fr/hal-00872476
[103]
J. J. Wilke, K. Sargsyan, J. P. Kenny, B. Debusschere, H. N. Najm, G. Hendry.
Validation and Uncertainty Assessment of Extreme-Scale HPC Simulation through Bayesian Inference, in: Euro-Par 2013 Parallel Processing: 19th International Conference, Aachen, Germany, August 26-30, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
[104]
F. Wolf, B. Mohr.
Automatic performance analysis of hybrid MPI/OpenMP applications, in: Journal of Systems Architecture, 2003, vol. 49, no 10-11.
[105]
T. Yang, P. G. Mehta, S. P. Meyn.
A mean-field control-oriented approach to particle filtering, in: American Control Conference (ACC), 2011, IEEE, 2011.
[106]
L. Ying.
On the Rate of Convergence of Mean-Field Models: Stein's Method Meets the Perturbation Theory, in: arXiv preprint arXiv:1510.00761, 2015.
[107]
O. Zaki, E. Lusk, W. Gropp, D. Swider.
Toward Scalable Performance Visualization with Jumpshot, in: International Journal of High Performance Computing Applications, 1999, vol. 13, no 3.
http://dx.doi.org/10.1177/109434209901300310
[108]
G. Zheng, G. Kakulapati, L. Kalé.
BigSim: A Parallel Simulator for Performance Prediction of Extremely Large Parallel Machines, in: Proc. of the 18th International Parallel and Distributed Processing Symposium (IPDPS), April 2004.
[109]
J. C. de Kergommeaux, B. Stein, P. Bernard.
Paje, an interactive visualization tool for tuning multi-threaded parallel applications, in: Parallel Computing, 2000, vol. 10, no 26, pp. 1253–1274.