Team, Visitors, External Collaborators
Overall Objectives
Research Program
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program


The activity of the team is oriented towards the design, the analysis and the numerical approximation of mathematical models for all types of problems involving wave propagation phenomena, in mechanics, physics and engineering sciences. Let us briefly describe our core business and current expertise, in order to clarify the new challenges that we want to address in the short and long terms.

Typically, our works are based on boundary value problems established by physicists to model the propagation of waves in various situations. The basic ingredient is a partial differential equation of the hyperbolic type, whose prototype is the scalar wave equation, or the Helmholtz equation if time-periodic solutions are considered. More generally, we systematically consider both the transient problem, in the time domain, and the time-harmonic problem, in the frequency domain. Let us mention that, even if different waves share a lot of common properties, the transition from the scalar acoustic equation to the vectorial electromagnetism and elastodynamics systems raises a lot of mathematical and numerical difficulties, and requires a specific expertise.

A notable particularity of the problems that we consider is that they are generally set in unbounded domains: for instance, for radar applications, it is necessary to simulate the interaction of the electromagnetic waves with the airplane only, without any complex environment perturbing the wave phenomena. This raises an intense research activity, both from a theoretical and a numerical point of view. There exist several approaches which all consist in rewriting the problem (or an approximation of it) in a bounded domain, the new formulation being well-suited for classical mathematical and numerical techniques.

One class of methods consists in applying an appropriate condition on some boundary enclosing the zone of interest. In the frequency domain, one can use a non-local transparent condition, which can be expressed by a convolution with a Green function like in integral equation techniques, or by a modal decomposition when a separation of variables is applicable. But for explicit schemes in the time domain, local radiation conditions at a finite distance are generally preferred (constructed as local approximations at various orders of the exact non-local condition). A second class of methods consists in surrounding the computational domain by so called Perfectly Matched absorbing Layers (PML), which are very popular because they are easy to implement. POEMS members have provided several contributions to these two classes of methods for more than twenty-five years. Among them, on can mention the understanding of the instability of PMLs in anisotropic media and in dispersive media, the derivation of transparent boundary conditions in periodic media or the improvement of Fast Multipole techniques for elastodynamic integral equations.

In addition to more classical domains of applied mathematics that we are led to use (variational analysis and functional analysis, interpolation and approximation theory, linear algebra of large systems, etc...), we have acquired a deep expertise in spectral theory. Indeed, the analysis of wave phenomena is intimately linked to the study of some associated spectral problems. Acoustic resonance frequencies of a cavity correspond to the eigenvalues of a selfadjoint Laplacian operator, modal solutions in a waveguide correspond to a spectral problem set in the cross section. In these two examples, if the cavity or the cross-section is unbounded, a part of the spectrum is a continuum. Again, POEMS has produced several contributions in this field. In particular, a large number of significant results have been obtained for the existence or non-existence of guided modes in open waveguides and of trapped modes in infinite domains.

To end this far from exhaustive presentation of our main expertise domains, let us mention the asymptotic techniques with respect to some small scale appearing in the model: it can be the wavelength compared to the size of the scatterer, or on the contrary, the scale of the scatterer compared to the wavelength, it can be the scale of some microstructure in a composite material or the width of a thin layer or a thin tube. In each case, the objective, in order to avoid the use of costly meshes, is to derive effective simplified models. Our specificity here is that we can combine skills in physics, mathematics and numerics: in particular, we take care of the mathematical properties of the effective model, which are used to ensure the robustness of the numerical method, and also to derive error estimates with respect to the small parameter. There has been a lot of contributions of POEMS to this topic, going from the modeling of electromagnetic coatings to the justification of models for piezoelectric sensors. Let us mention that effective models for small scatterers and thin coatings have been used to improve imaging techniques that we are developing (topological gradient, time reversal or sampling techniques).