Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Mechanized metatheory revisited

Participant : Dale Miller.

When proof assistants and theorem provers implement the metatheory of logical systems, they must deal with a range of syntactic expressions (e.g., types, formulas, and proofs) that involve variable bindings. Since most mature proof assistants do not have built-in methods to treat bindings, they have been extended with various packages and libraries that allow them to encode such syntax using, for example, De Bruijn numerals. In the paper, [10], Miller puts forward the argument that bindings are such an intimate aspect of the structure of expressions that they should be accounted for directly in the underlying programming language support for proof assistants and not via packages and libraries. He presents an approach to designing programming languages and proof assistants that directly supports bindings in syntax. The roots of this approach can be found in the mobility of binders between term-level bindings, formula-level bindings (quantifiers), and proof-level bindings (eigenvariables). In particular, the combination of Church's approach to terms and formulas (found in his Simple Theory of Types) and Gentzen's approach to proofs (found in his sequent calculus) yields a framework for the interaction of bindings with a full range of logical connectives and quantifiers. Miller also illustrates how that framework provides a direct and semantically clean treatment of computation and reasoning with syntax containing bindings.