Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Multilinear Polynomial Systems: Root Isolation and Bit Complexity

In [20], we exploit structure in polynomial system solving by considering polyno-mials that are linear in subsets of the variables. We focus on algorithms and their Boolean complexity for computing isolating hyperboxes for all the isolated complex roots of well-constrained, unmixed systems of multilinear polynomials based on resultant methods. We enumerate all expressions of the multihomogeneous (or multigraded) resultant of such systems as a determinant of Sylvester-like matrices, aka generalized Sylvester matrices. We construct these matrices by means of Weyman homological complexes, which generalize the Cayley-Koszul complex. The computation of the determinant of the resultant matrix is the bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector multiplication, which corresponds to multivariate polynomial multiplication, by extending the seminal work on Macaulay matrices of Canny, Kaltofen, and Yagati [9] to the multi-homogeneous case. We compute a rational univariate representation of the roots, based on the primitive element method. In the case of 0-dimensional systems we present a Monte Carlo algorithm with probability of success 1-1/2η, for a given η1, and bit complexity OB(n2D4+ϵ(nN+1+τ)+nD2+ϵη(D+η)) for any ϵ>0, where n is the number of variables, D equals the multilinear Bézout bound, N is the number of variable subsets, and τ is the maximum coefficient bitsize. We present an algorithmic variant to compute the isolated roots of overdetermined and positive-dimensional systems. Thus our algorithms and complexity analysis apply in general with no assumptions on the input.