Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

nD variational restoration of curvilinear structures with prior-based directional regularization

Participant: Hugues Talbot (Collaboration: Odyssée Merveille, Benoît Naegel, iCube, Strasbourg, Nicolas Passat, CRESTIC, Reims)

Curvilinear structure restoration in image processing procedures is a difficult task, which can be compounded when these structures are thin, i.e., when their smallest dimension is close to the resolution of the sensor. Many recent restoration methods involve considering a local gradient-based regularization term as prior, assuming gradient sparsity. An isotropic gradient operator is typically not suitable for thin curvilinear structures, since gradients are not sparse for these. In this paper [22], we propose a mixed gradient operator that combines a standard gradient in the isotropic image regions, and a directional gradient in the regions where specific orientations are likely. In particular, such information can be provided by curvilinear structure detectors (e.g., RORPO or Frangi filters). Our proposed mixed gradient operator, that can be viewed as a companion tool of such detectors, is proposed in a discrete framework and its formulation/computation holds in any dimension; in other words, it is valid in Zn, n1. We show how this mixed gradient can be used to construct image priors that take edge orientation, as well as intensity, into account, and then involved in various image processing tasks while preserving curvilinear structures. The experiments carried out on 2D, 3D, real, and synthetic images illustrate the relevance of the proposed gradient, and its use in variational frameworks for both denoising and segmentation tasks.