Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

High order discretization methods

The Discontinuous Galerkin method

The Discontinuous Galerkin method (DG) was introduced in 1973 by Reed and Hill to solve the neutron transport equation. From this time to the 90's a review on the DG methods would likely fit into one page. In the meantime, the Finite Volume approach (FV) has been widely adopted by computational fluid dynamics scientists and has now nearly supplanted classical finite difference and finite element methods in solving problems of non-linear convection and conservation law systems. The success of the FV method is due to its ability to capture discontinuous solutions which may occur when solving non-linear equations or more simply, when convecting discontinuous initial data in the linear case. Let us first remark that DG methods share with FV methods this property since a first order FV scheme may be viewed as a 0th order DG scheme. However a DG method may also be considered as a Finite Element (FE) one where the continuity constraint at an element interface is released. While keeping almost all the advantages of the FE method (large spectrum of applications, complex geometries, etc.), the DG method has other nice properties which explain the renewed interest it gains in various domains in scientific computing as witnessed by books or special issues of journals dedicated to this method [47]- [48]- [49]- [54]:

As with standard FE methods, a DG method relies on a variational formulation of the continuous problem at hand. However, due to the discontinuity of the global approximation, this variational formulation has to be defined locally, at the element level. Then, a degree of freedom in the design of a DG method stems from the approximation of the boundary integral term resulting from the application of an integration by parts to the element-wise variational form. In the spirit of FV methods, the approximation of this boundary integral term calls for a numerical flux function which can be based on either a centered scheme or an upwind scheme, or a blending between these two schemes.

High order DG methods for wave propagation models

DG methods are at the heart of the activities of the team regarding the development of high order discretization schemes for the PDE systems modeling electromagnetic and elatsodynamic wave propagation.