Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.
3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
[2]
S. Delcourte, L. Fézoui, N. Glinsky-Olivier.
A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
[3]
V. Dolean, H. Fahs, F. Loula, S. Lanteri.
Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
[4]
C. Durochat, S. Lanteri, C. Scheid.
High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
[5]
M. El Bouajaji, S. Lanteri.
High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
[6]
H. Fahs.
Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
[7]
H. Fahs.
High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
[8]
H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.
Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
[9]
L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
[10]
S. Lanteri, D. Paredes, C. Scheid, F. Valentin.
The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media, in: Multiscale Model. Simul., 2018, vol. 16, no 4, pp. 1648–1683.
[11]
S. Lanteri, C. Scheid.
Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
[12]
L. Li, S. Lanteri, R. Perrussel.
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
[13]
L. Moya, S. Descombes, S. Lanteri.
Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
[14]
L. Moya.
Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
[15]
F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.
A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
[16]
N. Schmitt.
Discontinuous Galerkin time domain method for nanophotonics, Inria Nachos project-team, 2018.
[17]
J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.
Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.
http://hal.inria.fr/hal-00819758
Publications of the year

Articles in International Peer-Reviewed Journals

[18]
E. Agullo, L. Giraud, A. Gobé, M. Kuhn, S. Lanteri, L. Moya.
High order HDG method and domain decomposition solvers for frequency‐domain electromagnetics, in: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, October 2019. [ DOI : 10.1002/jnm.2678 ]
https://hal.inria.fr/hal-02327982
[19]
V. Belus, J. Rabault, J. Viquerat, Z. Che, E. Hachem, U. Reglade.
Exploiting locality and translational invariance to design effective deep reinforcement learning control of the 1-dimensional unstable falling liquid film, in: AIP Advances, December 2019, vol. 9, no 12, 125014 p. [ DOI : 10.1063/1.5132378 ]
https://hal.archives-ouvertes.fr/hal-02428691
[20]
C. Besse, S. Descombes, G. Dujardin, I. Lacroix-Violet.
Energy preserving methods for nonlinear schrodinger equations, in: IMA Journal of Numerical Analysis, 2019, forthcoming.
https://hal.archives-ouvertes.fr/hal-01951527
[21]
T. Chaumont-Frelet.
Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers, in: Calcolo, 2019, forthcoming. [ DOI : 10.1007/s10092-019-0346-z ]
https://hal.inria.fr/hal-02197891
[22]
M. M. R. Elsawy, S. Lanteri, R. Duvigneau, G. Brière, M. S. Mohamed, P. Genevet.
Global optimization of metasurface designs using statistical learning methods, in: Scientific Reports, November 2019, vol. 9, no 1. [ DOI : 10.1038/s41598-019-53878-9 ]
https://hal.archives-ouvertes.fr/hal-02156881
[23]
K. Li, T.-Z. Huang, L. Li, S. Lanteri.
A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics, in: Applied Mathematics and Computation, October 2019, vol. 358, pp. 128-145. [ DOI : 10.1016/j.amc.2019.04.031 ]
https://hal.inria.fr/hal-02433050
[24]
K. Li, T.-Z. Huang, L. Li, S. Lanteri.
POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations, in: Journal of Computational Physics, November 2019, vol. 396, pp. 106-128. [ DOI : 10.1016/j.jcp.2019.05.051 ]
https://hal.inria.fr/hal-02433048
[25]
N. Schmitt, N. Georg, G. Brière, D. Loukrezis, S. Héron, S. Lanteri, C. Klitis, M. Sorel, U. Römer, H. De Gersem, S. Vézian, P. Genevet.
Optimization and uncertainty quantification of gradient index metasurfaces, in: Optical Materials Express, 2019, vol. 9, no 2, 892 p. [ DOI : 10.1364/OME.9.000892 ]
https://hal.inria.fr/hal-02433053
[26]
J. Viquerat, N. Schmitt, C. Scheid.
Simulating 3D periodic structures at oblique incidences with discontinuous Galerkin time-domain methods: theoretical and practical considerations, in: SMAI Journal of Computational Mathematics, September 2019. [ DOI : 10.5802/smai-jcm.45 ]
https://hal.archives-ouvertes.fr/hal-01978598
[27]
J. Viquerat.
Efficient time‐domain numerical analysis of waveguides with tailored wideband pulses, in: Microwave and Optical Technology Letters, March 2019, vol. 61, no 6, pp. 1534-1539. [ DOI : 10.1002/mop.31840 ]
https://hal.inria.fr/hal-02433052

International Conferences with Proceedings

[28]
E. Agullo, L. Giraud, S. Lanteri, G. Marait, A.-C. Orgerie, L. Poirel.
Energy Analysis of a Solver Stack for Frequency-Domain Electromagnetics, in: PDP 2019 - 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Pavia, Italy, 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE, February 2019, pp. 385-391. [ DOI : 10.1109/EMPDP.2019.8671555 ]
https://hal.archives-ouvertes.fr/hal-02191331
[29]
T. Chaumont-Frelet, A. Ern, M. Vohralík.
Asymptotically constant-free, p-robust and guaranteed a posteriori error estimates for the Helmholtz equation, in: EnuMath 2019 - European Numerical Mathematics and Advanced Applications Conference, Egmond aan Zee, Netherlands, September 2019.
https://hal.inria.fr/hal-02321140

Conferences without Proceedings

[30]
T. Chaumont-Frelet, S. Nicaise.
Finite element discretizations of high-frequency wave propagation problems in heterogeneous media, in: Waves 2019 - 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Vienna, France, August 2019.
https://hal.inria.fr/hal-02321137
[31]
T. Chaumont-Frelet, S. Nicaise.
Frequency-explicit convergence analysis for finite element discretizations of wave propagation problems in heterogeneous media, in: MAFELAP 2019 - 16th Conference on Mathematics of Finite Elements and Applications, London, Royaume-Uni, June 2019.
https://hal.inria.fr/hal-02321130
[32]
T. Chaumont-Frelet, S. Nicaise.
High order finite element methods for wave propagation in heterogenous media, in: JOSO 2019 - Journées Ondes Sud-Ouest, Le Barp, France, March 2019.
https://hal.inria.fr/hal-02138517
[33]
T. Chaumont-Frelet, S. Nicaise.
Sharp stability analysis for high-order finite element discretizations of general wave propagation problems, in: ICIAM 2019 - International Congress on Industrial and Applied Mathematics, Valencia, Spain, July 2019.
https://hal.inria.fr/hal-02321133
[34]
T. Chaumont-Frelet, S. Nicaise, D. Pardo.
Finite element approximation of Maxwell's equations with unfitted meshes for borehole simulations, in: ICIAM 2019 - International Congress on Industrial and Applied Mathematics, Valencia, Spain, July 2019.
https://hal.inria.fr/hal-02321135
[35]
M. M. R. Elsawy, R. Duvigneau, S. Lanteri, P. Ni, G. Brière, P. Genevet.
Optimal design of all-dielectric 3D gradient metasurfaces, in: PIERS 2019 - PhotonIcs & Electromagnetics Research Symposium, Rome, Italy, June 2019.
https://www.hal.inserm.fr/inserm-02430383
[36]
M. M. R. Elsawy, K. Hassan, S. Boutami, S. Lanteri.
Statistical learning optimization for highly efficient graded index photonic lens, in: Workshop on Theoretical and Numerical Tools for Nanophotonics TNTN 2020, Berlin, Germany, February 2020.
https://www.hal.inserm.fr/inserm-02430410
[37]
M. M. R. Elsawy, S. Lanteri, R. Duvigneau, G. Brière, P. Genevet.
Optimized 3D metasurface for maximum light deflection at visible range, in: META 2019 - 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Lisbonne, Portugal, July 2019.
https://www.hal.inserm.fr/inserm-02430395

Scientific Books (or Scientific Book chapters)

[38]
An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, January 2020, forthcoming.
https://hal.archives-ouvertes.fr/hal-01955032

Other Publications

[39]
T. Chaumont-Frelet, A. Ern, M. Vohralík.
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation, July 2019, working paper or preprint.
https://hal.inria.fr/hal-02202233
[40]
T. Chaumont-Frelet, F. Valentin.
A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains, April 2019, working paper or preprint.
https://hal.inria.fr/hal-01698914
[41]
J. Chen, J. Viquerat, E. Hachem.
U-net architectures for fast prediction of incompressible laminar flows, January 2020, https://arxiv.org/abs/1910.13532 - working paper or preprint. [ DOI : 10.13532 ]
https://hal.archives-ouvertes.fr/hal-02428694
[42]
V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gómez-Revuelto, E. L. Garcia-Castillo.
A Painless Automatic hp-Adaptive Strategy for Elliptic Problems, March 2019, working paper or preprint.
https://hal.inria.fr/hal-02071427
[43]
P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, E. Hachem.
A review on Deep Reinforcement Learning for Fluid Mechanics, January 2020, https://arxiv.org/abs/1908.04127 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02428737
[44]
G. Nehmetallah, S. Lanteri, S. Descombes.
An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, July 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02172450
[45]
S. Nicaise, C. Scheid.
Stability and asymptotic properties of a linearized hydrodynamic medium model for dispersive media in nanophotonics, September 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02276569
[46]
J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, E. Hachem.
Direct shape optimization through deep reinforcement learning, January 2020, https://arxiv.org/abs/1908.09885 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02428728
References in notes
[47]
B. Cockburn, G. Karniadakis, C. Shu (editors)
Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
[48]
B. Cockburn, C. Shu (editors)
Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
[49]
C. Dawson (editor)
Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
[50]
K. Aki, P. Richards.
Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
[51]
K. Busch, M. König, J. Niegemann.
Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
[52]
B. Cockburn, J. Gopalakrishnan, R. Lazarov.
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
[53]
A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.
Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
[54]
J. S. Hesthaven, T. Warburton.
Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
[55]
J. Jackson.
Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
[56]
X. Ji, W. Cai, P. Zhang.
High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
[57]
J. Niegemann, M. König, K. Stannigel, K. Busch.
Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
[58]
A. Taflove, S. Hagness.
Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
[59]
J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
[60]
K. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan.
Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, in: Nano. Lett., 2012, vol. 12, pp. 1616-1619. [ DOI : 10.1021/nl204550q ]
[61]
K. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
[62]
Y. Zheng, B. Kiraly, P. Weiss, T. Huang.
Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.