Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Scaling fogs and clouds

Resource management in hierarchical clouds

The next generation of utility computing appears to be an evolution from highly centralized clouds towards more decentralized platforms. Today, cloud computing platforms mostly rely on large data centers servicing a multitude of clients from the edge of the Internet. Servicing cloud clients in this manner suggests that locality patterns are ignored: wherever the client issues his/her request from, the request will have to go through the backbone of the Internet provider to the other side of the network where the data center relies. Besides this extra network traffic and this latency overhead that could be avoided, other common centralization drawbacks in this context stand in limitations in terms of security/legal issues and resilience.

At the same time, it appears that network backbones are over-provisioned for most of their usage. This advocates for placing computing resources directly within the backbone network. The general challenge of resource management for such clouds stands in trying to be locality-aware: for the needs of an application, several virtual machines may exchange data. Placing them close to each others can significantly improve the performance of the application they compose. More generally, building an overlay network which takes the hierarchical aspects of the platform without being a hierarchical overlay – which comes with load balancing and resilience issues is a challenge by itself.

We expect to integrate the results of these works in the Discovery initiative  [33] which aims at revisiting OpenStack to offer a cloud stack able to manage utility computing platforms where computing resources are located in small computing centers in the backbone's PoPs (Point of Presence) and interconnected through the backbone's internal links.

Resource management in fog computing architectures

Fog computing infrastructures are composed of compute, storage and networking resources located at the edge of wide-area networks, in immediate proximity to the end users. Instead of treating the mobile operator's network as a high-latency dumb pipe between the end users and the external service providers, fog platforms aim at deploying cloud functionalities within the mobile phone network, inside or close to the mobile access points. Doing so is expected to deliver added value to the content providers and the end users by enabling new types of applications ranging from Internet-of-Things applications to extremely interactive systems (e.g., augmented reality). Simultaneously, it will generate extra revenue streams for the mobile network operators, by allowing them to position themselves as cloud computing operators and to rent their already-deployed infrastructure to content and application providers.

Fog computing platforms have very different geographical distribution compared to traditional clouds. While traditional clouds are composed of many reliable and powerful machines located in a very small number of data centers and interconnected by very high-speed networks, mobile edge cloud are composed of a very large number of points-of-presence with a couple of weak and potentially unreliable servers, interconnected with each other by commodity long-distance networks. This creates new demands for the organization of a scalable mobile edge computing infrastructure, and opens new directions for research.

The main challenges that we plan to address are:

Self-optimizing applications in multi-cloud environments

As the use of cloud computing becomes pervasive, the ability to deploy an application on a multi-cloud infrastructure becomes increasingly important. Potential benefits include avoiding dependence on a single vendor, taking advantage of lower resource prices or resource proximity, and enhancing application availability. Supporting multi-cloud application management involves two tasks. First, it involves selecting an initial multi-cloud application deployment that best satisfies application objectives and optimizes performance and cost. Second, it involves dynamically adapting the application deployment in order to react to changes in execution conditions, application objectives, cloud provider offerings, or resource prices. Handling price changes in particular is becoming increasingly complex. The reason is the growing trend of providers offering sophisticated, dynamic pricing models that allow buying and selling resources of finer granularities for shorter time durations with varying prices.

Although multi-cloud platforms are starting to emerge, these platforms impose a considerable amount of effort on developers and operations engineers, provide no support for dynamic pricing, and lack the responsiveness and scalability necessary for handling highly-distributed, dynamic applications with strict quality requirements. The goal of this work is to develop techniques and mechanisms for automating application management, enabling applications to cope with and take advantage of the dynamic, diverse, multi-cloud environment in which they operate.

The main challenges arising in this context are: