Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Axis 1: SPONGE: A generalized eigenproblem for clustering signed networks

Participant: Hemant Tyagi.

We introduce a principled and theoretically sound spectral method for k-way clustering in signed graphs, where the affinity measure between nodes takes either positive or negative values. Our approach is motivated by social balance theory, where the task of clustering aims to decompose the network into disjoint groups, such that individuals within the same group are connected by as many positive edges as possible, while individuals from different groups are connected by as many negative edges as possible. Our algorithm relies on a generalized eigenproblem formulation inspired by recent work on constrained clustering. We provide theoretical guarantees for our approach in the setting of a signed stochastic block model, by leveraging tools from matrix perturbation theory and random matrix theory. An extensive set of numerical experiments on both synthetic and real data shows that our approach compares favorably with state-of-the-art methods for signed clustering, especially for large number of clusters and sparse measurement graphs.

This is joint work with Mihai Cucuringu (University of Oxford, UK), Peter Davies (University of Warwick, UK) and Aldo Glielmo (Imperial College, London, UK) and was mostly done while Hemant Tyagi was affiliated to the Alan Turing Institute. It was published in the proceedings of an international conference [32].