Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Integrative and Cognitive Neuroscience

The human brain is often considered as the most complex system dedicated to information processing. This multi-scale complexity, described from the metabolic to the network level, is particularly studied in integrative neuroscience, the goal of which is to explain how cognitive functions (ranging from sensorimotor coordination to executive functions) emerge from (are the result of the interaction of) distributed and adaptive computations of processing units, displayed along neural structures and information flows. Indeed, beyond the astounding complexity reported in physiological studies, integrative neuroscience aims at extracting, in simplifying models, regularities at various levels of description. From a mesoscopic point of view, most neuronal structures (and particularly some of primary importance like the cortex, cerebellum, striatum, hippocampus) can be described through a regular organization of information flows and homogenous learning rules, whatever the nature of the processed information. From a macroscopic point of view, the arrangement in space of neuronal structures within the cerebral architecture also obeys a functional logic, the sketch of which is captured in models describing the main information flows in the brain, the corresponding loops built in interaction with the external and internal (bodily and hormonal) world and the developmental steps leading to the acquisition of elementary sensorimotor skills up to the most complex executive functions.

In summary, integrative neuroscience builds, on an overwhelming quantity of data, a simplifying and interpretative grid suggesting homogenous local computations and a structured and logical plan for the development of cognitive functions. They arise from interactions and information exchange between neuronal structures and the external and internal world and also within the network of structures.

This domain is today very active and stimulating because it proposes, of course at the price of simplifications, global views of cerebral functioning and more local hypotheses on the role of subsets of neuronal structures in cognition. In the global approaches, the integration of data from experimental psychology and clinical studies leads to an overview of the brain as a set of interacting memories, each devoted to a specific kind of information processing [53]. It results also in longstanding and very ambitious studies for the design of cognitive architectures aiming at embracing the whole cognition. With the notable exception of works initiated by [50], most of these frameworks (e.g. Soar, ACT-R), though sometimes justified on biological grounds, do not go up to a connectionist neuronal implementation. Furthermore, because of the complexity of the resulting frameworks, they are restricted to simple symbolic interfaces with the internal and external world and to (relatively) small-sized internal structures. Our main research objective is undoubtly to build such a general purpose cognitive architecture (to model the brain as a whole in a systemic way), using a connectionist implementation and able to cope with a realistic environment.