Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Application Domains


One of the most original specificity of our team is that it is part of a laboratory in Neuroscience (with a large spectrum of activity from the molecule to the behavior), focused on neurodegenerative diseases and consequently working in tight collaboration with the medical domain. As a consequence, neuroscientists and the medical world are considered as the primary end-users of our researches. Beyond data and signal analysis where our expertise in machine learning may be possibly useful, our interactions are mainly centered on the exploitation of our models. They will be classically regarded as a way to validate biological assumptions and to generate new hypotheses to be investigated in the living. Our macroscopic models and their implementation in autonomous robots will allow an analysis at the behavioral level and will propose a systemic framework, the interpretation of which will meet aetiological analysis in the medical domain and interpretation of intelligent behavior in cognitive neuroscience and related domains like for example educational science.

The study of neurodegenerative diseases is targeted because they match the phenomena we model. Particularly, the Parkinson disease results from the death of dopaminergic cells in the basal ganglia, one of the main systems that we are modeling. The Alzheimer disease also results from the loss of neurons, in several cortical and extracortical regions. The variety of these regions, together with large mnesic and cognitive deficits, require a systemic view of the cerebral architecture and associated functions, very consistent with our approach.

Of course, numerical sciences are also impacted by our researches, at several levels. At a global level, we will propose new control architectures aimed at providing a higher degree of autonomy to robots, as well as machine learning algorithms working in more realistic environment. More specifically, our focus on some cognitive functions in closed loop with a real environment will address currently open problems. This is obviously the case for planning and decision making; this is particularly the case for the domain of affective computing, since motivational characteristics arising from the design of an artificial physiology allow to consider not only cold rational cognition but also hot emotional cognition. The association of both kinds of cognition is undoublty an innovative way to create more realistic intelligent systems but also to elaborate more natural interfaces between these systems and human users.

At last, we think that our activities in well-founded distributed computations and high performance computing are not just intended to help us design large scale systems. We also think that we are working here at the core of informatics and, accordingly, that we could transfer some fundamental results in this domain.