Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Application Domains

Application domains

The MINGUS project aims at applying the new numerical methods on realistic problems arising for instance in physics of nanotechnology and physics of plasmas. Therefore, in addition to efforts devoted to the design and the analysis of numerical methods, the inherent large size of the problems at hand requires advanced mathematical and computational methods which are hard to implement. Another application is concerned with population dynamics for which the main goal is to understand how the spatial propagation phenomena affect the demography of a population (plankton, parasite fungi, ...). Our activity is mostly at an early stage in the process of transfer to industry. However, all the models we use are physically relevant and all have applications in many areas (ITER, Bose-Einstein condensate, wave turbulence, optical tomography, transport phenomena, population dynamics, ). As a consequence, our research aims at reaching theoretical physicists or computational scientists in various fields who have strong links with industrial applications. In order to tackle as realistic physical problems as possible, a fundamental aspect will consist in working on the realization of numerical methods and algorithms which are able to make an efficient use of a large number of processors. Then, it is essential for the numerical methods developed in the MINGuS project to be thought through this prism. We will benefit from the strong expertise of P. Navaro in scientific computing and more precisely on the Selalib software library (see description below). Below, we detail our main applications: first, the modeling and numerical approximation of magnetized plasmas is our major application and will require important efforts in terms of software developments to scale-up our multiscale methods; second, the transport of charged particles in nanostructures has very interesting applications (like graphene material), for which our contributions will mainly focus on dedicated problems; lastly, applications on population dynamics will be dedicated to mathematical modeling and some numerical validations.

Plasmas problems

The Selalib (SEmi-LAgrangian LIBrary) software library (SELALIB, is a modular library for kinetic and gyrokinetic simulations of plasmas in fusion energy devices. Selalib is a collection of fortran modules aimed at facilitating the development of kinetic simulations, particularly in the study of turbulence in fusion plasmas. Selalib offers basic capabilities and modules to help parallelization (both MPI and OpenMP), as well as pre-packaged simulations. Its main objective is to develop a documented library implementing several numerical methods for the numerical approximation of kinetic models. Another objective of the library is to provide physicists with easy-to-use gyrokinetic solvers. It has been originally developed by E. Sonnendrücker and his collaborators in the past CALVI Inria project, and has played an important role in the activities of the IPL FRATRES. P. Navaro is one of the main software engineer of this library and as such he played an important daily role in its development and its portability on supercomputers. Though Selalib has reached a certain maturity some additional works are needed to make available by the community. There are currently discussions for a possible evolution of Selalib, namely the writing of a new release which will be available for free download. Obviously, the team will be involved in this process. At the scientific level, Selalib is of great interest for us since it provides a powerful tool with which we can test, validate and compare our new methods and algorithms (users level). Besides numerical algorithms the library provides low-level utilities, input-output modules as well as parallelization strategies dedicated to kinetic problems. Moreover, a collection of simulations for typical test cases (of increasing difficulties) with various discretization schemes supplements the library. This library turns out to be the ideal complement of our activities and it will help us to scale-up our numerical methods to high-dimensional kinetic problems. During the last years, several experiments have been successfully performed in this direction (especially with PhD students) and it is important for us that this approach remains throughout. Then, we intend to integrate several of the numerical methods developed by the team within the Selalib library, with the strong help of P. Navaro (contributors level). This work has important advantages: (i) it will improve our research codes (in terms of efficiency but also of software maintenance point of view); (ii) it will help us to promote our research by making our methods available to the research community.

Quantum problems

Nowadays, a great challenge consists in the downscaling at the nanometer scale of electronic components in order to improve speed and efficiency of semiconductor materials. In this task, modeling and numerical simulations play an important role in the determination of the limit size of the nanotransistors. At the nanoscale, quantum effects have to be considered and the Schrödinger equation is prominent equation in this context. In the so-called semiclassical regime or when the transport is strongly confined, the solution endows space-time highly oscillations which are very difficult to capture numerically. An important application is the modeling of charged particles transport in graphene. Graphene is a sheet of carbone made of a single layer of molecule, organized in a bidimensional honeycomb crystal. The transport of charged particles in this structure is usually performed by Dirac equation (which is the relativistic counterpart of the Schrödinger equation). Due to the unusual properties of graphene -at room temperature, electrons moving in graphene behave as massless relativistic particles- physicists and compagnies are nowadays actively studying this material. Here, predicting how the material properties are affected by the uncertainties in the hexagonal lattice structure or in external potentials, is a major issue.

Population dynamics

The main goal is to characterize how spatial propagation phenomena (diffusion, transport, advection, ) affect the time evolution of the demography of a population. In collaboration with Y. Lagadeuc (ECOBIO, Rennes), this question has been studied for plankton. In this context, mathematical models have been proposed and it has been shown that the spatial dynamic (in this context, due to the marine current) which is fast compared to demographic scales, can strongly modify the demographic evolution of the plankton. In collaboration with Ecole d'Agronomie de Rennes, a mathematical study on the demography of a parasite fungi of plants has been performed. In this context, the demography is specific: the fungi can proliferate through sexual reproduction or through parthenogenesis. This two ways of reproduction give rise mathematically to quadratic and linear growth rates with respect to the population variable. The demography is then coupled with transport (transport of fungi spore by wind). Here, the goal is characterize the propagation of the fungi population by finding travelling waves solutions which are well adapted to describe the evolution of invasive fronts. Moreover, this approach enables to recover with a good agreement realistic examples (infection of ash or banana tree) for which experimental data are available. In these contexts, mathematical models are a powerful tool for biologists since measurements are very complicated to obtain and laboratory experiments hardly reproduce reality. The models derived are multiscale due to the nature of the underlying phenomena and the next step is to provide efficient numerical schemes.