## Section: Research Program

### Numerical methods: analysis and simulations

The team addresses both questions of precision and numerical cost of the schemes for the numerical integration of nonlinear evolution PDEs, such as the NLS equation. In particular, we aim at developing, studying and implementing numerical schemes with high order that are more efficient for these problems. We also want to contribute to the design and analysis of schemes with appropriate qualitative properties. These properties may as well be “asymptotic preserving” properties, energy-preserving properties, or convergence to an equilibrium properties. Other numerical goals of the team include the numerical simulation of standing waves of nonlinear nonlocal GP equations. We also keep on developing numerical methods to efficiently simulate and illustrate theoretical results on instability, in particular in the context of the modulational instability in optical fibers, where we study the influence of randomness in the physical parameters of the fibers.

The team also designs simulation methods to estimate the accuracy of the physical description via microscopic systems, by computing precisely the rate of convergence as the system size goes to infinity. One method under investigation is related to cloning algorithms, which were introduced very recently and turn out to be essential in molecular simulation.