Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Overall Objectives

Scientific methodology

It is worth noting that working on these new architectures can be tackled from different perspectives, e.g. data management, protocol design, middleware, algorithmic design... Our main objective in Maracas is to address this problem from a communication theory perspective. Our background in communication theory includes information theory, estimation theory, learning and signal processing. Our strategy relies on three fundamental and complementary research axes:

While our expertise is mostly related to the optimization of wireless networks from a communication perspective, the project of Maracas is to broaden our scope in the context of Computing Networks, where a challenging issue is to optimize jointly architectures and applications, and to break the classical network/data processing separation. This will drive us to change our initial positioning and to really think in terms of information-centric networks following, e.g. [60], [58], [66].

To summarize, Computing Networks can be described as highly distributed and dynamic systems, where information streams consist in a huge number of transient data flows from a huge number of nodes (sensors, routers, actuators, etc...) with computing capabilities at the nodes. These Computing Networks are nothing but the invisible nonetheless necessary skeleton of cloud and fog-computing based services.

Our research strategy is to describe these Computing Networks as complex large scale systems in an information theory framework, but in association with other tools, such as stochastic geometry, stochastic network calculus, game theory [19] or machine learning.

The multi-user communication capability is a central feature, to be tackled in association with other concepts and to assess a large variety of constraints related to the data (storage, secrecy,...) or related to the network (energy, self-healing,...).

The information theory literature or more generally the communication theory literature is rich of appealing techniques dedicated to efficient multi-user communications: e.g. physical layer network coding, amplify-and-forward, full-duplexing, coded caching at the edge, superposition coding. But despite their promising performance, none of these technologies play a central role in current protocols. The reasons are two-fold : i) these techniques are usually studied in an oversimplified theoretical framework which neglect many practical aspects (feedback, quantization,...), and that is not able to tackle large scale networks and ii) the proposed algorithms are of a high complexity and are not compatible with the classical multi-layer network architecture.

Maracas addresses these questions, leveraging on its past outstanding experience from wireless network design.

The aim of Maracas is to push from theory to practice a fully cross-layer design of Computing Networks , based on multi-user communication principles relying mostly on information theory, signal processing, estimation theory, game theory and optimization. We refer to all these tools under the umbrella of communication theory .

As such, Maracas project goes much beyond wireless networks. The Computing Networks paradigm applies to a wide variety or architectures including wired networks, smart grids, nanotechnology based networks. One Maracas research axis will be devoted to the identification of new research topics or scenarios where our algorithms and mathematical models could be useful.