Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
S. A. Cepeda-Humerez, J. Ruess, G. Tkačik.
Estimating information in time-varying signals, in: PLoS Computational Biology, September 2019, vol. 15, no 9, e1007290 p. [ DOI : 10.1371/journal.pcbi.1007290 ]
https://hal.inria.fr/hal-02304413
[2]
M. Hemery, P. François.
Convergent evolution in silico of biochemical log-response, in: Journal of Chemical Physics, February 2019.
https://hal.inria.fr/hal-02389284
[3]
J. Ruess, M. Pleška, C. C. Guet, G. Tkačik.
Molecular noise of innate immunity shapes bacteria-phage ecologies, in: PLoS Computational Biology, July 2019. [ DOI : 10.1371/journal.pcbi.1007168 ]
https://hal.archives-ouvertes.fr/hal-02229803

International Conferences with Proceedings

[4]
E. Degrand, M. Hemery, F. Fages.
On Chemical Reaction Network Design by a Nested Evolution Algorithm, in: CMSB 2019 - 17th International Conference on Computational Methods in Systems Biology, Trieste, Italy, LNCS, Springer-Verlag, September 2019, no 11773.
https://hal.inria.fr/hal-02173682
[5]
W.-C. Huang, J.-H. Jiang, F. Fages, F. Molina.
Biochemical Threshold Function Implementation with Zero-Order Ultrasensitivity, in: BioCAS 2019 - IEEE Biomedical Circuits and Systems Conference, Nara, Japan, IEEE, October 2019, pp. 1-4. [ DOI : 10.1109/BIOCAS.2019.8919176 ]
https://hal.inria.fr/hal-02425761
[6]
M. Kryukov, A. Carcano, G. Batt, J. Ruess.
Can optimal experimental design serve as a tool to characterize highly non-linear synthetic circuits?, in: ECC 2019 - European Control Conference, Naples, Italy, June 2019.
https://hal.inria.fr/hal-02304425
[7]
J. Martinelli, J. Grignard, S. Soliman, F. Fages.
A Statistical Unsupervised Learning Algorithm for Inferring Reaction Networks from Time Series Data, in: ICML 2019 - Workshop on Computational Biology, Long Beach, CA, United States, June 2019.
https://hal.inria.fr/hal-02163862
[8]
J. Martinelli, J. Grignard, S. Soliman, F. Fages.
On Inferring Reactions from Data Time Series by a Statistical Learning Greedy Heuristics, in: CMSB 2019 - 17th Computational Methods in Systems Biology, Trieste, Italy, L. Bortolussi, G. Sanguinetti (editors), LNCS, Springer-Verlag, September 2019, no 11773.
https://hal.inria.fr/hal-02173721
[9]
E. Weill, V. Andreani, C. Aditya, P. Martinon, J. Ruess, G. Batt, F. Bonnans.
Optimal control of an artificial microbial differentiation system for protein bioproductioń, in: ECC 2019 - European Control Conference, Naples, Italy, June 2019.
https://hal.inria.fr/hal-02429963

Scientific Popularization

[10]
F. Fages.
Information Leakage in a Music Score, in: The Art of Modelling Computational Systems - A Journey from Logic and Concurrency to Security and Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday, Lecture Notes in Computer Science, Springer-Verlag, October 2019, vol. Festschrift - LNCS, no 11760. [ DOI : 10.1007/978-3-030-31175-9 ]
https://hal.inria.fr/hal-02365478

Other Publications

[11]
O. Bargain.
Graph matching, theory and SAT implementation, Technische Universität Dresden, October 2019.
https://hal.inria.fr/hal-02339907
[12]
E. Degrand.
Evolving Chemical Reaction Networks, Master's Thesis, Kungliga tekniska högskolan (Stockholm), April 2019, pp. 1-70.
https://hal.inria.fr/hal-02333691