Team, Visitors, External Collaborators
Overall Objectives
Research Program
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
V. Guinot, C. Delenne, A. Rousseau, O. Boutron.
Flux closures and source term models for shallow water models with depth-dependent integral porosity, in: Advances in Water Resources, September 2018, vol. 122, pp. 1-26. [ DOI : 10.1016/j.advwatres.2018.09.014 ]
https://hal.archives-ouvertes.fr/hal-01884110
Publications of the year

Articles in International Peer-Reviewed Journals

[2]
J.-N. Bacro, C. Gaetan, T. Opitz, G. Toulemonde.
Hierarchical Space-Time Modeling of Asymptotically Independent Exceedances With an Application to Precipitation Data, in: Journal of the American Statistical Association, June 2019, pp. 1-26. [ DOI : 10.1080/01621459.2019.1617152 ]
https://hal.inria.fr/hal-02417285
[3]
J. G. Caldas Steinstraesser, G. Kemlin, A. Rousseau.
A domain decomposition method for linearized Boussinesq-type equations, in: Journal of Mathematical Study, 2019, pp. 1 - 22.
https://hal.inria.fr/hal-01797823
[4]
N. Chahinian, C. Delenne, B. Commandré, M. Derras, L. Deruelle, J.-S. Bailly.
Automatic mapping of urban wastewater networks based on manhole cover locations, in: Computers, Environment and Urban Systems, 2019, vol. 78, 101370 p. [ DOI : 10.1016/j.compenvurbsys.2019.101370 ]
https://hal.archives-ouvertes.fr/hal-02275903
[5]
P. Finaud-Guyot, P.-A. Garambois, G. Dellinger, F. Lawniczak, P. François.
Experimental characterization of various scale hydraulic signatures in a flooded branched street network, in: Urban Water Journal, 2020, forthcoming. [ DOI : 10.1080/1573062X.2020.1713173 ]
https://hal.archives-ouvertes.fr/hal-02381013

Scientific Books (or Scientific Book chapters)

[6]
G. Toulemonde, J. Carreau, V. Guinot.
Space-time simulations of extreme rainfall : why and how ?, in: Mathematical Modeling of Random and Deterministic Phenomena, S. M. Manou-Abi, S. Dabo-Niang, J.-J. Salone (editors), Wiley, January 2020.
https://hal.inria.fr/hal-02427188

Internal Reports

[7]
F. Berthoud, P. Guitton, L. Lefèvre, S. Quinton, A. Rousseau, J. Sainte-Marie, C. Serrano, J.-B. Stefani, P. Sturm, E. A. Tannier.
Sciences, Environnements et Sociétés : Rapport long du groupe de travail MakeSEnS d’Inria, Inria, October 2019.
https://hal.inria.fr/hal-02340948

Scientific Popularization

[8]
C. Mokrani, M. Bossy, M. Di Iorio, A. Rousseau.
Numerical Modelling of Hydrokinetic Turbines Immersed in Complex Topography using Non-Rotative Actuator Discs, in: Three Years Promoting the Development of Marine Renewable Energy in Chile 2015 - 2018, MERIC-Marine Energy and Innovation Center, 2019.
https://hal.inria.fr/hal-01966351

Other Publications

[9]
J. Carreau, G. Toulemonde.
Extra-Parametrized Extreme Value Copula : Extension to a Spatial Framework, December 2019, working paper or preprint.
https://hal.inria.fr/hal-02419118
[10]
V. Guinot, J. G. Caldas Steinstraesser, A. Rousseau.
Discussion on 'Dam break in rectangular channels with different upstream-downstream widths', January 2020, working paper or preprint.
https://hal.inria.fr/hal-02426968
[11]
F. Palacios-Rodríguez, G. Toulemonde, J. Carreau, T. Opitz.
Generalized Pareto processes for simulating space-time extreme events: an application to precipitation reanalyses, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02136681
[12]
F. Palacios-Rodríguez, G. Toulemonde, J. Carreau, T. Opitz.
Stochastic extreme rainfall simulations around Montpellier, November 2019, 8èmes journées scientifiques du LabEx NUMEV, Poster.
https://hal.inria.fr/hal-02417687
References in notes
[13]
J. N. Bacro, C. Gaetan, G. Toulemonde.
A flexible dependence model for spatial extremes, in: Journal of Statistical Planning and Inference, 2016, vol. 172, pp. 36–52.
[14]
S. Barbier, A. Rapaport, A. Rousseau.
Modelling of biological decontamination of a water resource in natural environment and related feedback strategies, in: Journal of Scientific Computing, 2016, vol. 68(3), pp. 1267-1280.
[15]
A. Baxevani, J. Lennatsson.
A spatiotemporal precipitation generator based on a censored latent Gaussian field, in: Water Resour. Res., 2015, vol. 51, pp. 4338-4358.
[16]
J.-P. Bernard, E. Frénod, A. Rousseau.
Paralic confinement computations in coastal environment with interlocked areas, in: Discrete and Continuous Dynamical Systems - Series S, February 2015, vol. 8, no 1, pp. 45-54. [ DOI : 10.3934/dcdss.2015.8.45 ]
https://hal.archives-ouvertes.fr/hal-00833340
[17]
E. Blayo, A. Rousseau.
About Interface Conditions for Coupling Hydrostatic and Nonhydrostatic Navier-Stokes Flows, in: Discrete and Continuous Dynamical Systems - Series S, 2015, 10 p.
https://hal.inria.fr/hal-01185255
[18]
S. Caires, L. de Haan, R. L. Smith.
On the determination of the temporal and spatial evolution of extreme events, Deltares, 2011, report 1202120-001-HYE-004 (for Rijkswaterstaat, Centre for Water Management).
[19]
R. Chailan, F. Bouchette, C. Dumontier, O. Hess, A. Laurent, O. Lobry, H. Michaud, S. Nicoud, G. Toulemonde.
High performance pre-computing: Prototype application to a coastal flooding decision tool, in: Knowledge and Systems Engineering (KSE), 2012 Fourth International Conference on, IEEE, 2012, pp. 195–202.
[20]
R. Chailan.
Application of Scientific Computing and Statistical Analysis to Address Coastal Hazards, University of Montpellier, 2015.
[21]
R. Chailan, G. Toulemonde, J.-N. Bacro.
A semiparametric method to simulate bivariate space–time extremes, in: Ann. Appl. Stat., 2017, vol. 11, no 3, pp. 1403–1428.
https://doi.org/10.1214/17-AOAS1031
[22]
R. Chailan, G. Toulemonde, F. Bouchette, A. Laurent, F. Sevault, H. Michaud.
Spatial assessment of extreme significant waves heights in the Gulf of Lions, in: Coastal Engineering Proceedings, 2014, vol. 1, no 34, 17 p.
[23]
H. Chen, A. Cohn.
Buried Utility Pipeline Mapping Based on Multiple Spatial Data Sources: A Bayesian Data Fusion Approach, in: IJCAI-11, Barcelona, Spain, 2011, pp. 2411-2417.
[24]
R. A. Davis, C. Klüppelberg, C. Steinkohl.
Max-stable processes for modeling extremes observed in space and time, in: Journal of the Korean Statistical Society, 2013, vol. 42, pp. 399–414.
[25]
R. A. Davis, C. Klüppelberg, C. Steinkohl.
Statistical inference for max-stable processes in space and time, in: Journal of the Royal Statistical Society, 2013, vol. 75, pp. 791–819.
[26]
A. C. Davison, M. M. Gholamrezaee.
Geostatistics of extremes, in: Proceedings of the Royal Society London, Series A, 2012, vol. 468, pp. 581-608.
[27]
A. C. Davison, R. Huser, E. Thibaud.
Geostatistics of dependent and asymptotically independent extremes, in: Journal of Mathematical Geosciences, 2013, vol. 45, pp. 511–529.
[28]
A. C. Davison, S. A. Padoan, M. Ribatet.
Statistical modelling of spatial extremes, in: Statistical Science, 2012, vol. 27, pp. 161-186.
[29]
A. Defina.
Two-dimensional shallow flow equations for partially dry areas, in: Water Resour. Res., 2000, vol. 36, no 11, 3251 p.
http://dx.doi.org/10.1029/2000WR900167
[30]
C. Delenne, J.-S. Bailly, M. Dartevelle, N. Marcy, A. Rousseau.
Combining punctual and ordinal contour data for accurate floodplain topography mapping (poster and 8p. paper), in: Spatial accuracy: International symposium on "Spatial Accuracy Assessment in Natural Resources and Environmental Sciences", Montpellier (France), J.-S. Bailly, D. Griffith, D. Josselin (editors), 5-8 July 2016.
[31]
A. Ferrari, R. Vacondio, S. Dazzi, P. Mignosa.
A 1D–2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem, in: Adv. Water Resour., 2017, vol. 107, pp. 233-249.
http://dx.doi.org/10.1016/j.advwatres.2017.06.023
[32]
A. Ferreira, L. de Haan.
The generalized Pareto process; with a view towards application and simulation, in: Bernoulli, 2014, vol. 20, no 4, pp. 1717–1737.
https://doi.org/10.3150/13-BEJ538
[33]
P. Franks.
A flexible dependence model for spatial extremes, in: Limnol. Oceanogr., 1997.
[34]
E. Frénod, A. Rousseau.
Paralic Confinement: Models and Simulations, in: Acta Appl Math, January 2013, vol. 123, no 1, pp. 1–19.
[35]
L. Giustarini, R. Hostache, M. Kavetski, G. Corato, S. Schlaffer, P. Matgen.
Probabilistic flood mapping using synthetic aperture radar data, in: IEEE Trans. Geosci. Remote Sens., 2016, vol. 54, no 12, pp. 6958-6969.
[36]
A. Green, P. Naghdi.
A derivation of equations for wave propagation in water of variable depth, in: J. Fluid Mech., 1976, vol. 2, pp. 237–246.
[37]
J. Groeneweg, S. Caires, K. Roscoe.
Temporal and Spatial Evolution of Extreme Events, in: Coastal Engineering Proceedings, 2012, vol. 1, no 33, 9 p.
[38]
V. Guinot, C. Delenne.
Macroscopic modelling of urban floods, in: La Houille Blanche, 2014, vol. 6, pp. 19–25.
[39]
V. Guinot.
Multiple porosity shallow water models for macroscopic modelling of urban floods, in: Adv. Water Resour., 2012, vol. 37, pp. 40–72.
http://dx.doi.org/10.1016/j.advwatres.2011.11.002
[40]
V. Guinot, B. F. Sanders, J. E. Schubert.
A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations, in: Advances in Water Resources, 2017, vol. 109, pp. 133-157.
[41]
V. Guinot, B. F. Sanders, J. E. Schubert.
Consistency and bicharacteristic analysis of integral porosity shallow water models. Explaining model oversensitivity to grid design, in: Advances in Water Resources, 2017, vol. 107, pp. 34-55.
[42]
V. Guinot, B. F. Sanders, J. E. Schubert.
Dual integral porosity shallow water model for urban flood modelling, in: Advances in Water Resources, 2017, vol. 103, pp. 16-31.
[43]
V. Guinot, S. Soares-Frazão.
Flux and source term discretization in two-dimensional shallow water models with porosity on unstructured grids, in: Int. J. Numer. Methods Fluids, 2006, vol. 50, no 3, pp. 309–345.
http://dx.doi.org/10.1002/fld.1059
[44]
R. Huser, A. C. Davison.
Space-time modelling of extreme events, in: Journal of the Royal Statistical Society: Series B, 2014, vol. 76, pp. 439–461.
[45]
R. Huser, T. Opitz, E. Thibaud.
Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures, in: Spat. Stat., 2017, vol. 21, no part A, pp. 166–186.
https://doi.org/10.1016/j.spasta.2017.06.004
[46]
Z. Kabluchko, M. Schlather, L. de Haan.
Stationary max-stable fields associated to negative definite functions, in: The Annals of Probability, 2009, pp. 2042–2065.
[47]
E. Kergosien, H. Alatrista-Salas, M. Gaio, F. Güttler, M. Roche, M. Teisseire.
When Textual Information Becomes Spatial Information Compatible with Satellite Images, in: KDIR, 2015, pp. 301-306.
[48]
B. Kim, B. F. Sanders, J. S. Famiglietti, V. Guinot.
Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity, in: J. Hydrol., 2015, vol. 523, pp. 680–692.
http://dx.doi.org/10.1016/j.jhydrol.2015.01.059
[49]
D. Lannes, P. Bonneton.
Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, in: Physics of Fluids, 2009, vol. 21, 016601 doi:10.1063/1.3053183.
[50]
E. Leblois, J. D. Creutin.
Space-time simulation of intermittent rainfall with prescribed advection field: Adaptation of the turning band method, in: Water Resources Research, 2013, vol. 49(6), pp. 3375-3387.
[51]
C. Lucas, A. Rousseau.
New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-Geostrophic Equations, in: Multiscale Modeling and Simulations, 2008, vol. 7, no 2, pp. 793–813.
http://hal.inria.fr/inria-00180921
[52]
P. Naveau, R. Huser, P. Ribereau, A. Hannart.
Modeling jointly low, moderate and heavy rainfall intensities without a threshold selection, in: Water Resour. Res., 2016, vol. 52.
[53]
A. Ogilvie, G. Belaud, C. Delenne, J.-C. Bader, A. Oleksiak, J.-S. Bailly, L. Ferry, D. Martin.
Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data, in: Journal of Hydrology, 2015, vol. 523, pp. 358-383.
http://dx.doi.org/10.1016/j.jhydrol.2015.01.036
[54]
T. Opitz.
Extremal t processes: elliptical domain of attraction and a spectral representation, in: J. Multivariate Anal., 2013, vol. 122, pp. 409–413.
https://doi.org/10.1016/j.jmva.2013.08.008
[55]
T. Opitz.
Modeling asymptotically independent spatial extremes based on Laplace random fields, in: Spat. Stat., 2016, vol. 16, pp. 1–18.
https://doi.org/10.1016/j.spasta.2016.01.001
[56]
J. Pasquet, T. Desert, O. Bartoli, M. Chaumont, C. Delenne, G. Subsol, M. Derras, N. Chahinian.
Detection of manhole covers in high-resolution aerial images of urban areas by combining two methods, in: IEEE J. Sel. Top. Appl. earth Obs. Remote Sens., 2016, vol. 9, no 5, pp. 1802–1807.
http://dx.doi.org/10.1109/JSTARS.2015.2504401
[57]
C. Rogers, T. Hao, S. Costello, M. Burrow, N. Metje, D. Chapman, ..., A. Saul.
Condition assessment of the buried utility service infrastructure: a proposal for integration, in: Tunnelling and Underground Space Technology, 2012, vol. 28, pp. 202-211.
[58]
R. Salmon.
Lectures on geophysical fluid dynamics, Oxford University Press, New York, 1998, xiv+378 p.
[59]
B. F. Sanders, J. E. Schubert, H. A. Gallegos.
Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling, in: J. Hydrol., 2008, vol. 362, no 1-2, pp. 19–38.
http://dx.doi.org/10.1016/j.jhydrol.2008.08.009
[60]
M. Schlather.
Models for stationary max-stable random fields, in: Extremes, 2002, vol. 5, no 1, pp. 33–44.
[61]
R. L. Smith.
Max-stable processes and spatial extremes, in: Unpublished manuscript, Univer, 1990.
[62]
S. Soares-Frazão, J. Lhomme, V. Guinot, Y. Zech.
Two-dimensional shallow-water model with porosity for urban flood modelling, in: J. Hydraul. Res., 2008, vol. 46, no July 2015, pp. 45–64.
http://dx.doi.org/10.1080/00221686.2008.9521842
[63]
V. Soti, A. Tran, J.-S. Bailly, C. Puech, D. Seen, A. Bégué.
Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas, in: International Journal of Applied Earth Observation and Geoinformation, 2009, vol. 11, no 5, pp. 344-351.
[64]
E. Thibaud, R. Mutzner, A. C. Davison.
Threshold modeling of extreme spatial rainfall, in: Water Resources Research, 2013, vol. 49, pp. 4633–4644.
[65]
E. Thibaud, T. Opitz.
Efficient inference and simulation for elliptical Pareto processes, in: Biometrika, 2015, vol. 102, no 4, pp. 855–870.
https://doi.org/10.1093/biomet/asv045
[66]
H. L. Tolman.
User Manual and System Documentation of WAVEWATCH III® version 4.18, Technical note, MMAB Contribution, 2014, no 316.
[67]
G. Toulemonde, P. Ribereau, P. Naveau.
Applications of Extreme Value Theory to Environmental Data Analysis, in: Extreme Events: Observations, Modeling, and Economics (Geophysical Monograph Series), M. Chavez, M. Ghil, J. Fucugauchi (editors), Wiley-Blackwell, 2015, in press.
[68]
M. Velickovic, Y. Zech, S. Soares-Frazão.
Steady-flow experiments in urban areas and anisotropic porosity model, in: J. Hydraul. Res., jan 2017, vol. 55, no 1, pp. 85–100.
https://www.tandfonline.com/doi/full/10.1080/00221686.2016.1238013
[69]
D. Viero, M. Mohammad Valipour.
Modeling anisotropy in free-surface overland and shallow inundation flows, in: Adv. Water Resour., jan 2017, vol. 104, no 1, pp. 1–14.
https://www.tandfonline.com/doi/full/10.1080/00221686.2016.1238013
[70]
M. Vrac, P. Naveau, P. Drobinski.
Modeling pairwise dependencies in precipitation intensities, in: Nonlinear Processes in Geophysics, 2007, vol. 14(6), pp. 789-797.
[71]
J. Wadsworth, J. Tawn.
Dependence modelling for spatial extremes, in: Biometrika, 2012, vol. 99, pp. 253-272.
[72]
M. Wood, R. Hostache, J. Neal, T. Wagener, L. Giustarini, M. Chini, G. Corato, P. Matgen, P. Bates.
Calibration of channel depth and friction parameters in the Lisflood-FP hydraulic model using medium resolution SAR data and identifiability techniques, in: Hydrol. Earth Syst. Sci, 2016, vol. 20, pp. 4983-4997.
[73]
I. Özgen, D. Liang, R. Hinkelmann.
Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography, in: Appl. Math. Model., 2016, vol. 40, no 17-18, pp. 7447–7473.
http://dx.doi.org/10.1016/j.apm.2015.12.012
[74]
I. Özgen, J. Zhao, D. Liang, R. Hinkelmann.
Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity, in: J. Hydrol., 2016, vol. 541, pp. 1165–1184.
http://dx.doi.org/10.1016/j.jhydrol.2016.08.025