Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Accelerating Itemset Sampling using Satisfiability Constraints on FPGA

Finding recurrent patterns within a data stream is important for fields as diverse as cybersecurity or e-commerce. This requires to use pattern mining techniques. However, pattern mining suffers from two issues. The first one, known as “pattern explosion”, comes from the large combinatorial space explored and is the result of too many patterns output to be analyzed. Recent techniques called output space sampling solve this problem by outputting only a sampled set of all the results, with a target size provided by the user. The second issue is that most algorithms are designed to operate on static datasets or low throughput streams. In [9], we propose a contribution to tackle both issues, by designing an FPGA accelerator for pattern mining with output space sampling. We show that our accelerator can outperform a state-of-the-art implementation on a server class CPU using a modest FPGA product.