Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Software and Platforms


Keywords: Visualization - I/O - HPC - Exascale - High performance computing

Scientific Description: Damaris is a middleware for I/O and data management targeting large-scale, MPI-based HPC simulations. It initially proposed to dedicate cores for asynchronous I/O in multicore nodes of recent HPC platforms, with an emphasis on ease of integration in existing simulations, efficient resource usage (with the use of shared memory) and simplicity of extension through plug-ins. Over the years, Damaris has evolved into a more elaborate system, providing the possibility to use dedicated cores or dedicated nodes to in situ data processing and visualization. It proposes a seamless connection to the VisIt visualization framework to enable in situ visualization with minimum impact on run time. Damaris provides an extremely simple API and can be easily integrated into the existing large-scale simulations.

Damaris was at the core of the PhD thesis of Matthieu Dorier, who received an Accessit to the Gilles Kahn Ph.D. Thesis Award of the SIF and the Academy of Science in 2015. Developed in the framework of our collaboration with the JLESC – Joint Laboratory for Extreme-Scale Computing, Damaris was the first software resulted from this joint lab validated in 2011 for integration to the Blue Waters supercomputer project. It scaled up to 16,000 cores on Oak Ridge’s leadership supercomputer Titan (first in the Top500 supercomputer list in 2013) before being validated on other top supercomputers. Active development is currently continuing within the KerData team at Inria, where it is at the center of several collaborations with industry as well as with national and international academic partners.

Functional Description: Damaris is a middleware for data management and in-situ visualization targeting large-scale HPC simulations: - In situ data analysis by some dedicated cores/nodes of the simulation platform - Asynchronous and fast data transfer from HPC simulations to Damaris - Semantic-aware dataset processing through Damaris plug-ins - Writing aggregated data (by hdf5 format) or visualizating them either by VisIt or ParaView