Team, Visitors, External Collaborators
Overall Objectives
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
F. Alauzet, A. Loseille.
High Order Sonic Boom Modeling by Adaptive Methods, in: Journal Of Computational Physics, 2010, vol. 229, pp. 561-593.
http://dx.doi.org/10.1016/j.jcp.2009.09.020
[2]
F. Alauzet, M. Mehrenberger.
P1-conservative solution interpolation on unstructured triangular meshes, Inria, January 2009.
http://hal.archives-ouvertes.fr/inria-00354509/
[3]
T. Amari, A. Canou, J.-J. Aly, F. Delyon, F. Alauzet.
Magnetic cage and rope as the key for solar eruptions, in: Nature, February 2018, vol. 554, no 7691, pp. 211 - 215. [ DOI : 10.1038/nature24671 ]
https://hal-cea.archives-ouvertes.fr/cea-01872913
[4]
A. Belme, F. Alauzet, A. Dervieux.
An a priori anisotropic Goal-Oriented Error Estimate for Viscous Compressible Flow and Application to Mesh Adaptation, November 2018, working paper or preprint.
https://hal.inria.fr/hal-01927113
[5]
H. Borouchaki, D. Chapelle, P.-L. George, P. Laug, P.-J. Frey.
Estimateurs d'erreur géométriques et adaptation de maillages, in: Maillage et adaptation ; Traité MIM, série Méthodes numériques et éléments finis, Hermès, Paris, France, 2001, pp. 279-310.
[6]
Y. Bourgault, M. Picasso, F. Alauzet, A. Loseille.
On the use of anisotropic error estimators for the adaptative solution of 3-D inviscid compressible flows, in: International Journal for Numerical Methods in Fluids, 2009, vol. 59, pp. 47-74.
http://onlinelibrary.wiley.com/doi/10.1002/fld.1797/abstract
[7]
S. Chaillat, S. P. Groth, A. Loseille.
Metric-based anisotropic mesh adaptation for 3D acoustic boundary element methods, in: Journal of Computational Physics, November 2018, vol. 372, pp. 473 - 499. [ DOI : 10.1016/j.jcp.2018.06.048 ]
https://hal.archives-ouvertes.fr/hal-01895636
[8]
A. Dervieux, E. Gauci, L. Frazza, A. Belme, A. Carabias, A. Loseille, F. Alauzet.
Mesh-Anpassung für k-genaue Approximationen in CFD, November 2018, working paper or preprint.
https://hal.inria.fr/hal-01927145
[9]
R. Feuillet, A. Loseille, F. Alauzet.
P2 mesh optimization operators, in: 27th International Meshing Roundtable, Albuquerque, United States, October 2018.
https://hal.inria.fr/hal-01962132
[10]
R. Feuillet, A. Loseille, D. Marcum, F. Alauzet.
Connectivity-change moving mesh methods for high-order meshes: Toward closed advancing-layer high-order boundary layer mesh generation, in: 2018 Fluid Dynamics Conference, AIAA AVIATION Forum, Atlanta, United States, June 2018. [ DOI : 10.2514/6.2018-4167 ]
https://hal.inria.fr/hal-01962129
[11]
L. Frazza.
3D anisotropic mesh adaptation for Reynolds Averaged Navier-Stokes simulations, Sorbonne Université , UPMC, December 2018.
https://hal.inria.fr/tel-01962318
[12]
L. Frazza, A. Loseille, F. Alauzet, A. Dervieux.
Nonlinear corrector for RANS equations, in: 2018 Fluid Dynamics Conference, June 2018. [ DOI : 10.2514/6.2018-3242 ]
https://hal.inria.fr/hal-01927129
[13]
E. Gauci, A. Belme, A. Carabias, A. Loseille, F. Alauzet, A. Dervieux.
A priori error-based mesh adaptation in CFD, December 2018, working paper or preprint.
https://hal.inria.fr/hal-01928249
[14]
P.-L. George, H. Borouchaki, P.-J. Frey, P. Laug, E. Saltel.
17, in: Mesh Generation and Mesh Adaptivity: Theories and Techniques, Wiley InterScience, 2004, pp. 497-523, ISBN 0-470-84699-2, E. Stein, R. de Borst and T.J.R. Hughes ed., 2nd edition 2008.
[15]
H. Guillard, J. Lakhlili, A. Loseille, A. Loyer, B. Nkonga, A. Ratnani, A. Elarif.
Tokamesh : A software for mesh generation in Tokamaks, CASTOR, December 2018, no RR-9230.
https://hal.inria.fr/hal-01948060
[16]
J. V. Langenhove, D. Lucor, F. Alauzet, A. Belme.
Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations, February 2018, https://arxiv.org/abs/1805.00370 - working paper or preprint.
https://hal.inria.fr/hal-01703054
[17]
A. Loseille, F. Alauzet.
Optimal 3D Highly Anisotropic Mesh Adaptation based on the Continuous Mesh Framework, in: 18th International meshing roundtable, Springer, 2009.
http://dx.doi.org/10.1007/978-3-642-04319-2_20
[18]
A. Loseille, A. Dervieux, F. Alauzet.
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations, in: Journal Of Computational Physics, 2010, vol. 229, pp. 2866-2897.
http://dx.doi.org/10.1016/j.jcp.2009.12.021
[19]
A. Loseille, R. Feuillet.
Vizir: High-order mesh and solution visualization using OpenGL 4.0 graphic pipeline, in: 2018 - AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, kissimmee, United States, January 2018, pp. 1-13. [ DOI : 10.2514/6.2018-1174 ]
https://hal.inria.fr/hal-01686714
[20]
A. Loseille, R. Löhner.
Robust Boundary Layer Mesh Generation, in: Proceedings of the 21st International Meshing Roundtable, X. Jiao, J.-C. Weill (editors), Springer Berlin Heidelberg, 2012, pp. 493-511. [ DOI : 10.1007/978-3-642-33573-0_29 ]
http://hal.inria.fr/hal-00935315
[21]
E. Montreuil, W. Ghedhaifi, V. Chmielarski, V. François, F. Gand, A. Loseille.
Numerical Simulation of contrail formation on the Common Research Model wing/body/engine configuration, in: AIAA Aviation and Aeronautics Forum and Exposition 2018, Atlanta, United States, June 2018.
https://hal.archives-ouvertes.fr/hal-01961143
[22]
J. Tomasi, B. Mennucci, P. Laug.
The modeling and simulation of the liquid phase, in: Handbook of Numerical Analysis, Volume X, Special Volume on Computational Chemistry, P.-G. Ciarlet, C. Le Bris (editors), North-Holland, Amsterdam, Netherlands, 2003, pp. 271-375, ISBN: 0-444-51248-9.
Publications of the year

Articles in International Peer-Reviewed Journals

[23]
F. Amlani, S. Chaillat, A. Loseille.
An efficient preconditioner for adaptive Fast Multipole accelerated Boundary Element Methods to model time-harmonic 3D wave propagation, in: Computer Methods in Applied Mechanics and Engineering, 2019, vol. 352, no 1, pp. 189-210. [ DOI : 10.1016/j.cma.2019.04.026 ]
https://hal.archives-ouvertes.fr/hal-02113702
[24]
S. Antony, A. Cherouat, G. Montay.
Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications, in: Advances in Aircraft and Spacecraft Science, March 2019, vol. 6, no 2, pp. 87-103. [ DOI : 10.12989/aas.2019.6.2.087 ]
https://hal-utt.archives-ouvertes.fr/hal-02278252
[25]
D. Barchiesi, D. Cakir, T. Grosges, N. Fréty, E. Anglaret.
Recovering effective thicknesses and optical properties of copper and copper oxide layers from absorbance measurements, in: Optical Materials, May 2019, vol. 91, pp. 138-146. [ DOI : 10.1016/j.optmat.2019.02.029 ]
https://hal.inria.fr/hal-02077581
[26]
B. Saidi, L. Giraud Moreau, S. Mhemed, A. Cherouat, P.-A. Adragna, R. Nasri.
Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: a reverse engineering approach, in: International Journal of Advanced Manufacturing Technology, March 2019, vol. 101, no 1-4, pp. 873-880. [ DOI : 10.1007/s00170-018-2975-9 ]
https://hal-utt.archives-ouvertes.fr/hal-02273283
[27]
S. Zhu, C. Bouby, A. Cherouat, T. Ben Zineb.
3D reconstitution and numerical analysis of superelastic behavior of porous shape memory alloy, in: International Journal of Solids and Structures, August 2019, vol. 168, pp. 109-122. [ DOI : 10.1016/j.ijsolstr.2019.03.023 ]
https://hal-utt.archives-ouvertes.fr/hal-02272260

International Conferences with Proceedings

[28]
S. Antony, A. Cherouat, G. Montay.
Multiscale analysis to investigate the mechanical and forming behaviour of hemp fibre woven fabrics / polypropylene composite, in: 22nd International Conference on Composite Materials, Melbourne, Australia, ICCM22 2019. Melbourne, VIC: Engineers Australia, 2019, pp. 318-327.
https://hal-utt.archives-ouvertes.fr/hal-02473963
[29]
R. Feuillet, O. Coulaud, A. Loseille.
Anisotropic Error Estimate for High-order Parametric Surface Mesh Generation, in: 28th International Meshing Roundtable, Buffalo, NY, United States, October 2019.
https://hal.inria.fr/hal-02345068
[30]
R. Feuillet, D. Marcum, F. Alauzet.
A closed advancing-layer method for generating curved boundary layer mesh, in: AIAA Aviation 2019 Forum, Dallas, TX, United States, American Institute of Aeronautics and Astronautics, June 2019. [ DOI : 10.2514/6.2019-3675 ]
https://hal.inria.fr/hal-02345334
[31]
W. Ghedhaifi, A. Bienner, R. Megherbi, E. Montreuil, E. TERRENOIRE, X. Vancassel, A. Loseille.
Influence of atmospheric conditions on contrail formation: 3D simulation versus Schmidt- Appleman criterion, in: ISABE 2019 - 24th ISABE Conference, Canberra, Australia, September 2019.
https://hal.archives-ouvertes.fr/hal-02470854
[32]
R. Hu, S. Bouindour, H. Snoussi, A. Cherouat, C. Chahla.
Multiple Cues Association for Multiple Object Tracking Based on Convolutional Neural Network, in: IEEE AIKE 2019 - Second International Conference on Artificial Intelligence and Knowledge Engineering, Cagliari, Italy, 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), IEEE, June 2019, pp. 117-122. [ DOI : 10.1109/AIKE.2019.00030 ]
https://hal-utt.archives-ouvertes.fr/hal-02353268

Conferences without Proceedings

[33]
F. Guibault, H. Borouchaki, P. Laug.
Efficient high-order discrete geometric model from CAD, in: NAHOMCon19 - North American High Order Method conference, San Diego, CA, United States, June 2019.
https://hal.inria.fr/hal-02360842
[34]
A. Halouani, M. M. Chaabane, M. Haddar, A. Cherouat.
Effect of Harmonic Excitation on PCB and Component Assembly, in: Advances in Acoustics and Vibration II, Hammamet, Tunisia, September 2019, pp. 149-154.
https://hal-utt.archives-ouvertes.fr/hal-02280428
[35]
A. Halouani, A. Cherouat, M. M. Chaabane, M. Haddar.
A Probabilistic approach to the robust thermo-mechanical analysis of Ball Grid Array Solder Joints, in: EuroSimE 2019 - 20th International Conference in Thermal, Mechanical & Multiphysics Simulation and Experiments in Micro/Nano-Electronics and Micro/Nano-systems, Hannover, Germany, IEEE, March 2019, pp. 1-6.
https://hal-utt.archives-ouvertes.fr/hal-02278339

Scientific Books (or Scientific Book chapters)

[36]
A. Limare, H. Borouchaki, P. Brenner.
Adaptive Mesh Refinement with an Automatic Hybrid RANS/LES Strategy and Overset Grids, in: Progress in Hybrid RANS-LES Modelling, November 2019, pp. 159-168. [ DOI : 10.1007/978-3-030-27607-2_12 ]
https://hal-utt.archives-ouvertes.fr/hal-02378168

Internal Reports

[37]
R. Feuillet, A. Loseille, F. Alauzet.
Mesh adaptation for the embedded boundary method in CFD, Inria Saclay - Ile-de-France, November 2019, no RR-9305. [ DOI : 10.13140/RG.2.2.22343.44969 ]
https://hal.inria.fr/hal-02378738

Other Publications

[38]
R. Cogranne, R. Slysz, L. Moreau, H. Borouchaki.
A new Edge Detector Based on Parametric Surface Model: Regression Surface Descriptor, September 2019, https://arxiv.org/abs/1904.10235 - 21 pages, 13 figures and 2 tables.
https://hal-utt.archives-ouvertes.fr/hal-02290249
References in notes
[39]
R. Abgrall, C. Dobrzynski, A. Froehly.
A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems, in: International Journal for Numerical Methods in Fluids, 2014, vol. 76, no 4, pp. 246–266.
[40]
F. Alauzet, A. Loseille.
High Order Sonic Boom Modeling by Adaptive Methods, in: J. Comp. Phys., 2010, vol. 229, pp. 561-593.
[41]
F. Alauzet, A. Loseille.
A decade of progress on anisotropic mesh adaptation for Computational Fluid Dynamics, in: Comput. Aided Des., 2016, vol. 72, pp. 13-39.
[42]
Ansys Inc..
Ensight, https://www.ansys.com/en/products/platform/ansys-ensight.
[43]
N. Barral, G. Olivier, F. Alauzet.
Metric-based anisotropic mesh adaptation for three-dimensional time-dependent problems involving moving geometries, in: J. Comp. Phys., 2017, vol. 331, pp. 157-187.
[44]
F. Bassi, S. Rebay.
High-order accurate discontinuous finite element solution of the 2D Euler equations, in: Journal of computational physics, 1997, vol. 138, no 2, pp. 251–285.
[45]
H. Borouchaki, P. Laug, P. George.
Parametric surface meshing using a combined advancing-front – generalized-Delaunay approach, in: Int. J. Numer. Meth. Engng, 2000, vol. 49, no 1-2, pp. 233-259.
[46]
P. G. Ciarlet, P.-A. Raviart.
The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in: The mathematical foundations of the finite element method with applications to partial differential equations, Elsevier, 1972, pp. 409–474.
[47]
S. Dey, R. M. O'bara, M. S. Shephard.
Curvilinear Mesh Generation in 3D, in: Proceedings of the 7th International Meshing Roundtable, 1999, pp. 407–417.
[48]
M. Fortunato, P.-O. Persson.
High-order Unstructured Curved Mesh Generation Using the Winslow Equations, in: J. Comput. Phys., February 2016, vol. 307, pp. 1–14.
[49]
P. Frey.
About surface remeshing, in: Proceedings of the 9th International Meshing Roundtable, New Orleans, LO, USA, 2000, pp. 123-136.
[50]
P. J. Frey.
Medit: An interactive mesh visualization software, Inria Technical Report RT0253, 2001.
[51]
A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate.
Defining quality measures for mesh optimization on parameterized CAD surfaces, in: Proceedings of the 21st International Meshing Roundtable, Springer, 2013, pp. 85–102.
[52]
P. L. George, H. Borouchaki, N. Barral.
Geometric validity (positive jacobian) of high-order Lagrange finite elements, theory and practical guidance, in: Engineering with computers, 2016, vol. 32, no 3, pp. 405–424.
[53]
P. George, H. Borouchaki.
“Ultimate” robustness in meshing an arbitrary polyhedron, in: Int. J. Numer. Meth. Engng, 2003, vol. 58, no 7, pp. 1061-1089.
[54]
P. George, H. Borouchaki.
Construction of tetrahedral meshes of degree two, in: Int. J. Numer. Meth. Engng, 2012, vol. 90, pp. 1156-1182.
[55]
P. L. George, H. Borouchaki.
Construction of tetrahedral meshes of degree two, in: International Journal for Numerical Methods in Engineering, 2012, vol. 90, no 9, 1156,1182 p.
[56]
P. George, F. Hecht, E. Saltel.
Automatic mesh generator with specified boundary, in: Comput. Methods Appl. Mech. Engrg., 1991, vol. 92, pp. 269-288.
[57]
C. Geuzaine, J.-F. Remacle.
Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, in: International Journal for Numerical Methods in Engineering, 2009, vol. 79, no 11, pp. 1309-1331.
[58]
R. Hartmann, T. Leicht.
Generation of unstructured curvilinear grids and high-order discontinuous Galerkin discretization applied to a 3D high-lift configuration, in: International Journal for Numerical Methods in Fluids, 2016, vol. 82, no 6, pp. 316-333.
[59]
J. Ims, Z. J. Wang.
Automated low-order to high-order mesh conversion, in: Engineering with Computers, Jan 2019, vol. 35, no 1, pp. 323–335.
[60]
Intelligent Light.
FieldView, http://www.ilight.com/en/products/fieldview-18.
[61]
A. Johnen, J.-F. Remacle, C. Geuzaine.
Geometrical validity of curvilinear finite elements, in: Journal of Computational Physics, 2013, vol. 233, no 15, pp. 359-372.
[62]
S. L. Karman, J. T. Erwin, R. S. Glasby, D. Stefanski.
High-Order Mesh Curving Using WCN Mesh Optimization, in: 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum, American Institute of Aeronautics and Astronautics, 2016.
[63]
S. L. Karman.
Curving for Viscous Meshes, in: 27th International Meshing Roundtable, Cham, Springer International Publishing, 2019, pp. 303–325.
[64]
KitWare Inc..
ParaView, https://www.paraview.org/.
[65]
M. Lenoir.
Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, in: SIAM journal on numerical analysis, 1986, vol. 23, no 3, pp. 562–580.
[66]
A. Loseille, F. Alauzet, V. Menier.
Unique cavity-based operator and hierarchical domain partitioning for fast parallel generation of anisotropic meshes, in: Comput. Aided Des., 2017, vol. 85, pp. 53-67.
[67]
A. Loseille, H. Guillard, A. Loyer.
An introduction to Vizir: an interactive mesh visualization and modification software, 2016, EOCOE, Rome, Italy.
[68]
L. Maréchal.
A new approach to octree-based hexahedral meshing, in: Proceedings of the 10th International Meshing Roundtable, Newport Beach, CA, USA, 2001.
[69]
L. Maréchal.
Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features, in: Proceedings of the 18th International Meshing Roundtable, Salt Lake City, UT, USA, 2009, pp. 65-84.
[70]
M. Maunoury, C. Besse, V. Mouysset, S. Pernet, P.-A. Haas.
Well-suited and adaptive post-processing for the visualization of hp simulation results, in: Journal of Computational Physics, 2018, vol. 375, pp. 1179 - 1204.
[71]
M. Maunoury.
Méthode de visualisation adaptée aux simulations d'ordre élevé. Application à la compression-reconstruction de champs rayonnés pour des ondes harmoniques., Université de Toulouse, February 2019.
[72]
D. Mavriplis.
Results from the 3rd Drag Prediction Workshop using NSU3D unstructured mesh solver, in: 45th AIAA Aerospace Sciences Meeting, AIAA-2007-0256, Reno, NV, USA, Jan 2007.
[73]
D. Moxey, D. Ekelschot, Ü. Keskin, S. Sherwin, J. Peirò.
High-order curvilinear meshing using a thermo-elastic analogy, in: Computer-Aided Design, 2016, vol. 72, pp. 130 - 139.
[74]
D. Moxey, M. Green, S. Sherwin, J. Peiró.
An isoparametric approach to high-order curvilinear boundary-layer meshing, in: Computer Methods in Applied Mechanics and Engineering, 2015, vol. 283, pp. 636 - 650.
[75]
B. Nelson, R. Haimes, R. M. Kirby.
GPU-Based Interactive Cut-Surface Extraction From High-Order Finite Element Fields, in: IEEE Transactions on Visualization and Computer Graphics, 2011, vol. 17, no 12, pp. 1803–11.
[76]
B. Nelson, E. Liu, R. M. Kirby, R. Haimes.
ElVis: A System for the Accurate and Interactive Visualization of High-Order Finite Element Solutions, in: IEEE Transactions on Visualization and Computer Graphics, 2012, vol. 18, no 12, pp. 2325-2334.
[77]
M. Park, J. Krakos, T. Michal, A. Loseille, J. Alonso.
Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030, in: 46th AIAA Fluid Dynamics Conference, AIAA Paper 2016-3323, Washington, D.C., USA, 2016.
[78]
J. Peiró, D. Moxey, B. Jordi, S. J. Sherwin, B. Nelson, R. M. Kirby, R. Haimes.
High-Order Visualization with ElVis, in: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer International Publishing, 2015, pp. 521–534.
[79]
P.-O. Persson, J. Peraire.
Curved mesh generation and mesh refinement using Lagrangian solid mechanics, in: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009, 949 p.
[80]
J.-F. Remacle, N. Chevaugeon, E. Marchandise, C. Geuzaine.
Efficient visualization of high-order finite elements, in: International Journal for Numerical Methods in Engineering, 2007, vol. 69, no 5, pp. 750-771.
[81]
E. Ruiz-Gironès, X. Roca, J. Sarrate.
High-order mesh curving by distortion minimization with boundary nodes free to slide on a 3D CAD representation, in: Computer-Aided Design, 2016, vol. 72, pp. 52 - 64, 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation.
[82]
E. Ruiz-Gironès, J. Sarrate, X. Roca.
Defining an L2-disparity Measure to Check and Improve the Geometric Accuracy of Non-interpolating Curved High-order Meshes, in: Procedia Engineering, 2015, vol. 124, pp. 122–134.
[83]
E. Ruiz-Gironès, J. Sarrate, X. Roca.
Generation of curved high-order meshes with optimal quality and geometric accuracy, in: Procedia engineering, 2016, vol. 163, pp. 315–327.
[84]
C. Rumsey, J. Slotnick, M. Long, R. Stuever, T. Wayman.
Summary of the first AIAA CFD High-Lift Prediction Workshop, in: Journal of Aircraft, 2011, vol. 48, no 6, pp. 2068-2079.
[85]
C. Rumsey, J. Slotnick.
Overview and Summary of the Second AIAA High Lift Prediction Workshop, in: Journal of Aircraft, 2015, vol. 52, no 4, pp. 1006-1025.
[86]
S. J. Sherwin, J. Peiró.
Mesh generation in curvilinear domains using high-order elements, in: International Journal for Numerical Methods in Engineering, 2002, vol. 53, no 1, pp. 207-223.
[87]
J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis.
CFD Vision 2030 Study: A path to revolutionary computational aerosciences, NASA, March 2014.
[88]
TecPlot Inc..
TecPlot, https://www.tecplot.com/.
[89]
T. Toulorge, C. Geuzaine, J.-F. Remacle, J. Lambrechts.
Robust untangling of curvilinear meshes, in: Journal of Computational Physics, 2013, vol. 254, pp. 8 - 26.
[90]
T. Toulorge, J. Lambrechts, J.-F. Remacle.
Optimizing the geometrical accuracy of curvilinear meshes, in: Journal of Computational Physics, 2016, vol. 310, pp. 361 - 380.
[91]
M. Turner, J. Peirò, D. Moxey.
A Variational Framework for High-order Mesh Generation, in: Procedia Engineering, 2016, vol. 163, no Supplement C, pp. 340 - 352, 25th International Meshing Roundtable.
[92]
J. Vanharen.
High-order numerical methods for unsteady flows around complex geometries, Université de Toulouse, 2017.
[93]
A. Vlachos, P. Jörg, C. Boyd, J. L. Mitchell.
Curved PN Triangles, in: Proceedings of the 2001 Symposium on Interactive 3D Graphics, 2001, pp. 159-166.
[94]
Z. Q. Xie, R. Sevilla, O. Hassan, K. Morgan.
The generation of arbitrary order curved meshes for 3D finite element analysis, in: Computational Mechanics, Mar 2013, vol. 51, no 3, pp. 361–374.
[95]
P. Zwanenburg, S. Nadarajah.
On the Necessity of Superparametric Geometry Representation for Discontinuous Galerkin Methods on Domains with Curved Boundaries, in: 23rd AIAA Computational Fluid Dynamics Conference, 2017.