Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Partnerships and Cooperations

National Initiatives


Project title: Structures on Surfaces

Duration: 4 years

Starting Date: April 1st, 2018

Coordinator: Monique Teillaud


SoS is co-funded by ANR (ANR-17-CE40-0033) and FNR (INTER/ANR/16/11554412/SoS) as a PRCI (Projet de Recherche Collaborative Internationale).

The central theme of this project is the study of geometric and combinatorial structures related to surfaces and their moduli. Even though they work on common themes, there is a real gap between communities working in geometric topology and computational geometry and SoS aims to create a long-lasting bridge between them. Beyond a common interest, techniques from both ends are relevant and the potential gain in perspective from long-term collaborations is truly thrilling.

In particular, SoS aims to extend the scope of computational geometry, a field at the interface between mathematics and computer science that develops algorithms for geometric problems, to a variety of unexplored contexts. During the last two decades, research in computational geometry has gained wide impact through CGAL, the Computational Geometry Algorithms Library. In parallel, the needs for non-Euclidean geometries are arising, e.g., in geometric modeling, neuromathematics, or physics. Our goal is to develop computational geometry for some of these non-Euclidean spaces and make these developments readily available for users in academy and industry.

To reach this aim, SoS will follow an interdisciplinary approach, gathering researchers whose expertise cover a large range of mathematics, algorithms and software. A mathematical study of the objects considered will be performed, together with the design of algorithms when applicable. Algorithms will be analyzed both in theory and in practice after prototype implementations, which will be improved whenever it makes sense to target longer-term integration into CGAL.

Our main objects of study will be Delaunay triangulations and circle patterns on surfaces, polyhedral geometry, and systems of disjoint curves and graphs on surfaces.

Project website:

ANR Aspag

Project title: Analyse et Simulation Probabilistes d'Algorithmes Géométriques

Duration: 4 years

Starting date: January 1st, 2018

Coordinator: Olivier Devillers


Abstract: The ASPAG projet is funded by ANR under number ANR-17-CE40-0017 .

The analysis and processing of geometric data has become routine in a variety of human activities ranging from computer-aided design in manufacturing to the tracking of animal trajectories in ecology or geographic information systems in GPS navigation devices. Geometric algorithms and probabilistic geometric models are crucial to the treatment of all this geometric data, yet the current available knowledge is in various ways much too limited: many models are far from matching real data, and the analyses are not always relevant in practical contexts. One of the reasons for this state of affairs is that the breadth of expertise required is spread among different scientific communities (computational geometry, analysis of algorithms and stochastic geometry) that historically had very little interaction. The Aspag project brings together experts of these communities to address the problem of geometric data. We will more specifically work on the following three interdependent directions.

(1) Dependent point sets: One of the main issues of most models is the core assumption that the data points are independent and follow the same underlying distribution. Although this may be relevant in some contexts, the independence assumption is too strong for many applications.

(2) Simulation of geometric structures: The phenomena studied in (1) involve intricate random geometric structures subject to new models or constraints. A natural first step would be to build up our understanding and identify plausible conjectures through simulation. Perhaps surprisingly, the tools for an effective simulation of such complex geometric systems still need to be developed.

(3) Understanding geometric algorithms: the analysis of algorithms is an essential step in assessing the strengths and weaknesses of algorithmic principles, and is crucial to guide the choices made when designing a complex data processing pipeline. Any analysis must strike a balance between realism and tractability; the current analyses of many geometric algorithms are notoriously unrealistic. Aside from the purely scientific objectives, one of the main goals of Aspag is to bring the communities closer in the long term. As a consequence, the funding of the project is crucial to ensure that the members of the consortium will be able to interact on a very regular basis, a necessary condition for significant progress on the above challenges.

Project website:

ANR MinMax

Project title: MIN-MAX

Duration: 4 years

Starting date: 2019

Coordinator: Stéphane Sabourau (Université Paris-Est Créteil)


Abstract: The MinMax projet is funded by ANR under number ANR-19-CE40-0014

This collaborative research project aims to bring together researchers from various areas – namely, geometry and topology, minimal surface theory and geometric analysis, and computational geometry and algorithms – to work on a precise theme around min-max constructions and waist estimates.

Institut Universitaire de France

Xavier Goaoc was appointed junior member of the Institut Universitaire de France, a grant supporting a reduction in teaching duties and funding.

Starting Date: October 1st, 2014.

Duration: 5 years.