Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Industry 4.0 and Low-Power Wireless Meshed Networks

The Internet of Things (IoT) connects tiny electronic devices able to measure a physical value (temperature, humidity, etc.) and/or to actuate on the physical world (pump, valve, etc). Due to their cost and ease of deployment, battery-powered wireless IoT networks are rapidly being adopted.

The promise of wireless communication is to offer wire-like connectivity. Major improvements have been made in that direction, but many challenges remain as industrial applications have strong operational requirements. This section of the IoT application is called Industrial IoT (IIoT).

By the year 2020, it is expected that the number of connected objects will exceed several billion devices. These objects will be present in everyday life for a smarter home and city as well as in future smart factories that will revolutionize the industry organization. This is actually the expected fourth industrial revolution, better known as Industry 4.0. In which, the Internet of Things (IoT) is considered as a key enabler for this major transformation. The IoT will allow more intelligent monitoring and self-organizing capabilities than traditional factories. As a consequence, the production process will be more efficient and flexible with products of higher quality.

To produce better quality products and improve monitoring in Industry 4.0, strong requirements in terms of latency, robustness and power autonomy have to be met by the networks supporting the Industry 4.0 applications.

Reliability for the Industrial Internet of Things (IIoT) and Industry 4.0

Participants : Yasuyuki Tanaka, Pascale Minet, Keoma Brun-Laguna, Thomas Watteyne.

The main IIoT requirement is reliability. Every bit of information that is transmitted in the network must not be lost. Current off-the-shelf solutions offer over 99.999% reliability.

To provide the end-to-end reliability targeted by industrial applications, we investigate an approach based on message retransmissions (on the same path). We propose two methods to compute the maximum number of transmissions per message and per link required to achieve the targeted end-to-end reliability. The MFair method is very easy to compute and provides the same reliability over each link composing the path, by means of different maximum numbers of transmissions, whereas the MOpt method minimizes the total number of transmissions necessary for a message to reach the sink. MOpt provides a better reliability and a longer lifetime than MFair, which provides a shorter average end-to-end latency. This study [5] was published in the Sensors journal in 2019.