Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
F. Bertails-Descoubes, A. Derouet-Jourdan, V. Romero, A. Lazarus.
Inverse design of an isotropic suspended Kirchhoff rod: theoretical and numerical results on the uniqueness of the natural shape, in: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, April 2018, vol. 474, no 2212, pp. 1-26. [ DOI : 10.1098/rspa.2017.0837 ]
https://hal.inria.fr/hal-01827887
[2]
J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, L. Boissieux.
An Implicit Frictional Contact Solver for Adaptive Cloth Simulation, in: ACM Transactions on Graphics, August 2018, vol. 37, no 4, pp. 1-15. [ DOI : 10.1145/3197517.3201308 ]
https://hal.inria.fr/hal-01834705
[3]
M. Ly, R. Casati, F. Bertails-Descoubes, M. Skouras, L. Boissieux.
Inverse Elastic Shell Design with Contact and Friction, in: ACM Transactions on Graphics, November 2018, vol. 37, no 6, pp. 1-16. [ DOI : 10.1145/3272127.3275036 ]
https://hal.inria.fr/hal-01883655
Publications of the year

International Conferences with Proceedings

[4]
A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, A. Lazarus, S. Wuhrer, J.-S. Franco.
Estimating friction in cloth, using simulation and machine learning, in: APS 2019 - American Physical Society March Meeting, Boston, United States, March 2019, 1 p.
https://hal.inria.fr/hal-01982257
[5]
V. Romero, F. Bertails-Descoubes, A. Derouet-Jourdan, A. Lazarus.
Inverse design of a suspended Kirchhoff rod: From theory to practice, in: APS 2019 - American Physical Society March Meeting, Boston, United States, March 2019.
https://hal.inria.fr/hal-01981923

Conferences without Proceedings

[6]
R. Charrondière, F. Bertails-Descoubes, S. Neukirch.
Modélisation numérique de rubans en éléments de haut degré, in: 14ème Colloque National en Calcul des Structures (CSMA 2019), Giens, France, May 2019, pp. 1-8.
https://hal.archives-ouvertes.fr/hal-02384085
[7]
Best Paper
R. Charrondière, F. Bertails-Descoubes, S. Neukirch, V. Romero.
Modélisation numérique de rubans en éléments de haut degré, in: JF.IG.RV 2019 - Journées Françaises d'Informatique Graphique et de Réalité Virtuelle, Marseille, France, November 2019, pp. 1-7.
https://hal.archives-ouvertes.fr/hal-02384170
References in notes
[8]
B. Audoly, S. Neukirch.
Fragmentation of Rods by Cascading Cracks: Why Spaghetti Does Not Break in Half, in: Physical Review Letters, 2005, vol. 95, no 9, 095505 p.
[9]
D. Baraff.
Analytical methods for dynamic simulation of non-penetrating rigid bodies, in: Computer Graphics Proceedings (Proc. ACM SIGGRAPH'89 ), New York, NY, USA, ACM, 1989, pp. 223–232.
[10]
F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, J.-L. Lévêque.
Super-Helices for Predicting the Dynamics of Natural Hair, in: ACM Transactions on Graphics (Proc. ACM SIGGRAPH'06), 2006, vol. 25, pp. 1180–1187. [ DOI : 10.1145/1141911.1142012 ]
http://www-evasion.imag.fr/Publications/2006/BACQLL06
[11]
F. Bertails.
Linear Time Super-Helices, in: Computer Graphics Forum (Proc. Eurographics'09), apr 2009, vol. 28, no 2.
http://www-ljk.imag.fr/Publications/Basilic/com.lmc.publi.PUBLI_Article@1203901df78_1d3cdaa/
[12]
F. Bertails-Descoubes.
Super-Clothoids, in: Computer Graphics Forum (Proc. Eurographics'12), 2012, vol. 31, no 2pt2, pp. 509–518. [ DOI : 10.1111/j.1467-8659.2012.03030.x ]
http://www.inrialpes.fr/bipop/people/bertails/Papiers/superClothoids.html
[13]
A. Blumentals, F. Bertails-Descoubes, R. Casati.
Dynamics of a developable shell with uniform curvatures, in: The 4th Joint International Conference on Multibody System Dynamics, Montréal, Canada, May 2016.
https://hal.inria.fr/hal-01311559
[14]
A. Blumentals.
Numerical modelling of thin elastic solids in contact, Université de Grenoble Alpes, July 2017.
[15]
R. Casati, F. Bertails-Descoubes.
Super Space Clothoids, in: ACM Transactions on Graphics (Proc. ACM SIGGRAPH'13), July 2013, vol. 32, no 4, pp. 48:1–48:12.
http://doi.acm.org/10.1145/2461912.2461962
[16]
D. Chapelle, K. Bathe.
The Finite Element Analysis of Shells - Fundamentals - Second Edition, Computational Fluid and Solid Mechanics, Springer, 2011, 410 p. [ DOI : 10.1007/978-3-642-16408-8 ]
[17]
P. Cundall.
A computer model for simulating progressive large scale movements of blocky rock systems. In Proceedings of the Symposium of the International Society of Rock Mechanics, in: Proceedings of the Symposium of the International Society of Rock Mechanics, 1971, vol. 1, pp. 132–150.
[18]
G. Daviet, F. Bertails-Descoubes, L. Boissieux.
A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics, in: ACM Transactions on Graphics (Proc. ACM SIGGRAPH Asia'11), 2011, vol. 30, pp. 139:1–139:12.
http://www.inrialpes.fr/bipop/people/bertails/Papiers/hybridIterativeSolverHairDynamicsSiggraphAsia2011.html
[19]
G. Daviet, F. Bertails-Descoubes.
A semi-implicit material point method for the continuum simulation of granular materials, in: ACM Transactions on Graphics, July 2016, vol. 35, no 4, 13 p. [ DOI : 10.1145/2897824.2925877 ]
https://hal.inria.fr/hal-01310189
[20]
G. Daviet, F. Bertails-Descoubes.
Nonsmooth simulation of dense granular flows with pressure-dependent yield stress, in: Journal of Non-Newtonian Fluid Mechanics, April 2016, vol. 234, pp. 15-35. [ DOI : 10.1016/j.jnnfm.2016.04.006 ]
https://hal.inria.fr/hal-01236488
[21]
G. Daviet, F. Bertails-Descoubes.
Simulation of Drucker–Prager granular flows inside Newtonian fluids, February 2017, working paper or preprint.
https://hal.inria.fr/hal-01458951
[22]
G. Daviet.
Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires, Grenoble Alpes Universités, December 2016.
[23]
A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, J. Thollot.
Inverse Dynamic Hair Modeling with Frictional Contact, in: ACM Trans. Graph., November 2013, vol. 32, no 6, pp. 159:1–159:10.
http://doi.acm.org/10.1145/2508363.2508398
[24]
A. Derouet-Jourdan, F. Bertails-Descoubes, J. Thollot.
Stable Inverse Dynamic Curves, in: ACM Transactions on Graphics (Proc. ACM SIGGRAPH Asia'10 ), December 2010, vol. 29, pp. 137:1–137:10.
http://doi.acm.org/10.1145/1882261.1866159
[25]
M. A. Dias, B. Audoly.
“Wunderlich, Meet Kirchhoff”: A General and Unified Description of Elastic Ribbons and Thin Rods, in: Journal of Elasticity, Apr 2015, vol. 119, no 1, pp. 49–66.
https://doi.org/10.1007/s10659-014-9487-0
[26]
E. J. Doedel, R. C. Pfaffenroth, A. R. Chambodut, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede, X. Wang.
AUTO 2000: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), March 2006.
[27]
ESPCI.
Rencontre en l'honneur de Yves Pomeau, octobre 2016, 2016, https://www.sfpnet.fr/rencontre-celebrant-la-medaille-boltzmann-d-yves-pomeau.
https://www.sfpnet.fr/rencontre-celebrant-la-medaille-boltzmann-d-yves-pomeau
[28]
I. Frigaard, C. Nouar.
On the usage of viscosity regularisation methods for visco-plastic fluid flow computation, in: Journal of Non-Newtonian Fluid Mechanics, April 2005, vol. 127, no 1, pp. 1–26. [ DOI : 10.1016/j.jnnfm.2005.01.003 ]
[29]
A. L. Gol'Denveizer.
Theory of Elastic Thin Shells, Pergamon Press, 1961.
[30]
R. E. Goldstein, P. B. Warren, R. C. Ball.
Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles, in: Phys. Rev. Lett., Feb 2012, vol. 108, 078101 p.
https://link.aps.org/doi/10.1103/PhysRevLett.108.078101
[31]
M. Jean.
The Non Smooth Contact Dynamics Method, in: Computer Methods in Applied Mechanics and Engineering, 1999, vol. 177, pp. 235-257, Special issue on computational modeling of contact and friction, J.A.C. Martins and A. Klarbring, editors.
[32]
J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, L. Boissieux.
An Implicit Frictional Contact Solver for Adaptive Cloth Simulation, in: ACM Trans. Graph., August 2018, vol. 37, no 4.
[33]
M. Moore, J. Wilhelms.
Collision detection and response for computer animation, in: Computer Graphics Proceedings (Proc. ACM SIGGRAPH'88 ), 1988, pp. 289–298.
[34]
D. Moulton, P. Grandgeorge, S. Neukirch.
Stable elastic knots with no self-contact, in: Journal of the Mechanics and Physics of Solids, 2018, vol. 116, pp. 33–53. [ DOI : 10.1016/j.jmps.2018.03.019 ]
http://www.sciencedirect.com/science/article/pii/S0022509617310104
[35]
A. Sengers.
Semi-implicit and diffusion-redistanciation schemes for the dynamic of red blood cells, Université Grenoble Alpes, July 2019.
https://tel.archives-ouvertes.fr/tel-02341602
[36]
J. Spillmann, M. Teschner.
An Adaptive Contact Model for the Robust Simulation of Knots, in: Computer Graphics Forum, 2008, vol. 27, no 2, Proc. Eurographics'08.
[37]
H. Sugiyama, J. Gertsmayr, A. Mikkola.
Flexible Multibody Dynamics — Essential for Accurate Modeling in Multibody System Dynamics, in: Journal of Computational Nonlinear Dynamics, Novembler 2013, vol. 9.