Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
L. Boilevin-Kayl, M. A. Fernández, J.-F. Gerbeau.
A loosely coupled scheme for fictitious domain approximations of fluid-structure interaction problems with immersed thin-walled structures, in: SIAM Journal on Scientific Computing, February 2019, vol. 41, no 2, pp. 351-374. [ DOI : 10.1137/18M1192779 ]
https://hal.inria.fr/hal-01811290
[2]
M. Boulakia.
Quantification of the unique continuation property for the nonstationary Stokes problem, in: Mathematical Control and Related Fields, March 2016.
https://hal.inria.fr/hal-01094490
[3]
M. Boulakia, S. Guerrero, T. Takahashi.
Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, in: Nonlinearity, 2019, vol. 32, pp. 3548-3592. [ DOI : 10.1088/1361-6544/ab128c ]
https://hal.inria.fr/hal-01939464
[4]
C. Grandmont, M. Hillairet.
Existence of global strong solutions to a beam-fluid interaction system, in: Archive for Rational Mechanics and Analysis, 2016. [ DOI : 10.1007/s00205-015-0954-y ]
https://hal.inria.fr/hal-01138736
[5]
M. Landajuela, M. Vidrascu, D. Chapelle, M. A. Fernández.
Coupling schemes for the FSI forward prediction challenge: comparative study and validation, in: International Journal for Numerical Methods in Biomedical Engineering, 2017, vol. 33, no 4, e02813 p. [ DOI : 10.1002/cnm.2813 ]
https://hal.inria.fr/hal-01239931
[6]
D. Lombardi, S. Pant.
A non-parametric k-nearest neighbor entropy estimator, in: Physical Reviev E, January 2016. [ DOI : 10.1103/PhysRevE.93.013310 ]
https://hal.inria.fr/hal-01272527
[7]
N. Pozin, S. Montesantos, I. Katz, M. Pichelin, I. Vignon-Clementel, C. Grandmont.
Predicted airway obstruction distribution based on dynamical lung ventilation data: a coupled modeling-machine learning methodology, in: International Journal for Numerical Methods in Biomedical Engineering, May 2018, vol. 34, no 9. [ DOI : 10.1002/cnm.3108 ]
https://hal.archives-ouvertes.fr/hal-01568065
[8]
A. This, L. Boilevin-Kayl, M. A. Fernández, J.-F. Gerbeau.
Augmented Resistive Immersed Surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases, in: International Journal for Numerical Methods in Biomedical Engineering, May 2019, forthcoming. [ DOI : 10.1002/cnm.3223 ]
https://hal.inria.fr/hal-01944798
[9]
E. Tixier, F. Raphel, D. Lombardi, J.-F. Gerbeau.
Composite biomarkers derived from Micro-Electrode Array measurements and computer simulations improve the classification of drug-induced channel block, in: Frontiers in Physiology, 2018, vol. 8, no 1096, pp. 1-30. [ DOI : 10.3389/fphys.2017.01096 ]
https://hal.archives-ouvertes.fr/hal-01570819
Publications of the year

Doctoral Dissertations and Habilitation Theses

[10]
L. Boilevin-Kayl.
Modeling and numerical simulation of implantable cardiovascular devices, Sorbonne Université, July 2019.
https://hal.inria.fr/tel-02217259
[11]
A. This.
Image/Model Fusion for the Quantification of Mitral Regurgitation Severity, Sorbonne Université, May 2019.
https://hal.inria.fr/tel-02176167

Articles in International Peer-Reviewed Journals

[12]
L. Boilevin-Kayl, M. A. Fernández, J.-F. Gerbeau.
A loosely coupled scheme for fictitious domain approximations of fluid-structure interaction problems with immersed thin-walled structures, in: SIAM Journal on Scientific Computing, February 2019, vol. 41, no 2, pp. 351-374. [ DOI : 10.1137/18M1192779 ]
https://hal.inria.fr/hal-01811290
[13]
L. Boilevin-Kayl, M. A. Fernández, J.-F. Gerbeau.
Numerical methods for immersed FSI with thin-walled structures, in: Computers and Fluids, January 2019, vol. 179, pp. 744-763. [ DOI : 10.1016/j.compfluid.2018.05.024 ]
https://hal.inria.fr/hal-01704575
[14]
M. Boulakia, S. Guerrero, T. Takahashi.
Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, in: Nonlinearity, 2019, vol. 32, pp. 3548-3592. [ DOI : 10.1088/1361-6544/ab128c ]
https://hal.inria.fr/hal-01939464
[15]
E. Burman, M. A. Fernández, S. Frei.
A Nitsche-based formulation for fluid-structure interactions with contact, in: Modelisation Mathématique et Analyse Numérique, October 2019, forthcoming.
https://hal.inria.fr/hal-01784841
[16]
M. A. Fernández, M. Landajuela.
Splitting schemes and unfitted mesh methods for the coupling of an incompressible fluid with a thin-walled structure, in: IMA Journal of Numerical Analysis, January 2019. [ DOI : 10.1093/imanum/dry098 ]
https://hal.inria.fr/hal-01309462
[17]
C. Grandmont, M. Hillairet, J. Lequeurre.
Existence of local strong solutions to fluid-beam and fluid-rod interaction systems, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, July 2019, vol. 36, no 4, pp. 1105-1149. [ DOI : 10.1016/j.anihpc.2018.10.006 ]
https://hal.inria.fr/hal-01567661
[18]
A. This, L. Boilevin-Kayl, M. A. Fernández, J.-F. Gerbeau.
Augmented Resistive Immersed Surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases, in: International Journal for Numerical Methods in Biomedical Engineering, May 2019, forthcoming. [ DOI : 10.1002/cnm.3223 ]
https://hal.inria.fr/hal-01944798
[19]
A. This, H. G. Morales, O. Bonnefous, M. A. Fernández, J.-F. Gerbeau.
A pipeline for image based intracardiac CFD modeling and application to the evaluation of the PISA method, in: Computer Methods in Applied Mechanics and Engineering, 2019, vol. 358, no 1. [ DOI : 10.1016/j.cma.2019.112627 ]
https://hal.archives-ouvertes.fr/hal-02142416

Other Publications

[20]
A. Alfonsi, R. Coyaud, V. Ehrlacher, D. Lombardi.
Approximation of Optimal Transport problems with marginal moments constraints, May 2019, https://arxiv.org/abs/1905.05663 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02128374
[21]
L. Boudin, C. Grandmont, B. Grec, S. Martin, A. Mecherbet, F. Noël.
Fluid-kinetic modelling for respiratory aerosols with variable size and temperature, April 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02092574
[22]
M. Boulakia, E. Burman, M. A. Fernández, C. Voisembert.
Data assimilation finite element method for the linearized Navier-Stokes equations in the low Reynolds regime, October 2019, working paper or preprint.
https://hal.inria.fr/hal-02318504
[23]
M. Boulakia, M. De Buhan, E. Schwindt.
Numerical reconstruction based on Carleman estimates of a source term in a reaction-diffusion equation. *, July 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02185889
[24]
E. Burman, M. A. Fernández, S. Frei, F. Gerosa.
3D-2D Stokes-Darcy coupling for the modelling of seepage with an application to fluid-structure interaction with contact, December 2019, working paper or preprint.
https://hal.inria.fr/hal-02417042
[25]
J.-J. Casanova, C. Grandmont, M. Hillairet.
On an existence theory for a fluid-beam problem encompassing possible contacts, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02396915
[26]
V. Ehrlacher, L. Grigori, D. Lombardi, H. Song.
Adaptive hierarchical subtensor partitioning for tensor compression, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02284456
[27]
V. Ehrlacher, D. Lombardi, O. Mula, F.-X. Vialard.
Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, September 2019, https://arxiv.org/abs/1909.06626 - working paper or preprint.
https://hal.inria.fr/hal-02290431
[28]
M. A. Fernández, F. Gerosa.
An unfitted mesh semi-implicit coupling scheme for fluid-structure interaction with immersed solids, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02288723
[29]
F. Galarce, J.-F. Gerbeau, D. Lombardi, O. Mula.
State estimation with nonlinear reduced models. Application to the reconstruction of blood flows with Doppler ultrasound images, December 2019, https://arxiv.org/abs/1904.13367 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02403686
[30]
D. Lombardi, F. Raphel.
A greedy dimension reduction method for classification problems, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02280502
[31]
F. Raphel, T. De Korte, D. Lombardi, S. Braam, J.-F. Gerbeau.
A greedy classifier optimisation strategy to assess ion channel blocking activity and pro-arrhythmia in hiPSC-cardiomyocytes, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02276945
References in notes
[32]
F. Alauzet, B. Fabrèges, M. A. Fernández, M. Landajuela.
Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures, in: Comput. Methods Appl. Mech. Engrg., 2016, vol. 301, pp. 300–335.
[33]
E. Alpaydin.
Introduction to machine learning, MIT press, 2009.
[34]
M. Astorino, J. Hamers, S. C. Shadden, J.-F. Gerbeau.
A robust and efficient valve model based on resistive immersed surfaces, in: Int. J. Numer. Meth. Biomed. Engng., 2012, vol. 28, no 9, pp. 937–959.
[35]
F. Baaijens.
A fictitious domain/mortar element method for fluid-structure interaction, in: Int. Jour. Num. Meth. Fluids, 2001, vol. 35, pp. 743-761.
[36]
L. Baffico, C. Grandmont, B. Maury.
Multiscale modeling of the respiratory tract, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 1, pp. 59–93.
[37]
D. Boffi, N. Cavallini, L. Gastaldi.
Finite element approach to immersed boundary method with different fluid and solid densities, in: Math. Models Methods Appl. Sci., 2011, vol. 21, no 12, pp. 2523–2550.
[38]
L. Boudin, L. Desvillettes, C. Grandmont, A. Moussa.
Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, in: Differential Integral Equations, 2009, vol. 22, no 11-12, pp. 1247–1271.
[39]
L. Boudin, C. Grandmont, A. Moussa.
Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain, in: J. Differential Equations, 2017, vol. 262, no 3, pp. 1317–1340.
https://doi.org/10.1016/j.jde.2016.10.012
[40]
L. Boudin, D. Götz, B. Grec.
Diffusion models of multicomponent mixtures in the lung, in: CEMRACS 2009: Mathematical modelling in medicine, ESAIM Proc., EDP Sci., Les Ulis, 2010, vol. 30, pp. 90–103.
[41]
L. Breiman.
Classification and regression trees, Routledge, 2017.
[42]
E. Burman.
Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations, in: SIAM J. Sci. Comput., 2013, vol. 35, no 6, pp. 2752-2780.
[43]
E. Burman, M. A. Fernández.
An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes, in: Comput. Methods Appl. Mech. Engrg., 2014, vol. 279, pp. 497–514.
[44]
R. K. Calay, J. Kurujareon, A. E. Holdo.
Numerical simulation of respiratory flow patterns within human lung, in: Respir. Physiol. Neurobiol., 2002, vol. 130, no 2, pp. 201–221.
[45]
P. Cazeaux, C. Grandmont.
Homogenization of a multiscale viscoelastic model with nonlocal damping, application to the human lungs, in: Math. Models Methods Appl. Sci., 2015, vol. 25, no 6, pp. 1125–1177.
[46]
K. B. Chandran.
Role of Computational Simulations in Heart Valve Dynamics and Design of Valvular Prostheses, in: Cardiovasc. Eng. Technol., 2010, vol. 1, no 1, pp. 18–38.
[47]
D. Chapelle, P. Moireau.
General coupling of porous flows and hyperelastic formulations—From thermodynamics principles to energy balance and compatible time schemes, in: Eur. J. Mech. B Fluids., 2014, vol. 46, pp. 82–96.
[48]
C. Chnafa, S. Mendez, F. Nicoud.
Image-Based Simulations Show Important Flow Fluctuations in a Normal Left Ventricle: What Could be the Implications?, in: Ann. Biomed. Eng., 2016, vol. 44, no 11, pp. 3346–3358.
[49]
T. Colatsky, B. Fermini, G. Gintant, J. B. Pierson, P. Sager, Y. Sekino, D. G. Strauss, N. Stockbridge.
The comprehensive in vitro proarrhythmia assay (CiPA) initiative—update on progress, in: J. Pharmacol. Toxicol. Methods, 2016, vol. 81, pp. 15–20.
[50]
W. J. Crumb, J. Vicente, L. Johannesen, D. G. Strauss.
An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel, in: J. Pharmacol. Toxicol. Methods, 2016, vol. 81, pp. 251–262.
[51]
M. Fedele, E. Faggiano, L. Dedè, A. Quarteroni.
A patient-specific aortic valve model based on moving resistive immersed implicit surfaces, in: Biomech. Model. Mechanobiol., 2017, vol. 16, no 5, pp. 1779–1803.
[52]
M. A. Fernández, J. Mullaert.
Convergence and error analysis for a class of splitting schemes in incompressible fluid-structure interaction, in: IMA J. Numer. Anal., 2016, vol. 36, no 4, pp. 1748–1782.
[53]
H. Gao, L. Feng, N. Qi, C. Berry, B. Griffith, X. Luo.
A coupled mitral valve-left ventricle model with fluid-structure interaction, in: Med. Eng. Phys., 09 2017, vol. 47, pp. 128–136.
[54]
R. Glowinski, T. Pan, T. Hesla, D. Joseph.
A distributed Lagrange mutiplier/fictitious domain method for particulate flows, in: Int. J. of Multiphase Flow, 1999, vol. 25, pp. 755-794.
[55]
C. Grandmont, M. Hillairet.
Existence of global strong solutions to a beam-fluid interaction system, in: Arch. Ration. Mech. Anal., 2016, vol. 220, no 3, pp. 1283–1333.
[56]
L. Grasedyck, D. Kressner, C. Tobler.
A literature survey of low-rank tensor approximation techniques, in: GAMM-Mitt., 2013, vol. 36, no 1, pp. 53–78.
[57]
M. Hillairet.
Lack of collision between solid bodies in a 2D incompressible viscous flow, in: Comm. Partial Differential Equations, 2007, vol. 32, no 7-9, pp. 1345–1371.
[58]
H. M. Himmel.
Drug-induced functional cardiotoxicity screening in stem cell-derived human and mouse cardiomyocytes: effects of reference compounds, in: J. Pharmacol. Toxicol. Methods, 2013, vol. 68, no 1, pp. 97–111.
[59]
J. Kaipio, E. Somersalo.
Statistical and computational inverse problems, Applied Mathematical Sciences, Springer-Verlag, New York, 2005, vol. 160.
[60]
D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, T. J. R. Hughes.
Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines, in: Comput. Methods Appl. Mech. Engrg., 2017, vol. 314, pp. 408–472.
[61]
M. C. Lai, C. S. Peskin.
An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, in: J. Comp. Phys., 2000, vol. 160, no 2, pp. 705–719.
[62]
S. Martin, B. Maury.
Modeling of the oxygen transfer in the respiratory process, in: ESAIM Math. Model. Numer. Anal., 2013, vol. 47, no 4, pp. 935–960.
[63]
R. Mittal, J. H. Seo, V. Vedula, Y. J. Choi, H. Liu, H. H. Huang, S. Jain, L. Younes, T. Abraham, R. T. George.
Computational modeling of cardiac hemodynamics: current status and future outlook, in: J. Comput. Phys., 2016, vol. 305, pp. 1065–1082.
[64]
J. M. Oakes, S. C. Shadden, C. Grandmont, I. E. Vignon-Clementel.
Aerosol transport throughout inspiration and expiration in the pulmonary airways, in: Int. J. Numer. Methods Biomed. Eng., 2017, vol. 33, no 9.
[65]
C. S. Peskin.
The immersed boundary method, in: Acta Numer., 2002, vol. 11, pp. 479–517.
[66]
C. J. Roth, M. Ismail, L. Yoshihara, W. A. Wall.
A comprehensive computational human lung model incorporating inter-acinar dependencies: Application to spontaneous breathing and mechanical ventilation, in: Int. J. Numer. Method. Biomed. Eng., 2016, vol. 33, no 1, e02787.
[67]
L. Yoshihara, C. J. Roth, W. A. Wall.
Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics, in: Int. J. Numer. Method. Biomed. Eng., 2016, vol. 33, no 4, e2812.
[68]
V. de Silva, L.-H. Lim.
Tensor rank and the ill-posedness of the best low-rank approximation problem, in: SIAM J. Matrix Anal. Appl., 2008, vol. 30, no 3, pp. 1084–1127.
[69]
R. van Loon, P. D. Anderson, J. de Hart, F. P. T. Baaijens.
A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, in: ‎Int. J. Numer. Methods Fluids, 2004, vol. 46, no 5, pp. 533–544.
[70]
M. J. van der Laan, S. Rose.
Targeted learning, Springer Series in Statistics, Springer, New York, 2011.