Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
M. S. Aronna, J. F. Bonnans, A. Kröner.
Optimal control of PDEs in a complex space setting; application to the Schrödinger equation, in: SIAM Journal on Control and Optimization, 2019, vol. 57, no 2, pp. 1390-1412. [ DOI : 10.1137/17M1117653 ]
https://hal.archives-ouvertes.fr/hal-01311421
[2]
J. F. Bonnans, J. Gianatti, F. Silva.
On the time discretization of stochastic optimal control problems: the dynamic programming approach, in: ESAIM: Control, Optimisation and Calculus of Variations, October 2019. [ DOI : 10.1051/cocv/2018045 ]
https://hal.inria.fr/hal-01474285
[3]
J. F. Bonnans, S. Hadikhanloo, L. Pfeiffer.
Schauder Estimates for a Class of Potential Mean Field Games of Controls, in: Applied Mathematics and Optimization, July 2019, 34 p.
https://hal.inria.fr/hal-02048437
[4]
T. Breiten, K. Kunisch, L. Pfeiffer.
Feedback Stabilization of the Two-Dimensional Navier–Stokes Equations by Value Function Approximation, in: Applied Mathematics and Optimization, December 2019, vol. 80, no 3, pp. 599-641. [ DOI : 10.1007/s00245-019-09586-x ]
https://hal.archives-ouvertes.fr/hal-02372083
[5]
T. Breiten, K. Kunisch, L. Pfeiffer.
Taylor expansions of the value function associated with a bilinear optimal control problem, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, August 2019, vol. 36, no 5, pp. 1361-1399. [ DOI : 10.1016/j.anihpc.2019.01.001 ]
https://hal.archives-ouvertes.fr/hal-02372091
[6]
K. Kunisch, L. Pfeiffer.
The effect of the terminal penalty in receding horizon control for a class of stabilization problems, in: ESAIM: Control, Optimisation and Calculus of Variations, 2019, forthcoming.
https://hal.archives-ouvertes.fr/hal-02372077
[7]
A. Le Rhun, J. F. Bonnans, G. De Nunzio, T. Leroy, P. Martinon.
A stochastic data-based traffic model applied to vehicles energy consumption estimation, in: IEEE Transactions on Intelligent Transportation Systems, 2019, forthcoming. [ DOI : 10.1109/TITS.2019.2923292 ]
https://hal.inria.fr/hal-01774621
[8]
C. Rommel, J. F. Bonnans, P. Martinon, B. Gregorutti.
Gaussian Mixture Penalty for Trajectory Optimization Problems, in: Journal of Guidance, Control, and Dynamics, August 2019, vol. 42, no 8, pp. 1857–1862. [ DOI : 10.2514/1.G003996 ]
https://hal.inria.fr/hal-01819749

Other Publications

[9]
J. F. Bonnans, G. Bonnet, J.-M. Mirebeau.
Monotone and second order consistent schemes for the Pucci and Monge-Ampere equations, November 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02383521
[10]
J. F. Bonnans, J. Gianatti.
Optimal Control of an Age-Structured System with State Constraints, June 2019, working paper or preprint.
https://hal.inria.fr/hal-02164310
[11]
A. Le Rhun, J. F. Bonnans, G. De Nunzio, T. Leroy, P. Martinon.
A bi-level energy management strategy for HEVs under probabilistic traffic conditions, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02278359
[12]
A. Le Rhun, J. F. Bonnans, G. De Nunzio, T. Leroy, P. Martinon.
An Eco-routing algorithm for HEVs under traffic conditions, November 2019, working paper or preprint.
https://hal.inria.fr/hal-02356277
References in notes
[13]
M. Bardi, I. Capuzzo-Dolcetta.
Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997.
[14]
G. Barles.
Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications, Springer, Paris, 1994, vol. 17.
[15]
T. Bayen, F. Mairet, P. Martinon, M. Sebbah.
Analysis of a periodic optimal control problem connected to microalgae anaerobic digestion, in: Optimal Control Applications and Methods, 2014. [ DOI : 10.1002/oca.2127 ]
https://hal.archives-ouvertes.fr/hal-00860570
[16]
G. Bliss.
Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Illinois, 1946.
[17]
J. F. Bonnans, J. Laurent-Varin.
Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, in: Numerische Mathematik, 2006, vol. 103, no 1, pp. 1–10.
[18]
J. F. Bonnans, E. Ottenwaelter, H. Zidani.
Numerical schemes for the two dimensional second-order HJB equation, in: ESAIM: M2AN, 2004, vol. 38, pp. 723-735.
[19]
J. F. Bonnans, H. Zidani.
Consistency of generalized finite difference schemes for the stochastic HJB equation, in: SIAM J. Numerical Analysis, 2003, vol. 41, pp. 1008-1021.
[20]
A. E. Bryson, Y.-C. Ho.
Applied optimal control, Hemisphere Publishing, New-York, 1975.
[21]
M. Crandall, P. Lions.
Viscosity solutions of Hamilton Jacobi equations, in: Bull. American Mathematical Society, 1983, vol. 277, pp. 1–42.
[22]
W. Hager.
Runge-Kutta methods in optimal control and the transformed adjoint system, in: Numerische Mathematik, 2000, vol. 87, no 2, pp. 247–282.
[23]
A. Ioffe, V. Tihomirov.
Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian Edition: Nauka, Moscow, 1974.
[24]
J.-L. Lagrange.
Mécanique analytique, Paris, 1788, reprinted by J. Gabay, 1989.
[25]
E. Lee, L. Markus.
Foundations of optimal control theory, John Wiley, New York, 1967.
[26]
G. Leitmann.
An introduction to optimal control, Mc Graw Hill, New York, 1966.
[27]
R. Muñoz-Tamayo, P. Martinon, G. Bougaran, F. Mairet, O. Bernard.
Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models, in: Journal of Process Control, 2014, vol. 24, no 6, pp. 991 - 1001. [ DOI : 10.1016/j.jprocont.2014.04.021 ]
http://www.sciencedirect.com/science/article/pii/S095915241400122X
[28]
L. Pontryagin, V. Boltyanski, R. Gamkrelidze, E. Michtchenko.
The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962.
[29]
L. Young.
Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia, 1969.