Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Research Program

Simplified models and inverse problems

The medical and clinical exploration of the cardiac electric signals is based on accurate reconstruction of the patterns of propagation of the action potential. The correct detection of these complex patterns by non-invasive electrical imaging techniques has to be developed. This problem involves solving inverse problems that cannot be addressed with the more compex models. We want both to develop simple and fast models of the propagation of cardiac action potentials and improve the solutions to the inverse problems found in cardiac electrical imaging techniques.

The cardiac inverse problem consists in finding the cardiac activation maps or, more generally, the whole cardiac electrical activity, from high-density body surface electrocardiograms. It is a new and a powerful diagnosis technique, which success would be considered as a breakthrough. Although widely studied recently, it remains a challenge for the scientific community. In many cases the quality of reconstructed electrical potential is not adequate. The methods used consist in solving the Laplace equation on the volume delimited by the body surface and the epicardial surface. Our aim is to

Of course we will use our models as a basis to regularize these inverse problems. We will consider the following strategies:

Additionaly, we will need to develop numerical techniques dedicated to our simplified eikonal/level-set equations.