Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: Application Domains

De-anti icing systems

Impact of large ice debris on downstream aerodynamic surfaces and ingestion by aft mounted engines must be considered during the aircraft certification process. It is typically the result of ice accumulation on unprotected surfaces, ice accretions downstream of ice protected areas, or ice growth on surfaces due to delayed activation of ice protection systems (IPS) or IPS failure. This raises the need for accurate ice trajectory simulation tools to support pre-design, design and certification phases while improving cost efficiency. Present ice trajectory simulation tools have limited capabilities due to the lack of appropriate experimental aerodynamic force and moment data for ice fragments and the large number of variables that can affect the trajectories of ice particles in the aircraft flow field like the shape, size, mass, initial velocity, shedding location, etc... There are generally two types of model used to track shed ice pieces. The first type of model makes the assumption that ice pieces do not significantly affect the flow. The second type of model intends to take into account ice pieces interacting with the flow. We are concerned with the second type of models, involving fully coupled time-accurate aerodynamic and flight mechanics simulations, and thus requiring the use of high efficiency adaptive tools, and possibly tools allowing to easily track moving objects in the flow. We will in particular pursue and enhance our initial work based on adaptive immerse boundary capturing of moving ice debris, whose movements are computed using basic mechanical laws.

In [31] it has been proposed to model ice shedding trajectories by an innovative paradigm that is based on CArtesian grids, PEnalization and LEvel Sets (LESCAPE code). Our objective is to use the potential of high order unstructured mesh adaptation and immersed boundary techniques to provide a geometrically flexible extension of this idea. These activities will be linked to the development of efficient mesh adaptation and time stepping techniques for time dependent flows, and their coupling with the immersed boundary methods we started developing in the FP7 EU project STORM [24], [76]. In these methods we compensate for the error at solid walls introduced by the penalization by using anisotropic mesh adaptation [50], [68], [69]. From the numerical point of view one of the major challenges is to guarantee efficiency and accuracy of the time stepping in presence of highly stretched adaptive and moving meshes. Semi-implicit, locally implicit, multi-level, and split discretizations will be explored to this end.

Besides the numerical aspects, we will deal with modelling challenges. One source of complexity is the initial conditions which are essential to compute ice shedding trajectories. It is thus extremely important to understand the mechanisms of ice release. With the development of next generations of engines and aircraft, there is a crucial need to better assess and predict icing aspects early in design phases and identify breakthrough technologies for ice protection systems compatible with future architectures. When a thermal ice protection system is activated, it melts a part of the ice in contact with the surface, creating a liquid water film and therefore lowering ability of the ice block to adhere to the surface. The aerodynamic forces are then able to detach the ice block from the surface [33]. In order to assess the performance of such a system, it is essential to understand the mechanisms by which the aerodynamic forces manage to detach the ice. The current state of the art in icing codes is an empirical criterion. However such an empirical criterion is unsatisfactory. Following the early work of [34], [30] we will develop appropriate asymptotic PDE approximations allowing to describe the ice formation and detachment, trying to embed in this description elements from damage/fracture mechanics. These models will constitute closures for aerodynamics/RANS and URANS simulations in the form of PDE wall models, or modified boundary conditions.

In addition to this, several sources of uncertainties are associated to the ice geometry, size, orientation and the shedding location. In very few papers [78], some sensitivity analysis based on Monte Carlo method have been conducted to take into account the uncertainties of the initial conditions and the chaotic nature of the ice particle motion. We aim to propose some systematic approach to handle every source of uncertainty in an efficient way relying on some state-of-art techniques developed in the Team. In particular, we will perform an uncertainty propagation of some uncertainties on the initial conditions (position, orientation, velocity,...) through a low-fidelity model in order to get statistics of a multitude of particle tracks. This study will be done in collaboration with ETS (Ecole de Technologies Supérieure, Canada). The longterm objective is to produce footprint maps and to analyse the sensitivity of the models developed.