Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

[1]
S. Abelard.
Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus, in: Journal of Complexity, 2019, forthcoming. [ DOI : 10.1016/j.jco.2019.101440 ]
https://hal.inria.fr/hal-01905580
[2]
S. Abelard, P. Gaudry, P.-J. Spaenlehauer.
Improved Complexity Bounds for Counting Points on Hyperelliptic Curves, in: Foundations of Computational Mathematics, 2019, vol. 19, no 3, pp. 591-621, https://arxiv.org/abs/1710.03448. [ DOI : 10.1007/s10208-018-9392-1 ]
https://hal.inria.fr/hal-01613530
[3]
N. David, P. Zimmermann.
A New Ranking Function for Polynomial Selection in the Number Field Sieve, in: Contemporary mathematics, 2019, forthcoming.
https://hal.inria.fr/hal-02151093
[4]
A. Guillevic.
Faster individual discrete logarithms in finite fields of composite extension degree, in: Mathematics of Computation, January 2019, vol. 88, no 317, pp. 1273-1301, https://arxiv.org/abs/1809.06135. [ DOI : 10.1090/mcom/3376 ]
https://hal.inria.fr/hal-01341849
[5]
D. Gérault, P. Lafourcade, M. Minier, C. Solnon.
Computing AES related-key differential characteristics with constraint programming, in: Artificial Intelligence, January 2020, vol. 278, 103183. [ DOI : 10.1016/j.artint.2019.103183 ]
https://hal.archives-ouvertes.fr/hal-02327893
[6]
S. Ionica, E. Thomé.
Isogeny graphs with maximal real multiplication, in: Journal of Number Theory, February 2020, vol. 207, pp. 385-422, https://arxiv.org/abs/1407.6672. [ DOI : 10.1016/j.jnt.2019.06.019 ]
https://hal.archives-ouvertes.fr/hal-00967742
[7]
A. Le Gluher, P.-J. Spaenlehauer.
A Fast Randomized Geometric Algorithm for Computing Riemann-Roch Spaces, in: Mathematics of Computation, 2019, https://arxiv.org/abs/1811.08237, forthcoming.
https://hal.inria.fr/hal-01930573
[8]
S. Maitra, B. Mandal, T. Martinsen, D. Roy, P. Stanica.
Analysis on Boolean function in a restricted (biased) domain, in: IEEE Transactions on Information Theory, August 2019, pp. 1-13. [ DOI : 10.1109/TIT.2019.2932739 ]
https://hal.inria.fr/hal-02374194

Invited Conferences

[9]
V. Cortier, P. Gaudry, S. Glondu.
Belenios: a simple private and verifiable electronic voting system, in: Foundations of Security, Protocols, and Equational Reasoning, Fredericksburg, Virgina, United States, J. D. Guttman, C. E. Landwehr, J. Meseguer, D. Pavlovic (editors), LNCS, Springer, 2019, vol. 11565, pp. 214-238. [ DOI : 10.1007/978-3-030-19052-1_14 ]
https://hal.inria.fr/hal-02066930

International Conferences with Proceedings

[10]
E. Andreeva, V. Lallemand, A. Purnal, R. Reyhanitabar, A. Roy, D. Vizár.
Forkcipher: A New Primitive for Authenticated Encryption of Very Short Messages, in: ASIACRYPT 2019 - 25th Annual International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, Advances in Cryptology – ASIACRYPT 2019, November 2019, pp. 153-182. [ DOI : 10.1007/978-3-030-34621-8_6 ]
https://hal.inria.fr/hal-02388234
[11]
L. De Feo, S. Masson, C. Petit, A. Sanso.
Verifiable Delay Functions from Supersingular Isogenies and Pairings, in: Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, Advances in Cryptology - ASIACRYPT 2019, August 2019, vol. 1, pp. 248-277. [ DOI : 10.1007/978-3-030-34578-5_10 ]
https://hal.inria.fr/hal-02388349
[12]
P. Derbez, V. Lallemand, A. Udovenko.
Cryptanalysis of SKINNY in the Framework of the SKINNY 2018-2019 Cryptanalysis Competition, in: SAC 2019 - Selected Areas in Cryptography, Waterloo, Canada, August 2019.
https://hal.inria.fr/hal-02388239
[13]
J. Detrey, L. Imbert.
Breaking randomized mixed-radix scalar multiplication algorithms, in: LATINCRYPT 2019 - 6th International Conference on Cryptology and Information Security in Latin America, Santiago de Chile, Chile, Lecture Notes in Computer Science, 2019, vol. 11774, pp. 24-39. [ DOI : 10.1007/978-3-030-30530-7_2 ]
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02309203
[14]
D. Tang, B. Mandal, S. Maitra.
Vectorial Boolean Functions with Very Low Differential-Linear Uniformity Using Maiorana-McFarland Type Construction, in: Progress in Cryptology – INDOCRYPT 2019, Hyderabad, India, December 2019. [ DOI : 10.1007/978-3-030-35423-7_17 ]
https://hal.inria.fr/hal-02374286

Software

[15]
T. CADO-NFS Development Team.
CADO-NFS, An Implementation of the Number Field Sieve Algorithm, April 2019, Version : 2.3.0, Software.
https://hal.inria.fr/hal-02099620

Other Publications

[16]
C. Bouillaguet, P. Zimmermann.
Parallel Structured Gaussian Elimination for the Number Field Sieve, April 2019, working paper or preprint.
https://hal.inria.fr/hal-02098114
[17]
V. Cortier, J. Dreier, P. Gaudry, M. Turuani.
A simple alternative to Benaloh challenge for the cast-as-intended property in Helios/Belenios, 2019, working paper or preprint.
https://hal.inria.fr/hal-02346420
[18]
G. De Micheli, R. Piau, C. Pierrot.
A Tale of Three Signatures: practical attack of ECDSA with wNAF, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02393302
[19]
P. Gaudry, A. Golovnev.
Breaking the encryption scheme of the Moscow Internet voting system, November 2019, https://arxiv.org/abs/1908.05127 - This work is a merger of arXiv:1908.09170 and arXiv:1908.05127..
https://hal.inria.fr/hal-02266264
[20]
A. Guillevic.
A short-list of pairing-friendly curves resistant to Special TNFS at the 128-bit security level, December 2019, working paper or preprint.
https://hal.inria.fr/hal-02396352
[21]
A. Guillevic, S. Masson, E. Thomé.
Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation, October 2019, working paper or preprint.
https://hal.inria.fr/hal-02305051
[22]
A. Guillevic, S. Singh.
On the Alpha Value of Polynomials in the Tower Number Field Sieve Algorithm, August 2019, working paper or preprint.
https://hal.inria.fr/hal-02263098
[23]
A. Joux, C. Pierrot.
Algorithmic aspects of elliptic bases in finite field discrete logarithm algorithms, July 2019, https://arxiv.org/abs/1907.02689 - working paper or preprint.
https://hal.sorbonne-universite.fr/hal-02173688
[24]
E. Milio, D. Robert.
Modular polynomials on Hilbert surfaces, June 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01520262
References in notes
[25]
S. Abelard.
Counting points on hyperelliptic curves in large characteristic : algorithms and complexity, Université de Lorraine, September 2018, PhD thesis.
https://tel.archives-ouvertes.fr/tel-01876314
[26]
D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. Alex Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, P. Zimmermann.
Imperfect Forward Secrecy: How Diffie-Hellman fails in practice, in: CCS'15, ACM, 2015, pp. 5–17.
http://dl.acm.org/citation.cfm?doid=2810103.2813707
[27]
Agence nationale de la sécurité des systèmes d'information.
Référentiel général de sécurité, annexe B1, 2014, Version 2.03.
http://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
[28]
J.-C. Faugère, P.-J. Spaenlehauer, J. Svartz.
Sparse Gröbner bases: the unmixed case, in: ISSAC 2014, K. Nabeshima (editor), ACM, 2014, pp. 178–185, Proceedings.
[29]
J.-C. Faugère, M. Safey El Din, P.-J. Spaenlehauer.
Gröbner Bases of Bihomogeneous Ideals generated by Polynomials of Bidegree (1,1): Algorithms and Complexity, in: J. Symbolic Comput., 2011, vol. 46, no 4, pp. 406–437.
[30]
A. Guillevic.
Computing Individual Discrete Logarithms Faster in GF(pn) with the NFS-DL Algorithm, in: Asiacrypt 2015, Auckland, New Zealand, T. Iwata, J. H. Cheon (editors), Lecture Notes in Computer Science, Springer, November 2015, vol. 9452, pp. 149-173. [ DOI : 10.1007/978-3-662-48797-6_7 ]
https://hal.inria.fr/hal-01157378
[31]
T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, P. Zimmermann.
Factorization of a 768-bit RSA modulus, in: CRYPTO 2010, T. Rabin (editor), Lecture Notes in Comput. Sci., Springer–Verlag, 2010, vol. 6223, pp. 333–350, Proceedings.
[32]
S. Maitra, B. Mandal, T. Martinsen, D. Roy, P. Stanica.
Tools in Analyzing Linear Approximation for Boolean Functions Related to FLIP, in: Progress in Cryptology - INDOCRYPT 2018 - 19th International Conference on Cryptology in India, New Delhi, India, December 9-12, 2018, Proceedings, D. Chakraborty, T. Iwata (editors), Lecture Notes in Computer Science, Springer, 2018, vol. 11356, pp. 282–303.
https://doi.org/10.1007/978-3-030-05378-9_16
[33]
National Institute of Standards and Technology.
Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, 2011, First revision.
http://dx.doi.org/10.6028/NIST.SP.800-131A
[34]
E. Rescorla.
The Transport Layer Security (TLS) Protocol Version 1.3, 2018, RFC 8446.
https://tools.ietf.org/html/rfc8446