Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Major publications by the team in recent years
[1]
P. Bruel, S. Delmas, J. Jung, V. Perrier.
A low Mach correction able to deal with low Mach acoustics, in: Journal of Computational Physics, 2019, vol. 378, pp. 723–759.
https://hal.inria.fr/hal-01953424
[2]
S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.
Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]
https://hal.archives-ouvertes.fr/hal-00776629
[3]
J.-L. Florenciano, P. Bruel.
LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]
https://hal.inria.fr/hal-01353952
[4]
E. Franquet, V. Perrier.
Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, pp. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]
https://hal.inria.fr/hal-00684427
[5]
C. Friess, R. Manceau, T. Gatski.
Toward an equivalence criterion for Hybrid RANS/LES methods, in: Computers and Fluids, 2015, vol. 122, pp. 233-246. [ DOI : 10.1016/j.compfluid.2015.08.010 ]
[6]
J.-M. Hérard, J. Jung.
An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématiques, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]
https://hal.inria.fr/hal-01233251
[7]
R. Manceau.
Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: Int. J. Heat Fluid Fl., 2015, vol. 51, pp. 195-220.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.09.002
[8]
Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.
Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]
https://hal.inria.fr/hal-01096422
Publications of the year

Articles in International Peer-Reviewed Journals

[9]
A. H. Afailal, J. Galpin, A. Velghe, R. Manceau.
Development and validation of a hybrid temporal LES model in the perspective of applications to internal combustion engines, in: Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 2019, vol. 74, 56 p. [ DOI : 10.2516/ogst/2019031 ]
https://hal-ifp.archives-ouvertes.fr/hal-02162596
[10]
A. Beketaeva, P. Bruel, A. Z. Naimanova.
Detailed Comparative Analysis of Interaction of a Supersonic Flow with a Transverse Gas Jet at High Pressure Ratios, in: Technical Physics / Zhurnal Tekhnicheskoi Fiziki, October 2019, vol. 64, no 10, pp. 1430-1440. [ DOI : 10.1134/S1063784219100049 ]
https://hal.inria.fr/hal-02373910
[11]
S. Benhamadouche, I. Afgan, R. Manceau.
Numerical simulations of flow and heat transfer in a wall-bounded pin matrix, in: Flow, Turbulence and Combustion, 2019. [ DOI : 10.1007/s10494-019-00046-8 ]
https://hal.archives-ouvertes.fr/hal-02179021
[12]
P. Bruel, S. Delmas, J. Jung, V. Perrier.
A low Mach correction able to deal with low Mach acoustics, in: Journal of Computational Physics, February 2019, vol. 378, pp. 723-759. [ DOI : 10.1016/j.jcp.2018.11.020 ]
https://hal.inria.fr/hal-01953424
[13]
A. Mazaheri, C.-W. Shu, V. Perrier.
Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin schemes: Triangular elements, in: Journal of Computational Physics, October 2019, vol. 395, pp. 461-488. [ DOI : 10.1016/j.jcp.2019.06.023 ]
https://hal.archives-ouvertes.fr/hal-02321400
[14]
Y. Moguen, P. Bruel, E. Dick.
A combined momentum-interpolation and advection upstream splitting pressure-correction algorithm for simulation of convective and acoustic transport at all levels of Mach number, in: Journal of Computational Physics, May 2019, vol. 384, pp. 16-41. [ DOI : 10.1016/j.jcp.2019.01.029 ]
https://hal.inria.fr/hal-02064848

Articles in National Peer-Reviewed Journals

[15]
M. Grioni, S. Elaskar, A. Mirasso, P. Bruel.
Flow interference between circular cylinders in tandem arrangement near to a plane wall, in: Mecánica Computacional, November 2019, vol. 37, no 26, pp. 1065-1074.
https://hal.inria.fr/hal-02376562
[16]
L. Gutiérrez Marcantoni, S. Elaskar, J. Tamagno, P. Bruel.
Simulation of blast waves using OpenFOAM, in: Mecánica Computacional, November 2019, vol. 37, no 26, pp. 1075-1084.
https://hal.inria.fr/hal-02376633
[17]
J. Saldía, G. Krause, S. Elaskar, P. Bruel.
Modelizacion numerica de cargas de viento sobre un tanque de almacenamiento de combustible, in: Mecánica Computacional, November 2019, vol. 37, no 27, pp. 1163-1175.
https://hal.inria.fr/hal-02376676

Articles in Non Peer-Reviewed Journals

[18]
R. Manceau.
Hybrid temporal LES: Development and applications, in: ERCOFTAC Bulletin, 2019, forthcoming.
https://hal.archives-ouvertes.fr/hal-02344854

Invited Conferences

[19]
J. Jung.
Quelques applications des mathématiques au centre Inria de Bordeaux Sud-Ouest, in: Septième journée des Sciences de l'Ingénieur, Casablanca, Morocco, June 2019.
https://hal.inria.fr/hal-02283149
[20]
R. Manceau.
Modelling of turbulent natural convection (keynote lecture), in: 16th ERCOFTAC SIG15 Workshop on Modelling of wall bounded turbulent natural convection, Ljubljana, Slovenia, Jozef Stefan Institute (IJS), October 2019.
https://hal.archives-ouvertes.fr/hal-02319389

International Conferences with Proceedings

[21]
V. Duffal, B. De Laage De Meux, R. Manceau.
Development and validation of a hybrid RANS/LES approach based on temporal filtering, in: ASME - JSME - KSME Joint Fluids Engineering Conference 2019, San Francisco, CA, United States, Proc. ASME - JSME - KSME Joint Fluids Engineering Conference 2019, Jul 2019, San Francisco, CA, United States., 2019.
https://hal.archives-ouvertes.fr/hal-02128250
[22]
J. Syed Mohd Saad, R. Manceau, V. Herbert.
Sensitization of eddy-viscosity models to buoyancy effects for predicting natural convection flows, in: HEFAT 2019 - 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Wicklow, Ireland, Proc. HEFAT 2019 - 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2019.
https://hal.archives-ouvertes.fr/hal-02129153

Conferences without Proceedings

[23]
J. Jung, V. Perrier.
Low Mach corrections and checkerboard modes, in: ICIAM 2019 - International Congress on Industrial and Applied Mathematics, Valencia, Spain, July 2019.
https://hal.inria.fr/hal-02283173
[24]
J. Jung, V. Perrier.
Low Mach schemes for acoustics, in: ICIAM 2019 - International Congress on Industrial and Applied Mathematics, Valencia, Spain, July 2019.
https://hal.archives-ouvertes.fr/hal-02321427
[25]
Y. Moguen, P. Bruel, P. Correia, E. Dick.
Un algorithme pour la simulation du transport convectif et de la propagation acoustique à tout nombre de Mach, in: 24ème Congrès Français de Mécanique, Brest, France, August 2019.
https://hal-univ-pau.archives-ouvertes.fr/hal-02361166
[26]
V. Perrier, A. Mazaheri.
Symmetrizable first order formulation of Navier-Stokes equations and numerical results with the discontinuous Galerkin method, in: HONOM 2019 - European Workshop on High order nonlinear numerical methods for evolutionary PDEs: Theory and Applications, Madrid, Spain, April 2019.
https://hal.archives-ouvertes.fr/hal-02321418
[27]
J. Syed Mohd Saad, R. Manceau, V. Herbert.
A buoyancy extension for eddy-viscosity models for the natural convection regime, in: 17th European Turbulence Conference (ETC-2019), Torino, Italy, September 2019.
https://hal.archives-ouvertes.fr/hal-02305788

Other Publications

[28]
P. Bruel.
Pressure-based methodologies for zero Mach and low Mach flow simulations, September 2019, Workshop « Non Linear Phenomena and Dynamics of Flame Propagation ».
https://hal.inria.fr/hal-02379004
[29]
V. Duffal, R. Manceau, B. De Laage De Meux.
Hybrid RANS/LES modelling of unsteady turbulent loads in hydraulic pumps. A hybrid approach based on temporal filtering., May 2019, Code_Saturne user meeting, Poster.
https://hal.archives-ouvertes.fr/hal-02305766
[30]
G. Mangeon, S. Benhamadouche, R. Manceau, J.-F. Wald.
Conjugate heat transfer: A big challenge for RANS modeling, May 2019, Code_Saturne user meeting, Poster.
https://hal.archives-ouvertes.fr/hal-02128551
References in notes
[31]
D. N. Arnold.
An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760.
[32]
D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.
Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779.
[33]
C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures, in: Concurr. Comput. : Pract. Exper., February 2011, vol. 23, no 2, pp. 187–198.
http://dx.doi.org/10.1002/cpe.1631
[34]
F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.
On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]
http://www.sciencedirect.com/science/article/pii/S0021999111005055
[35]
F. Bassi, A. Crivellini, S. Rebay, M. Savini.
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540.
[36]
F. Bassi, S. Rebay.
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.
http://dx.doi.org/10.1006/jcph.1996.5572
[37]
F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.
A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109.
[38]
B. Cockburn, S. Hou, C.-W. Shu.
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.
http://dx.doi.org/10.2307/2008501
[39]
B. Cockburn, S. Y. Lin, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113.
[40]
B. Cockburn, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.
http://dx.doi.org/10.2307/2008474
[41]
B. Cockburn, C.-W. Shu.
The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361.
[42]
B. Cockburn, C.-W. Shu.
The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.
http://dx.doi.org/10.1006/jcph.1998.5892
[43]
S. S. Colis.
Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
[44]
M. Essadki, J. Jung, A. Larat, M. Pelletier, V. Perrier.
A task-driven implementation of a simple numerical solver for hyperbolic conservation laws, in: ESAIM: Proceedings and Surveys, January 2017, vol. 63, pp. 228-247. [ DOI : 10.1051/proc/201863228 ]
https://hal.archives-ouvertes.fr/hal-01439322
[45]
M. Feistauer, V. Kučera.
On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.
http://dx.doi.org/10.1016/j.jcp.2007.01.035
[46]
U. Frisch.
Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995.
[47]
M. Giles.
Non-Reflecting Boundary Conditions for Euler Equation Calculation, in: The American Institute of Aeronautics and Astronautics Journal, 1990, vol. 42, no 12.
[48]
R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20.
[49]
A. Jameson, M. Fatica.
Using Computational Fluid Dynamics for Aerodynamics, in: National Research Council Workshop on "The Future of Supercomputing", 2003.
[50]
C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.
http://dx.doi.org/10.2307/2008684
[51]
A. Klöckner, T. Warburton, J. Bridge, J. Hesthaven.
Nodal discontinuous Galerkin methods on graphics processors, in: Journal of Computational Physics, 2009, vol. 228, no 21, pp. 7863 - 7882. [ DOI : 10.1016/j.jcp.2009.06.041 ]
http://www.sciencedirect.com/science/article/pii/S0021999109003647
[52]
D. Knoll, D. Keyes.
Jacobian-free Newton-Krylov methods: a survey of approaches and applications, in: Journal of Computational Physics, 2004, vol. 193, no 2, pp. 357 - 397. [ DOI : 10.1016/j.jcp.2003.08.010 ]
http://www.sciencedirect.com/science/article/pii/S0021999103004340
[53]
P. Lesaint, P.-A. Raviart.
On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33.
[54]
F. Lörcher, G. Gassner, C.-D. Munz.
An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.
http://dx.doi.org/10.1016/j.jcp.2008.02.015
[55]
A. C. Muresan, Y. Notay.
Analysis of Aggregation-Based Multigrid, in: SIAM J. Sci. Comput., March 2008, vol. 30, no 2, pp. 1082–1103.
http://dx.doi.org/10.1137/060678397
[56]
T. Poinsot, S. Lele.
Boundary conditions for direct simulations of compressible viscous flows, in: Journal of Computational Physics, 1992, vol. 101, pp. 104-129.
[57]
W. Reed, T. Hill.
Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
[58]
H. Sutter.
The free lunch is over: A fundamental turn toward concurrency in software, in: Dr. Dobb's Journal, 2005.
[59]
K. W. Thompson.
Time-dependent boundary conditions for hyperbolic systems, {II}, in: Journal of Computational Physics, 1990, vol. 89, no 2, pp. 439 - 461. [ DOI : 10.1016/0021-9991(90)90152-Q ]
http://www.sciencedirect.com/science/article/pii/002199919090152Q
[60]
I. Toulopoulos, J. A. Ekaterinaris.
Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method, in: Journal of Computational Physics, 2011, vol. 230, no 15, pp. 5974 - 5995. [ DOI : 10.1016/j.jcp.2011.04.008 ]
http://www.sciencedirect.com/science/article/pii/S0021999111002324
[61]
P. Wesseling.
An introduction to multigrid methods, Pure and applied mathematics, J. Wiley, Chichester, New York, 1992.
http://opac.inria.fr/record=b1088946
[62]
I. Yavneh.
Why Multigrid Methods Are So Efficient, in: Computing in Science and Engg., November 2006, vol. 8, no 6, pp. 12–22.
http://dx.doi.org/10.1109/MCSE.2006.125
[63]
J. van der Vegt, S. Rhebergen.
hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, in: Journal of Computational Physics, 2012, vol. 231, no 22, pp. 7537 - 7563. [ DOI : 10.1016/j.jcp.2012.05.038 ]
http://www.sciencedirect.com/science/article/pii/S0021999112003129