Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

[1]
N. Augier.
Contrôle adiabatique des systèmes quantiques, Université Paris-Saclay (ComUE), September 2019.
[2]
A. Hayat.
Stabilization of 1D nonlinear hyperbolic systems by boundary controls, Sorbonne Université , UPMC, May 2019.
https://tel.archives-ouvertes.fr/tel-02274457
[3]
M. Kohli.
On the notion of geodesic curvature in sub-Riemannian geometry, Université Paris-Saclay, September 2019.
https://tel.archives-ouvertes.fr/tel-02325081
[4]
J. Orłowski.
Adaptive control of time-delay systems to counteract pathological brain oscillations, Université Paris-Saclay (ComUE), December 2019.
[5]
S. Xiang.
Stabilisation rapide d’équations de Burgers et de Korteweg-de Vrie, Sorbonne Université, June 2019.
[6]
C. Zhang.
Internal control and stabilization of some 1-D hyperbolic systems, Sorbonne Université, October 2019.
https://tel.archives-ouvertes.fr/tel-02464011

Articles in International Peer-Reviewed Journals

[7]
A. Aftalion, P. Martinon.
Optimizing running a race on a curved track, in: PLoS ONE, September 2019, vol. 14, no 9, 23 p, https://arxiv.org/abs/1811.12321. [ DOI : 10.1371/journal.pone.0221572 ]
https://hal.inria.fr/hal-01936993
[8]
D. Barilari, Y. Chitour, F. Jean, D. Prandi, M. Sigalotti.
On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures, in: Journal de Mathématiques Pures et Appliquées, 2019, https://arxiv.org/abs/1804.00971, forthcoming. [ DOI : 10.1016/j.matpur.2019.04.008 ]
https://hal.archives-ouvertes.fr/hal-01757343
[9]
G. Bastin, J.-M. Coron, A. Hayat, P. Shang.
Boundary feedback stabilization of hydraulic jumps, in: IFAC Journal of Systems and Control, 2019.
https://hal.archives-ouvertes.fr/hal-02004457
[10]
G. Bastin, J.-M. Coron, A. Hayat, P. Shang.
Exponential boundary feedback stabilization of a shock steady state for the inviscid Burgers equation, in: Mathematical Models and Methods in Applied Sciences, 2019, vol. 29, no 2, pp. 271-316.
https://hal.archives-ouvertes.fr/hal-01723361
[11]
R. Bonalli, B. Hérissé, E. Trélat.
Solving nonlinear optimal control problems with state and control delays by shooting methods combined with numerical continuation on the delays, in: SIAM Journal on Control and Optimization, 2019, vol. 57, no 2, pp. 1440–1466, https://arxiv.org/abs/1805.11990. [ DOI : 10.1137/18M119121X ]
https://hal.archives-ouvertes.fr/hal-01802752
[12]
C. Chen, B. Gris, O. Öktem.
Joint Image Reconstruction and Motion Estimation for Spatiotemporal Imaging, in: SIAM Journal on Imaging Sciences, October 2019.
https://hal.archives-ouvertes.fr/hal-02386215
[13]
Y. Chitour, G. Mazanti, M. Sigalotti.
Approximate and exact controllability of linear difference equations, in: Journal de l'École polytechnique — Mathématiques, 2020, vol. 7, pp. 93–142, https://arxiv.org/abs/1708.06175. [ DOI : 10.5802/jep.112 ]
https://hal.inria.fr/hal-01575576
[14]
J.-M. Coron, F. Marbach, F. Sueur, P. Zhang.
Controllability of the Navier-Stokes equation in a rectangle with a little help of a distributed phantom force, in: Annals of PDE, 2019, vol. 5, no 17, https://arxiv.org/abs/1801.01860, forthcoming. [ DOI : 10.1007/s40818-019-0073-4 ]
https://hal.archives-ouvertes.fr/hal-01676663
[15]
J.-M. Coron, H.-M. Nguyen.
Optimal time for the controllability of linear hyperbolic systems in one dimensional space, in: SIAM Journal on Control and Optimization, April 2019, vol. 57, no 2, pp. 1127-1156. [ DOI : 10.1137/18M1185600 ]
https://hal.archives-ouvertes.fr/hal-01952134
[16]
B. Gris.
Incorporation of a deformation prior in image reconstruction, in: Journal of Mathematical Imaging and Vision, June 2019.
https://hal.archives-ouvertes.fr/hal-01810443
[17]
E. Humbert, Y. Privat, E. Trélat.
Observability properties of the homogeneous wave equation on a closed manifold, in: Communications in Partial Differential Equations, 2019, vol. 44, no 9, pp. 749–772, https://arxiv.org/abs/1607.01535. [ DOI : 10.1080/03605302.2019.1581799 ]
https://hal.archives-ouvertes.fr/hal-01338016
[18]
A. Le Rhun, F. Bonnans, G. De Nunzio, T. Leroy, P. Martinon.
A stochastic data-based traffic model applied to vehicles energy consumption estimation, in: IEEE Transactions on Intelligent Transportation Systems, 2019, forthcoming. [ DOI : 10.1109/TITS.2019.2923292 ]
https://hal.inria.fr/hal-01774621
[19]
A. Olivier, T. Haberkorn, E. Trélat, E. Bourgeois, D.-A. Handschuh.
Redundancy implies robustness for bang-bang strategies, in: Optimal Control Applications and Methods, 2019, vol. 40, no 1, pp. 85–104, https://arxiv.org/abs/1707.02053.
https://hal.archives-ouvertes.fr/hal-01557937
[20]
J. Orlowski, A. Chaillet, M. Sigalotti.
Counterexample to a Lyapunov Condition for Uniform Asymptotic Partial Stability, in: IEEE Control Systems Letters, April 2020, vol. 4, no 2, pp. 397-401. [ DOI : 10.1109/LCSYS.2019.2939717 ]
https://hal.archives-ouvertes.fr/hal-02291650
[21]
B. Piccoli, N. Pouradier Duteil, E. Trélat.
Sparse control of Hegselmann-Krause models: Black hole and declustering, in: SIAM Journal on Control and Optimization, 2019, vol. 57, no 4, pp. 2628–2659. [ DOI : 10.1137/18M1168911 ]
https://hal.archives-ouvertes.fr/hal-01699261
[22]
C. Pouchol, E. Trélat, E. Zuazua.
Phase portrait control for 1D monostable and bistable reaction-diffusion equations, in: Nonlinearity, 2019, vol. 32, no 3, pp. 884–909, https://arxiv.org/abs/1805.10786. [ DOI : 10.1088/1361-6544/aaf07e ]
https://hal.archives-ouvertes.fr/hal-01800382
[23]
C. Prieur, E. Trélat.
Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control, in: IEEE Transactions on Automatic Control, 2019, vol. 64, no 4, pp. 1415-1425, https://arxiv.org/abs/1709.02735. [ DOI : 10.1109/TAC.2018.2849560 ]
https://hal.archives-ouvertes.fr/hal-01583199
[24]
Y. Privat, E. Trélat, E. Zuazua.
Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions, in: Calculus of Variations and Partial Differential Equations, 2019, vol. 58, no 2, 64 p, https://arxiv.org/abs/1809.05316. [ DOI : 10.1007/s00526-019-1522-3 ]
https://hal.archives-ouvertes.fr/hal-01872896
[25]
C. Rommel, F. Bonnans, P. Martinon, B. Gregorutti.
Gaussian Mixture Penalty for Trajectory Optimization Problems, in: Journal of Guidance, Control, and Dynamics, August 2019, vol. 42, no 8, pp. 1857–1862. [ DOI : 10.2514/1.G003996 ]
https://hal.inria.fr/hal-01819749
[26]
E. Trélat, G. Wang, Y. Xu.
Characterization by observability inequalities of controllability and stabilization properties, in: Pure and Applied Analysis, 2020, vol. 2, no 1, pp. 93–122, https://arxiv.org/abs/1811.01543. [ DOI : 10.2140/paa.2020.2.93 ]
https://hal.archives-ouvertes.fr/hal-01911941
[27]
S. Xiang.
Null controllability of a linearized Korteweg-de Vries equation by backstepping approach, in: SIAM Journal on Control and Optimization, April 2019. [ DOI : 10.1137/17M1115253 ]
https://hal.archives-ouvertes.fr/hal-01468750
[28]
O. Öktem, B. Gris, C. Chen.
Image reconstruction through metamorphosis, in: Inverse Problems, 2019, forthcoming.
https://hal.archives-ouvertes.fr/hal-01773633

International Conferences with Proceedings

[29]
N. Augier, U. Boscain, M. Sigalotti.
On the compatibility between the adiabatic and the rotating wave approximations in quantum control, in: CDC 2019 - 58th Conference on Decision and Control, Nice, France, December 2019, https://arxiv.org/abs/1909.02226.
https://hal.inria.fr/hal-02277852

Scientific Books (or Scientific Book chapters)

[30]
A. Agrachev, D. Barilari, U. Boscain.
A Comprehensive Introduction to sub-Riemannian Geometry, in: A Comprehensive Introduction to sub-Riemannian Geometry, 2019, Introduction de l'ouvrage, forthcoming.
https://hal.archives-ouvertes.fr/hal-02019181
[31]
U. Boscain, M. Sigalotti.
Introduction to controllability of non-linear systems, in: Contemporary Research in Elliptic PDEs and Related Topics, S. Dipierro (editor), Springer, 2019. [ DOI : 10.1007/978-3-030-18921-1_4 ]
https://hal.inria.fr/hal-02421207
[32]
L. Younes, B. Gris, A. Trouvé.
Sub-Riemannian Methods in Shape Analysis, in: Handbook of Variational Methods for Nonlinear Geometric Data, Springer, 2020, forthcoming.
https://hal.archives-ouvertes.fr/hal-02386227

Other Publications

[33]
R. Adami, U. Boscain, V. Franceschi, D. Prandi.
Point interactions for 3D sub-Laplacians, February 2019, https://arxiv.org/abs/1902.05475 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02020844
[34]
N. Augier, U. Boscain, M. Sigalotti.
Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems, September 2019, https://arxiv.org/abs/1909.02271 - working paper or preprint.
https://hal.inria.fr/hal-02277653
[35]
I. Beschastnyi, U. Boscain, M. Sigalotti.
An obstruction to small-time controllability of the bilinear Schrödinger equation, December 2019, https://arxiv.org/abs/1911.12994 - working paper or preprint.
https://hal.inria.fr/hal-02385244
[36]
F. Boarotto, Y. Chitour, M. Sigalotti.
Fuller singularities for generic control-affine systems with an even number of controls, September 2019, https://arxiv.org/abs/1909.01061 - working paper or preprint.
https://hal.inria.fr/hal-02276960
[37]
F. Boarotto, M. Sigalotti.
Dwell-time control sets and applications to the stability analysis of linear switched systems, February 2019, https://arxiv.org/abs/1902.03757 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02012606
[38]
R. Bonalli, B. Hérissé, E. Trélat.
Optimal Control of Endo-Atmospheric Launch Vehicle Systems: Geometric and Computational Issues, March 2019, https://arxiv.org/abs/1710.11501 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01626869
[39]
U. Boscain, R. W. Neel.
Extensions of Brownian motion to a family of Grushin-type singularities, December 2019, https://arxiv.org/abs/1910.02256 - 11 pages. [ DOI : 10.02256 ]
https://hal.archives-ouvertes.fr/hal-02394958
[40]
U. Boscain, E. Pozzoli, M. Sigalotti.
Classical and quantum controllability of a rotating 3D symmetric molecule, December 2019, https://arxiv.org/abs/1910.01924 - working paper or preprint. [ DOI : 10.01924 ]
https://hal.inria.fr/hal-02421593
[41]
Y. Chitour, N. Guglielmi, V. Y. Protasov, M. Sigalotti.
Switching systems with dwell time: computation of the maximal Lyapunov exponent, December 2019, https://arxiv.org/abs/1912.10214 - working paper or preprint.
https://hal.inria.fr/hal-02423619
[42]
Y. Chitour, G. Mazanti, M. Sigalotti.
On the gap between deterministic and probabilistic joint spectral radii for discrete-time linear systems, November 2019, https://arxiv.org/abs/1812.08399 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01961003
[43]
J.-M. Coron, L. Grüne, K. Worthmann.
Model Predictive Control, Cost Controllability, and Homogeneity *, December 2019, https://arxiv.org/abs/1906.05112 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02151402
[44]
J.-M. Coron, H.-M. Nguyen.
Null-controllability of linear hyperbolic systems in one dimensional space, October 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02334761
[45]
A. Hayat.
Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01613139
[46]
A. Hayat.
On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the C1 norm., January 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01790104
[47]
A. Hayat.
PI controller for the general Saint-Venant equations, January 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01827988
[48]
A. Hayat, P. Shang.
Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, July 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02190778
[49]
E. Humbert, Y. Privat, E. Trélat.
Geometric and probabilistic results for the observability of the wave equation, December 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01652890
[50]
M. Kohli.
A metric interpretation of the geodesic curvature in the heisenberg group, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01916425
[51]
G. Lance, E. Trélat, E. Zuazua.
Turnpike in optimal shape design, December 2019, https://arxiv.org/abs/1912.02621 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02388972
[52]
A. Le Rhun, F. Bonnans, G. De Nunzio, T. Leroy, P. Martinon.
A bi-level energy management strategy for HEVs under probabilistic traffic conditions, September 2019, working paper or preprint.
https://hal.inria.fr/hal-02278359
[53]
A. Le Rhun, F. Bonnans, G. De Nunzio, T. Leroy, P. Martinon.
An Eco-routing algorithm for HEVs under traffic conditions, November 2019, working paper or preprint.
https://hal.inria.fr/hal-02356277
[54]
C. Letrouit.
From internal to pointwise control for the 1D heat equation and minimal control time, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02013076
[55]
C. Letrouit.
Infinite-time observability of the wave equation with time-varying observation domains under a geodesic recurrence condition, April 2019, https://arxiv.org/abs/1904.11354 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02102135
[56]
H. Lhachemi, C. Prieur, E. Trélat.
PI Regulation of a Reaction-Diffusion Equation with Delayed Boundary Control, September 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02294321
[57]
J. Lohéac, E. Trélat, E. Zuazua.
Nonnegative control of finite-dimensional linear systems, 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02335968
[58]
M. Sigalotti.
Bounds on time-optimal concatenations of arcs for two-input driftless 3D systems, November 2019, https://arxiv.org/abs/1911.10811 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02378196
[59]
E. Trélat, G. Wang, Y. Xu.
Stabilization of infinite-dimensional linear control systems by POD reduced-order Riccati feedback, June 2019, https://arxiv.org/abs/1906.10339 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02163854
[60]
C. Zhang.
Finite-time internal stabilization of a linear 1-D transport equation, November 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01980349
[61]
C. Zhang.
Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback, November 2019, https://arxiv.org/abs/1810.11214 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01905098
References in notes
[62]
D. Barilari, U. Boscain, M. Sigalotti (editors)
Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2016, vi+324 p, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion” held in Luminy, Fall 2014.
https://doi.org/10.4171/163
[63]
D. Barilari, U. Boscain, M. Sigalotti (editors)
Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. II, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2016, viii+299 p, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion” held in Luminy, Fall 2014.
https://doi.org/10.4171/163
[64]
R. Adami, U. Boscain.
Controllability of the Schrödinger Equation via Intersection of Eigenvalues, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 1080–1085.
[65]
A. A. Agrachev.
Some open problems, in: Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., Springer, Cham, 2014, vol. 5, pp. 1–13.
[66]
A. Agrachev, D. Barilari, L. Rizzi.
Curvature: a variational approach, in: Mem. Amer. Math. Soc., 2018, vol. 256, no 1225, v+142 p.
[67]
A. A. Agrachev, Y. Baryshnikov, D. Liberzon.
On robust Lie-algebraic stability conditions for switched linear systems, in: Systems Control Lett., 2012, vol. 61, no 2, pp. 347–353.
https://doi.org/10.1016/j.sysconle.2011.11.016
[68]
A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi.
The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, in: J. Funct. Anal., 2009, vol. 256, no 8, pp. 2621–2655.
https://doi.org/10.1016/j.jfa.2009.01.006
[69]
A. Agrachev, P. W. Y. Lee.
Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, in: Math. Ann., 2014, vol. 360, no 1-2, pp. 209–253.
https://doi.org/10.1007/s00208-014-1034-6
[70]
A. A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
https://doi.org/10.1007/978-3-662-06404-7
[71]
L. Ambrosio, N. Gigli, G. Savaré.
Metric measure spaces with Riemannian Ricci curvature bounded from below, in: Duke Math. J., 2014, vol. 163, no 7, pp. 1405–1490.
https://doi.org/10.1215/00127094-2681605
[72]
L. Ambrosio, P. Tilli.
Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, vol. 25, viii+133 p.
[73]
M. Balde, U. Boscain, P. Mason.
A note on stability conditions for planar switched systems, in: Internat. J. Control, 2009, vol. 82, no 10, pp. 1882–1888.
https://doi.org/10.1080/00207170902802992
[74]
F. Baudoin, N. Garofalo.
Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, in: J. Eur. Math. Soc. (JEMS), 2017, vol. 19, no 1, pp. 151–219.
https://doi.org/10.4171/JEMS/663
[75]
F. Baudoin, J. Wang.
Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds, in: Potential Anal., 2014, vol. 40, no 2, pp. 163–193.
https://doi.org/10.1007/s11118-013-9345-x
[76]
T. Bayen.
Analytical parameterization of rotors and proof of a Goldberg conjecture by optimal control theory, in: SIAM J. Control Optim., 2008, vol. 47, no 6, pp. 3007–3036. [ DOI : 10.1137/070705325 ]
[77]
K. Beauchard, J.-M. Coron.
Controllability of a quantum particle in a moving potential well, in: J. Funct. Anal., 2006, vol. 232, no 2, pp. 328–389.
[78]
M. Benaïm, S. Le Borgne, F. Malrieu, P.-A. Zitt.
Qualitative properties of certain piecewise deterministic Markov processes, in: Ann. Inst. Henri Poincaré Probab. Stat., 2015, vol. 51, no 3, pp. 1040–1075.
https://doi.org/10.1214/14-AIHP619
[79]
B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis, J. P. Gauthier.
The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements, in: PLoS Comput. Biol., 2008, vol. 4, no 10, e1000194, 25 p.
https://doi.org/10.1371/journal.pcbi.1000194
[80]
F. Blanchini.
Nonquadratic Lyapunov functions for robust control, in: Automatica J. IFAC, 1995, vol. 31, no 3, pp. 451–461.
http://dx.doi.org/10.1016/0005-1098(94)00133-4
[81]
F. Blanchini, S. Miani.
A new class of universal Lyapunov functions for the control of uncertain linear systems, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 3, pp. 641–647.
http://dx.doi.org/10.1109/9.751368
[82]
A. Bonfiglioli, E. Lanconelli, F. Uguzzoni.
Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 p.
[83]
M. Born, V. Fock.
Beweis des adiabatensatzes, in: Zeitschrift für Physik A Hadrons and Nuclei, 1928, vol. 51, no 3–4, pp. 165–180.
[84]
U. Boscain.
Stability of planar switched systems: the linear single input case, in: SIAM J. Control Optim., 2002, vol. 41, no 1, pp. 89–112. [ DOI : 10.1137/S0363012900382837 ]
[85]
U. Boscain, M. Caponigro, T. Chambrion, M. Sigalotti.
A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, in: Comm. Math. Phys., 2012, vol. 311, no 2, pp. 423–455.
https://doi.org/10.1007/s00220-012-1441-z
[86]
U. Boscain, M. Caponigro, M. Sigalotti.
Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum, in: J. Differential Equations, 2014, vol. 256, no 11, pp. 3524–3551.
https://doi.org/10.1016/j.jde.2014.02.004
[87]
U. Boscain, G. Charlot, M. Sigalotti.
Stability of planar nonlinear switched systems, in: Discrete Contin. Dyn. Syst., 2006, vol. 15, no 2, pp. 415–432.
https://doi.org/10.3934/dcds.2006.15.415
[88]
U. Boscain, R. A. Chertovskih, J. P. Gauthier, A. O. Remizov.
Hypoelliptic diffusion and human vision: a semidiscrete new twist, in: SIAM J. Imaging Sci., 2014, vol. 7, no 2, pp. 669–695. [ DOI : 10.1137/130924731 ]
[89]
U. Boscain, F. Chittaro, P. Mason, M. Sigalotti.
Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues, in: IEEE Trans. Automat. Control, 2012, vol. 57, no 8, pp. 1970–1983.
[90]
U. Boscain, J. Duplaix, J.-P. Gauthier, F. Rossi.
Anthropomorphic image reconstruction via hypoelliptic diffusion, in: SIAM J. Control Optim., 2012, vol. 50, no 3, pp. 1309–1336. [ DOI : 10.1137/11082405X ]
[91]
M. S. Branicky.
Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, in: IEEE Trans. Automat. Control, 1998, vol. 43, no 4, pp. 475–482, Hybrid control systems.
https://doi.org/10.1109/9.664150
[92]
R. W. Brockett.
System theory on group manifolds and coset spaces, in: SIAM J. Control, 1972, vol. 10, pp. 265–284.
[93]
F. Bullo, A. D. Lewis.
Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-Verlag, New York, 2005, vol. 49, xxiv+726 p, Modeling, analysis, and design for simple mechanical control systems. [ DOI : 10.1007/978-1-4899-7276-7 ]
[94]
C. Carathéodory.
Untersuchungen über die Grundlagen der Thermodynamik, in: Math. Ann., 1909, vol. 67, no 3, pp. 355–386.
https://doi.org/10.1007/BF01450409
[95]
E. Cartan.
Sur la represéntation géométrique des systèmes matériels non holonomes, in: Proceedings of the International Congress of Mathematicians. Volume 4., 1928, pp. 253–261.
[96]
T. Chambrion, P. Mason, M. Sigalotti, U. Boscain.
Controllability of the discrete-spectrum Schrödinger equation driven by an external field, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 1, pp. 329–349.
https://doi.org/10.1016/j.anihpc.2008.05.001
[97]
G. Citti, A. Sarti.
A cortical based model of perceptual completion in the roto-translation space, in: J. Math. Imaging Vision, 2006, vol. 24, no 3, pp. 307–326.
http://dx.doi.org/10.1007/s10851-005-3630-2
[98]
F. Colonius, G. Mazanti.
Decay rates for stabilization of linear continuous-time systems with random switching, in: Math. Control Relat. Fields, 2019.
[99]
J.-M. Coron.
Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, vol. 136, xiv+426 p.
[100]
J.-M. Coron.
On the controllability of nonlinear partial differential equations, in: Proceedings of the International Congress of Mathematicians. Volume I, Hindustan Book Agency, New Delhi, 2010, pp. 238–264.
[101]
J.-M. Coron.
Global asymptotic stabilization for controllable systems without drift, in: Math. Control Signals Systems, 1992, vol. 5, no 3, pp. 295–312.
https://doi.org/10.1007/BF01211563
[102]
D. D'Alessandro.
Introduction to quantum control and dynamics, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2008, xiv+343 p.
[103]
W. P. Dayawansa, C. F. Martin.
A converse Lyapunov theorem for a class of dynamical systems which undergo switching, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 4, pp. 751–760.
http://dx.doi.org/10.1109/9.754812
[104]
R. Duits, E. Franken.
Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images, in: Int. J. Comput. Vis., 2011, vol. 92, no 3, pp. 231–264.
https://doi.org/10.1007/s11263-010-0332-z
[105]
M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and defect of non-linear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327–1361.
https://doi.org/10.1080/00207179508921959
[106]
A. Franci, R. Sepulchre.
A three-scale model of spatio-temporal bursting, in: SIAM J. Appl. Dyn. Syst., 2016, vol. 15, no 4, pp. 2143–2175. [ DOI : 10.1137/15M1046101 ]
[107]
S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm.
Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe, in: European Physical Journal D, 2015, vol. 69, 279 p. [ DOI : 10.1140/epjd/e2015-60464-1 ]
[108]
E. Hakavuori, E. Le Donne.
Non-minimality of corners in subriemannian geometry, in: Invent. Math., 2016, pp. 1–12. [ DOI : 10.1007/s00222-016-0661-9 ]
[109]
R. K. Hladky, S. D. Pauls.
Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model, in: J. Math. Imaging Vision, 2010, vol. 36, no 1, pp. 1–27.
https://doi.org/10.1007/s10851-009-0167-9
[110]
D. Hubel, T. Wiesel.
Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford University Press, Oxford, 2004.
[111]
V. Jurdjevic.
Geometric control theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997, vol. 52, xviii+492 p.
[112]
V. Jurdjevic, H. J. Sussmann.
Control systems on Lie groups, in: J. Differential Equations, 1972, vol. 12, pp. 313–329.
https://doi.org/10.1016/0022-0396(72)90035-6
[113]
M. Keyl, R. Zeier, T. Schulte-Herbrueggen.
Controlling Several Atoms in a Cavity, in: New J. Phys., 2014, vol. 16, 065010 p.
[114]
F. Küsters, S. Trenn.
Switch observability for switched linear systems, in: Automatica J. IFAC, 2018, vol. 87, pp. 121–127.
https://doi.org/10.1016/j.automatica.2017.09.024
[115]
E. Le Donne, G. P. Leonardi, R. Monti, D. Vittone.
Extremal Curves in Nilpotent Lie Groups, in: Geom. Funct. Anal., jul 2013, vol. 23, no 4, pp. 1371–1401. [ DOI : 10.1007/s00039-013-0226-7 ]
http://arxiv.org/abs/1207.3985
[116]
Z. Leghtas, A. Sarlette, P. Rouchon.
Adiabatic passage and ensemble control of quantum systems, in: Journal of Physics B, 2011, vol. 44, no 15.
[117]
C. Li, I. Zelenko.
Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries, in: J. Geom. Phys., 2011, vol. 61, no 4, pp. 781–807.
https://doi.org/10.1016/j.geomphys.2010.12.009
[118]
D. Liberzon, J. P. Hespanha, A. S. Morse.
Stability of switched systems: a Lie-algebraic condition, in: Systems Control Lett., 1999, vol. 37, no 3, pp. 117–122.
https://doi.org/10.1016/S0167-6911(99)00012-2
[119]
D. Liberzon.
Switching in systems and control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 p.
https://doi.org/10.1007/978-1-4612-0017-8
[120]
D. Liberzon.
Calculus of variations and optimal control theory, Princeton University Press, Princeton, NJ, 2012, xviii+235 p, A concise introduction.
[121]
H. Lin, P. J. Antsaklis.
Stability and stabilizability of switched linear systems: a survey of recent results, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 2, pp. 308–322.
http://dx.doi.org/10.1109/TAC.2008.2012009
[122]
W. Liu.
Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in: SIAM J. Control Optim., 1997, vol. 35, no 6, pp. 1989–2020. [ DOI : 10.1137/S0363012994268667 ]
[123]
J. Lott, C. Villani.
Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2), 2009, vol. 169, no 3, pp. 903–991.
https://doi.org/10.4007/annals.2009.169.903
[124]
P. Mason, U. Boscain, Y. Chitour.
Common polynomial Lyapunov functions for linear switched systems, in: SIAM J. Control Optim., 2006, vol. 45, no 1, pp. 226–245 (electronic). [ DOI : 10.1137/040613147 ]
[125]
P. Mason, M. Sigalotti.
Generic controllability properties for the bilinear Schrödinger equation, in: Comm. Partial Differential Equations, 2010, vol. 35, no 4, pp. 685–706.
https://doi.org/10.1080/03605300903540919
[126]
L. Massoulié.
Stability of distributed congestion control with heterogeneous feedback delays, in: IEEE Trans. Automat. Control, 2002, vol. 47, no 6, pp. 895–902, Special issue on systems and control methods for communication networks.
https://doi.org/10.1109/TAC.2002.1008356
[127]
M. I. Miller, A. Trouvé, L. Younes.
Geodesic shooting for computational anatomy, in: J. Math. Imaging Vision, 2006, vol. 24, no 2, pp. 209–228.
https://doi.org/10.1007/s10851-005-3624-0
[128]
M. Mirrahimi.
Lyapunov control of a quantum particle in a decaying potential, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 5, pp. 1743–1765.
https://doi.org/10.1016/j.anihpc.2008.09.006
[129]
A. P. Molchanov, Y. S. Pyatnitskiy.
Lyapunov functions that specify necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems, I, II, III, in: Automat. Remote Control, 1986, vol. 47, pp. 344–354, 443–451, 620–630.
[130]
R. Montgomery.
A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
[131]
R. Monti.
The regularity problem for sub-Riemannian geodesics, in: Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., Springer, Cham, 2014, vol. 5, pp. 313–332.
https://doi.org/10.1007/978-3-319-02132-4_18
[132]
R. M. Murray, S. S. Sastry.
Nonholonomic motion planning: steering using sinusoids, in: IEEE Trans. Automat. Control, 1993, vol. 38, no 5, pp. 700–716.
https://doi.org/10.1109/9.277235
[133]
G. Nenciu.
On the adiabatic theorem of quantum mechanics, in: J. Phys. A, 1980, vol. 13, no 2, pp. L15–L18.
http://stacks.iop.org/0305-4470/13/L15
[134]
V. Nersesyan.
Growth of Sobolev norms and controllability of the Schrödinger equation, in: Comm. Math. Phys., 2009, vol. 290, no 1, pp. 371–387.
[135]
D. Patino, M. Bâja, P. Riedinger, H. Cormerais, J. Buisson, C. Iung.
Alternative control methods for DC-DC converters: an application to a four-level three-cell DC-DC converter, in: Internat. J. Robust Nonlinear Control, 2011, vol. 21, no 10, pp. 1112–1133.
https://doi.org/10.1002/rnc.1651
[136]
J. Petitot.
Neurogéomètrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Les Éditions de l'École Polythechnique, 2008.
[137]
J. Ruess, J. Lygeros.
Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks, in: ACM Trans. Model. Comput. Simul., 2015, vol. 25, no 2, Art. 8, 25 p.
https://doi.org/10.1145/2688906
[138]
A. Sarti, G. Citti, J. Petitot.
The symplectic structure of the primary visual cortex, in: Biol. Cybernet., 2008, vol. 98, no 1, pp. 33–48.
http://dx.doi.org/10.1007/s00422-007-0194-9
[139]
H. Schättler, U. Ledzewicz.
Geometric optimal control, Interdisciplinary Applied Mathematics, Springer, New York, 2012, vol. 38, xx+640 p, Theory, methods and examples.
https://doi.org/10.1007/978-1-4614-3834-2
[140]
H. Schättler, U. Ledzewicz.
Optimal control for mathematical models of cancer therapies, Interdisciplinary Applied Mathematics, Springer, New York, 2015, vol. 42, xix+496 p, An application of geometric methods.
https://doi.org/10.1007/978-1-4939-2972-6
[141]
R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King.
Stability criteria for switched and hybrid systems, in: SIAM Rev., 2007, vol. 49, no 4, pp. 545–592. [ DOI : 10.1137/05063516X ]
[142]
S. Solmaz, R. Shorten, K. Wulff, F. Ó Cairbre.
A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control, in: Automatica J. IFAC, 2008, vol. 44, no 9, pp. 2358–2363.
https://doi.org/10.1016/j.automatica.2008.01.014
[143]
E. D. Sontag.
Input to state stability: basic concepts and results, in: Nonlinear and optimal control theory, Lecture Notes in Math., Springer, Berlin, 2008, vol. 1932, pp. 163–220.
https://doi.org/10.1007/978-3-540-77653-6_3
[144]
K.-T. Sturm.
On the geometry of metric measure spaces. I, in: Acta Math., 2006, vol. 196, no 1, pp. 65–131.
https://doi.org/10.1007/s11511-006-0002-8
[145]
K.-T. Sturm.
On the geometry of metric measure spaces. II, in: Acta Math., 2006, vol. 196, no 1, pp. 133–177.
https://doi.org/10.1007/s11511-006-0003-7
[146]
Z. Sun, S. S. Ge, T. H. Lee.
Controllability and reachability criteria for switched linear systems, in: Automatica J. IFAC, 2002, vol. 38, no 5, pp. 775–786.
https://doi.org/10.1016/S0005-1098(01)00267-9
[147]
Z. Sun, S. S. Ge.
Stability theory of switched dynamical systems, Communications and Control Engineering Series, Springer, London, 2011, xx+253 p.
https://doi.org/10.1007/978-0-85729-256-8
[148]
H. J. Sussmann.
A regularity theorem for minimizers of real-analytic subriemannian metrics, in: 53rd IEEE Conference on Decision and Control, 2014, pp. 4801-4806.
[149]
K. Tan, X. Yang.
Subriemannian geodesics of Carnot groups of step 3, in: ESAIM Control Optim. Calc. Var., 2013, vol. 19, no 1, pp. 274–287.
https://doi.org/10.1051/cocv/2012006
[150]
S. Teufel.
Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003, vol. 1821, vi+236 p.
[151]
A. Trouvé, L. Younes.
Metamorphoses through Lie group action, in: Found. Comput. Math., 2005, vol. 5, no 2, pp. 173–198.
https://doi.org/10.1007/s10208-004-0128-z
[152]
E. Trélat.
Contrôle optimal, Mathématiques Concrètes. [Concrete Mathematics], Vuibert, Paris, 2005, vi+246 p, Théorie & applications. [Theory and applications].
[153]
M. Tucsnak, G. Weiss.
Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, xii+483 p.
https://doi.org/10.1007/978-3-7643-8994-9
[154]
G. Turinici.
On the controllability of bilinear quantum systems, in: Mathematical models and methods for ab initio Quantum Chemistry, M. Defranceschi, C. Le Bris (editors), Lecture Notes in Chemistry, Springer, 2000, vol. 74.
[155]
M. Viana.
Lectures on Lyapunov exponents, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2014, vol. 145, xiv+202 p.
https://doi.org/10.1017/CBO9781139976602
[156]
R. Vinter.
Optimal control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000, xviii+507 p.
[157]
D. Wisniacki, G. Murgida, P. Tamborenea.
Quantum control using diabatic and adiabatic transitions, in: AIP Conference Proceedings, AIP, 2007, vol. 963, no 2, pp. 840–842.
[158]
L. Yatsenko, S. Guérin, H. Jauslin.
Topology of adiabatic passage, in: Phys. Rev. A, 2002, vol. 65, 043407, 7 p.
[159]
A. van der Schaft, H. Schumacher.
An introduction to hybrid dynamical systems, Lecture Notes in Control and Information Sciences, Springer-Verlag London, Ltd., London, 2000, vol. 251, xiv+174 p.
https://doi.org/10.1007/BFb0109998