Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
XML PDF e-pub
PDF e-Pub

Section: New Results

Human motion analysis in ecological environment

The estimation of human motion from sensors that can be used in an ecological environment is an important issue being it for home assistance for frail people or for human/robot interaction in industrial contexts. We are continuing our work on data fusion from RGB-D sensors using extended Kalman filters. The original approach uses a biomechanical model of the person to obtain anthropomorphically constrained joint angles to make their estimation physically coherent. In addition, we propose a method for the optimal adjustment of the covariance matrices of the extended Kalman filter. The proposed approach was tested with six healthy subjects performing 4 rehabilitation tasks. The accuracy of the joint estimates was evaluated with a reference stereophotogrammetric system. Our results show that an affordable RGB-D sensor can be used for simple home rehabilitation when using a constrained biomechanical model. This work has led to the writing of an article now in submission to the MBEC (Medical & Biological Engineering & Computing).

In a second step, we compared the joint centre estimates obtained with the new Kinect 3 (Azure Kinect) sensor, the Kinect 2 (Kinect for Windows) and a reference stereophotogrammetric system. Regardless of the system used, we have shown that our algorithm improves the body tracker data. This study also shows the importance of defining good heuristics to merge the data according to the body tracking operation. This study is submitted for publication at ICRA 2020.